Characterization of the active efflux of fluoroquinolones in eukaryotic cells

Coralie VALLET

Promotor: Françoise Van Bambeke

RESISTANCE: What? When? Why?

• Defence mechanism against cellular invasion by toxic substances.

- Chronic use of chemotherapy leads to resistance
 - \succ anticancer agents \longrightarrow eukaryotic cells
 - > antibiotics ------> prokaryotic cells (bacteria)
- Cell adaptation in order to avoid death

- enzymes ⇒ inactive drugs
- target mutation ⇒ ineffective drugs

- enzymes ⇒ inactive drugs
- target mutation ⇒ ineffective drugs
- active efflux of the toxic substance \Rightarrow drugs cannot reach their target

- enzymes ⇒ inactivate drugs
- target mutation ⇒ ineffective drugs
- active efflux of the toxic substance ⇒ drugs cannot reach their target ABC (ATP Binding Cassette) transporters

- enzymes ⇒ inactivate drugs
- target mutation ⇒ ineffective drugs
- active efflux of the toxic substance ⇒ drugs cannot reach their target ABC (ATP Binding Cassette) transporters MRP = Multidrug resistance associated proteins

MDR1 (ABCB1

MRP4 (ABCC4

MRP5 (ABCC5) MRP7 (ABCC1)

MRP1 (ABCC1) MRP2 (ABCC2) MRP3 (ABCC3) MRP6 (ABCC6) Why study the active efflux of **antibiotics** in **eukaryotic** cells?

Why study the active efflux of **antibiotics** in **eukaryotic** cells?

Why study the active efflux of **antibiotics** in **eukaryotic** cells?

Antibiotics = fluoroquinolones

Inhibition of topoisomerase activity ⇒ bacteria's death

Characterization of fluoroquinolone efflux in macrophages

Characterization of fluoroquinolone efflux in macrophages

Characterization of fluoroquinolone efflux in macrophages

Can we make eukaryotic cells resistant to fluoroquinolones?

Can we make eukaryotic cells resistant to fluoroquinolones?

Can we make eukaryotic cells resistant to fluoroquinolones?

Characterization of *Abcc4* Gene Amplification in Stepwise-Selected Mouse J774 Macrophages Resistant to the Topoisomerase II Inhibitor Ciprofloxacin

Béatrice Marquez^{1¤}, Geneviève Ameye², Coralie M. Vallet¹, Paul M. Tulkens¹, Hélène A. Poirel², Françoise Van Bambeke¹*

1 Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium, 2 Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium

- CIP accumulation
- ➔ Mrp4 (gene and protein)

Modulation of the expression of ABC transporters in murine (J774) macrophages exposed to large concentrations of the fluoroquinolone antibiotic moxifloxacin

Coralie M. Vallet^{a, 1}, Béatrice Marquez^{a, 1, 2}, Naïma Nhiri^b, Ahalieyah Anantharajah^a, Marie-Paule Mingeot-Leclercq^a, Paul M. Tulkens^a, Jean-Yves Lallemand^b, Eric Jacquet^{b,c}, Françoise Van Bambeke^{a,*}

^a Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, B-1200 Brussels, Belgium
^b Centre de recherche de Gif, Institut de Chimie des Substances naturelles, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
^c IMAGIF qPCR Platform, CNRS UPR2301, avenue de la Terrasse, 91198 Gif-sur-Yvette, France

MXF and CIP accumulation

<u>CIP efflux</u>

CIP efflux slower in MXF-R cells

Topoisomerase activity in wild-type, ciprofloxacin- and moxifloxacin-resistant cells

RESULTS I: resistance and mechanisms

<u>Topoisomerase activity in WT, CIP-R and MXF-R cells incubated with CIP, MXF, CPT, ETO or combination</u> of anticancer agent and fluoroquinolones

RESULTS I: resistance and mechanisms

<u>Topoisomerase activity in WT, CIP-R and MXF-R cells incubated with CIP, MXF, CPT, ETO or combination</u> of anticancer agent and fluoroquinolones

RESULTS I: resistance and mechanisms

<u>Topoisomerase activity in WT, CIP-R and MXF-R cells incubated with CIP, MXF, CPT, ETO or combination</u> of anticancer agent and fluoroquinolones

Topoisomerase activity in WT, CIP-R and MXF-R cells incubated with CIP, MXF, CPT, ETO or combination of anticancer agent and fluoroquinolones

2. Mrp4: fluoroquinolone recognition and transport

2. Mrp4: fluoroquinolone recognition and transport

RESULTS II: fluoroquinolone structure and PK profile

International Journal of Antimicrobial Agents 38 (2011) 249-256

Cellular accumulation of fluoroquinolones is not predictive of their intracellular activity: studies with gemifloxacin, moxifloxacin and ciprofloxacin in a pharmacokinetic/pharmacodynamic model of uninfected and infected macrophages

Coralie M. Vallet, Béatrice Marquez¹, Eva Ngabirano, Sandrine Lemaire, Marie-Paule Mingeot-Leclercq, Paul M. Tulkens*, Françoise Van Bambeke

Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73 bte B1.73.05, B-1200 Brussels, Belgium

Thesis – Coralie VALLET

RESULTS II: fluoroquinolone structure and PK profile

GMF, MXF and CIP accumulation

⇒High gemifloxacin accumulation level

⇒As MXF, GMF accumulation is not affected by an Mrp transporter in WT cells

⇒High gemifloxacin accumulation level

⇒As MXF, GMF accumulation is not affected by an Mrp transporter in WT cells

Has GMF a higher intracellular activity?

⇒High gemifloxacin accumulation level

⇒As MXF, GMF accumulation is not affected by an Mrp transporter in WT cells

Has GMF a higher intracellular activity?

Intracellular activity of GMF, MXF and CIP against S. aureus and L. monocytogenes

-3 -2 -1 0

-3 Log₁₀ extracellular concentration (x MIC)

3

-2

-1 Ó 2 3

1

Molecular determinants for recognition by an efflux pump?

Substrate recognition by efflux pumps in prokaryotes (NorA in *S. aureus*, PatA/PatB in *S. pneumoniae*, Mex/Opr in *P. aeruginosa*) and in eukaryotes (Mrp4 in murine J774 macrophages): a combined biological and structural study with 25 fluoroquinolones

(The structural study was performed in collaboration with Martine Prévost and Julien Dupont, *Structure et Fonction des Membranes biologiques*, Université Libre de Bruxelles)

RESULTS II: fluoroquinolone structure and PK profile

Bacteria efflux pumps

Bacteria vs mouse macrophages:

 Δ accumulation levels maximal efflux (CIP-R) and minimal efflux (WT + Gem)

eukaryotes / Gram+ ⇔ good correlation eukaryotes / Gram- ⇔ no correlation

Bacteria vs mouse macrophages:

 Δ accumulation levels maximal efflux (CIP-R) and minimal efflux (WT + Gem)

eukaryotes / Gram+ ⇒ good correlation eukaryotes / Gram- ⇒ no correlation

Is there one physicochemical parameter which govern the sensitivity to efflux by Mrp4, NorA and PatA/PatB?

 \Rightarrow NO

Interactions between fluoroquinolones and Mrp4

Interactions between fluoroquinolones and Mrp4

CIP: 3 interactions with Mrp4

Interactions between fluoroquinolones and Mrp4

MXF: 6 interactions with Mrp4

TAKE HOME MESSAGE

✓ 2 molecules from the same class of antibiotics are able to induce **opposite phenotypes**

TAKE HOME MESSAGE

✓ 2 molecules from the same class of antibiotics are able to induce **opposite phenotypes**

CIP (Mrp4 substrate) ⇒ **⊅** Mrp4

MXF (not Mrp4 substrate) ⇒ > Mrp4

TAKE HOME MESSAGE

✓ 2 molecules from the same class of antibiotics are able to induce **opposite phenotypes**

CIP (Mrp4 substrate) ⇒ **⊅** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity

Thesis – Coralie VALLET

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity ⇒HOW ????

CIP (Mrp4 substrate) ⇒ **⊅** Mrp4

MXF (not Mrp4 substrate) ⇒ अ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity ⇒HOW ????

✓ Accumulation of fluoroquinolones is not predictive of their intracellular activity ⇒ bioavailability ???

CIP (Mrp4 substrate) ⇒ **⊅** Mrp4

MXF (not Mrp4 substrate) ⇒ ≌ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity ⇒HOW ????

✓ Accumulation of fluoroquinolones is not predictive of their intracellular activity ⇒ bioavailability ???

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ ≌ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity ⇒HOW ????

✓ Accumulation of fluoroquinolones is not predictive of their intracellular activity ⇒ bioavailability ???

CIP (Mrp4 substrate) ⇒ **7** Mrp4

MXF (not Mrp4 substrate) ⇒ ≌ Mrp4

♦ Altered type II topoisomerase

✓ Fluoroquinolones can "protect" cells from anticancer agents toxicity ⇒HOW ????

✓ Accumulation of fluoroquinolones is not predictive of their intracellular activity ⇒ bioavailability ???

✓ All fluoroquinolones are "substrates" of efflux pumps

⇒ Efflux is linked to the **number of interactions** the molecule does with the binding site of the efflux pump

PERSPECTIVES

✤ All fluoroquinolones are recognized by the Mrp4 efflux pump, but following their sensitivity to efflux, the resistance mechanism in cells exposed to FQs can differ.

What else now??

- ✓ MXF-R cells : what is the mechanim leading to Mrp4 reduction in expression ? type II topoisomerase = resistance mechanism?
- ✓ How do fluoroquinolones protect cells against anticancer agents toxic effects?
- ✓ Intracellular bioavailability of fluoroquinolones?
- ✓ Transport of fluoroquinolones by Mrp4 : Mrp4 cristal strucutre?

- Françoise Van Bambeke
- Prof. P. Tulkens, M-P Mingeot-Leclercq
- Members of the jury
- Collaborators: Martine Prévost and Julien Dupont (ULB), Dr. Wetzstein (Bayer)
- ✤ F.S.R. and F.R.I.A.
- ✤ My family

THANKS TO ...

All old and new FACMists... My colleagues and friends

