

Membrane interactions of lipopeptides and saponins, two groups of natural amphiphiles

J. Lorent (public defence)

Main supervisor : M-P. Mingeot-Leclercq (FACM) Co-supervisor : J. Quetin-Leclercq (GNOS)

Introduction : physico-chemical properties of amphiphiles

Introduction : selected amphiphiles of natural origin

Isolated from Bacillus subtilis

Isolated from Hedera helix L.

Interfacial energy

Emulsions / suspensions

• liquid / air (foam)

liquid (apolar) / liquid (polar)

Introduction : amphiphiles (self-aggregation)

Introduction : amphiphiles (self-aggregation)

Introduction : amphiphiles (self-aggregation, intrinsic curvature and polymorphism)

Introduction : amphiphiles (self-aggregation, intrinsic curvature and polymorphism)

Cholesterol

Introduction : amphiphiles (self-aggregation, intrinsic curvature and polymorphism)

Cylinder shape

Lamellar L_{α} , L_{β} , L_{o} (bilayers or lipid membranes)

Introduction : bilayer dynamics and cholesterol effects

Introduction : the biological membrane (lateral heterogeneity and lipid rafts)

Rafts (L_o, liquid ordered phase)

- enriched in cholesterol, glyco-sphingolipids, saturated phospholipids
- Variable size (20-200nm)
- functional platforms: receptor Fas, DISC assembly (death receptor)

Lingwood (2011)

Introduction : different cell deaths induced by

Aim of the study

Materials and methods : Membrane models

- LUV (large unilamellar vesicles)/ MLV (multilamellar vesicles)
 - Size = 100 nm-1 μ m
 - Easy determination of lipid concentration
 - → Quantification of effects and amphiphilie/lipid ratio
- GUV (giant unilamellar vesicles)
 - Size ~ 10-50 µm
 - Difficult determination of lipid concentration
 - → Easy observation of effects
- SPB (supported planar bilayers)
 - Difficult determination of lipid concentration
 - → Nanoscopic effects

- Cancer cells (monocytes from leukemia, U937)
 - Cytotoxicity, determination of cell death

Materials and methods: phase separation models

liquid ordered / liquid crystalline

Interaction of α-hederin and hederagenin with lipids and effects on membrane models

Journal of Biological Chemistry 2013, 288, pp. 14000-14017

Induction of Highly Curved Structures in Relation to Membrane Permeabilization and Budding by the Triterpenoid Saponins, α - and δ -hederin

Joseph Lorent^{1,2}, Cécile S. Le Duff³, Joelle Quetin-Leclercq² and Marie-Paule Mingeot-Leclercq^{1*}

¹Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Avenue E. Mounier 73, UCL B1.73.05, B-1200 Bruxelles, Belgium.

> ²Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Avenue E. Mounier 73, UCL B1.72.03, B-1200 Bruxelles, Belgium.

³Université catholique de Louvain, - Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Place Louis Pasteur 1, UCL L4.01.04, B-1348 Louvain-la-Neuve, Belgium.

Langmuir, submitted

Phase separation and permeabilization induced by the saponin α -hederin and its aglycone hederagenin in a raft mimicking bilayer

Joseph Lorent^{1,4}, Laurence Lins², Domenech Òscar³, Joelle Quetin-Leclercq⁴, Robert Brasseur² and Marie-Paule Mingeot-Leclercq¹

¹Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, Avenue E. Mounier 73, B-1200 Brussels, Belgium.

> ²ULg, Centre de Biophysique Moléculaire Numérique, Agro-BioTech Gembloux, Passage des Déportés, 2, B- 5030 Gembloux, Belgium.

> ³University of Barcelona, Departament de Fisicoquímica, Facultat de Farmàcia, UB and Institut de Nanociència i Nanotecnologia IN, 08028 Barcelona, Spain.

⁴Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, B1.72.03, Avenue E. Mounier 72, B-1200 Brussels, Belgium.

Interaction with dehydroergosterol (DHE) in aqueous solution : DHE spectroscopy

→Both molecules bind to DHE forming some type of mixed aggregates (micelles) → I_{50} (inflexion point) of α-hederin corresponds to its CMC (13 µM)

Permeabilization of LUV : cholesterol dependence

→ Permeabilization depends on the cholesterol content and the saponin sugar chain

Permeabilization of LUV : cholesterol dependence

→ Permeabilization depends on the **cholesterol** content and the saponin **sugar chain**

Reorganization of MLV : cholesterol dependence

Reorganization of MLV : cholesterol dependence

→ Disruption of bilayer structure depends on sugar chain and cholesterol (not shown) → Increase of isotropic motion and appearance of hexagonal pattern with α -hederin

Reorganization of MLV : cholesterol dependence

→ Disruption of bilayer structure depends on sugar chain and cholesterol (not shown) → Increase of isotropic motion and appearance of hexagonal pattern with α -hederin

Sterol/phospholipid phase separation in MLV

Sterol/phospholipid phase separation in MLV

 \rightarrow Decrease of FRET efficiency is significant only with α -hederin at high compound/lipid ratios

Effects on GUV

Effects on GUV

Phase separation in GUV

Phase separation in GUV

<u>α-hederin (10 μM)</u>

Confocal (1 slide)

Confocal (profile, circumference)

Confocal (3D)

→ Accumulation of mainly TR-DPPE into worm-like domains
→ At later stages : separation of TR-DPPE and NBD-DPPE

NBD-DPPE (green) TR-DPPE (red)

Effects on GUV

spherical

25 µm

Effects on GUV

Incubation time	α-hederin	hederagenin		
30 min				
1h				
4h	N.D.		phase separation	25 µm
48h	N.D.		spherical	25 µm

Phase separation in GUV

hederagenin (40 µM)

Confocal (1 slide)

Confocal (profile, circumference)

Confocal (3D)

NBD-DPPE (green) TR-DPPE (red)

→ Formation of small circular domains with hederagenin

→Gradual permeation to FITC-dextran of 4 kDa

→Immediate permeation to FITC-dextran of 4 kDa

hederagenin

→ Permeation to FITC-dextran of 4 kDa after 48h

Nanoscopic effects of α-hederin on supported planar bilayer

Accumulation of membrane material into worm-like structures (new mesophase)
Formation of holes with increasing size upon time

Nanoscopic effects of α-hederin on supported planar bilayer

40 μM α-hederin

→ Accumulation of membrane material into worm-like structures (new mesophase)
→ Formation of holes with increasing size upon time

Conclusions : Membrane interactions of α -hederin

Conclusions: Membrane interactions of α-hederin

toroidal macroscopic pore

immediate permeabilization without transformation into new mesophase (at least at short incubation periods)

Conclusions : Membrane interactions of hederagenin

40 μM > CMC ??

Inverse aggregates ?

- ➔ accumulation into round spots
- ➔ transformation into inverse structures ?
- \rightarrow transient defects \rightarrow permeabilization ?

Investigations on cells

 α-hederin and hederagenin induce apoptosis and non-apoptotic cell death in U937 and THP-1 cells in a cholesterol-dependent manner

Joseph Lorent^{1,2}, Joelle Quetin-Leclercq² and Marie-Paule Mingeot-Leclercq^{1*}

¹Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier 73, B-1200 Bruxelles, Belgium. ²Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, UCL B1.72.03, avenue E. Mounier 73, B-1200 Bruxelles, Belgium.

Cell death : Acridine orange/Ethidium bromide in U937 cells

 \rightarrow Non-apoptotic cell death (very important at high α -hederin concentrations)

+ Q-VD-O-Ph (general caspase inhibitor) → inhibition of apoptosis for both compounds
→ no inhibition of non-apoptotic cell death

Cell death : Acridine orange/Ethidium bromide in U937 cells

→ Apoptosis induction = faster with α -hederin than hederagenin

→ Non-apoptotic cell death (very important at high α -hederin concentrations)

+ Q-VD-O-Ph (general caspase inhibitor) → inhibition of apoptosis for both compounds
→ no inhibition of non-apoptotic cell death

Cholesterol dependence of total cell death / apoptosis in U937

Cholesterol dependence of total cell death / apoptosis in U937

<u>a-hederin</u>

Cholesterol dependence of cell death : decrease of α-hederin induced total cell death and apoptosis in depleted cells

Conclusions : Potential interactions

Effect of surfactin on membrane models displaying lipid phase separation

Magali Deleu^{1°*}, Joseph Lorent^{2°}, Laurence Lins³, Robert Brasseur³, Nathalie Braun⁴, Karim El Kirat⁴, Tommy Nylander⁵, Yves F. Dufrêne⁴ and Marie- Paule Mingeot-Leclercq²

¹Université de Liège Gembloux Agro-Bio Tech, Unité de Chimie Biologique Industrielle, Passage des Déportés, 2, B-5030 Gembloux, Belgium

²Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Avenue E. Mounier 73, B1.73.05, B-1200, Brussels, Belgium

³Université de Liège Gembloux Agro-Bio Tech, Centre de Biophysique Moléculaire Numérique, Passage des Déportés, 2, B-5030 Gembloux, Belgium

⁴Université catholique de Louvain, Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Croix du Sud 1, L7.04.01, B-1348 Louvain-la-Neuve, Belgium

> ⁵Lund University, Center for Chemistry and Chemical Engineering, Physical Chemistry, 1S-221 00 Lund, Sweden °Equal First author

Molecular structure, CMC and activity of surfactin

→ Tested on **DOPC/DPPC** (1:1) bilayer at pH =8,5

Integrity of SPB : AFM

Supported planar bilayer : DOPC/DPPC (1:1) (25°C)

15 x 15 µm

20 x 20 µm

log(size) (nm)

Conclusions : Surfactin / membrane interaction

Erosion of DPPC domains and transient defects

Conclusions : Surfactin / membrane interaction

Transformation into micelles, Fusion ?

[surfactin] >> CMC

General conclusions

General conclusions

Perspectives

Short term-perspectives

Biphoton microscopy of DHE

GUV : DOPC:DPPC:DHE (1:1:1)

Cell staining (McIntosh 2008, Garvik 2009)

Tof-SIMS

Cells (*Mazzucchelli 2008*)

Perspectives

Long term-perspectives

