

Antimicrobial resistance in Streptococcus pneumoniae isolates from Belgian community acquired pneumonia, with special reference to efflux mechanism.

Ann Lismond

Pharmacologie cellulaire et moléculaire Promoteurs: Pr. F. Van Bambeke, Pr. P. Tulkens

Why pneumonia?

(per 100 000 inhabitants)

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Causes_of_death_statistics

Community-Acquired Pneumonia

- Leading cause of morbidity & mortality worldwide
- Mortality: <1% to ~48% associated to severity & risk factors
- Incidence varies depending on period of the year
 & age
- Long-term prognosis worst for pneumococcal
 CAP

Causative organisms:

Streptococcus pneumoniae

- Gram + cocci, non motile
- polysaccharidic capsule (>90 serotypes)
 → target of current vaccine
- Extremely adaptive: naturally competent (transformation) & recombination
- Upper respiratory tract commensal (20-70% adults)

- Cause of
 - Mucosal infections: AOM, CAP, sinusitis, AECB...
 - Invasive infections: bacteraemia, sepsis, meningitis,...

D Bogaert et al. Lancet Infect Dis 2004; 4: 144-54

Main antibiotic classes used against S. pneumoniae

S. pneumoniae resistance mechanisms:

- β -Lactams Decreased affinity of PBP (mosaic genes)
- Macrolides

•Ribosomal alteration:

- Ribosomal methylation (23S)
- Ribosomal mutation (23S domain V)
- Mutation in riboproteins L4 or L22

•Efflux: pumps MefA/E/I

Fluoroquinolones •Mutations in Topoisomerase IV / DNA Gyrase
 •Efflux: pumps PmrA, PatA, PatB

Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries

8

Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries

Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries

Belgium guidelines for initial oral empiric antibiotic therapy for outpatients with CAP (2008)

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Belgian collection of S. pneumoniae

Antimicrobial susceptibility of *Streptococcus pneumoniae* isolates from vaccinated and non-vaccinated patients with a clinically confirmed diagnosis of community-acquired pneumonia in Belgium

Ann Lismond^a, Sylviane Carbonnelle^{a,1}, Jan Verhaegen^b, Patricia Schatt^c, Annelies De Bel^d, Paul Jordens^e, Frédérique Jacobs^f, Anne Dediste^g, Frank Verschuren^h, Te-Din Huang^{i,2}, Paul M. Tulkens^{a,*}, Youri Glupczynski^j, Françoise Van Bambeke^a

^a Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain,
 ^b Laboratorium microbiologie, Universitair Ziekenhuis Gasthuisberg, Leuven, Belgium
 ^c Laboratoire de microbiologie, Cliniques Notre-Dame de Grâce, Gosselies, Belgium
 ^d Microbiologie en ziekenhuishygiëne, Universitair Ziekenhuis Brussel, Brussels, Belgium
 ^e Afdeling pneumologie, O.L.V. Ziekenhuis, Aalst, Belgium
 ^f Clinique des maladies infectieuses, Hôpital Erasme, Brussels, Belgium
 ^g Laboratoire de microbiologie, CHU Saint-Pierre, Brussels, Belgium
 ^h Service des urgences, Cliniques universitaires Saint-Luc, Brussels, Belgium
 ⁱ Laboratoire de microbiologie, CHU Mont-Godinne, Yvoir, Belgium

for 249 isolates, collected between 04/2007 and 03/2009

European Committee on Antimicrobial Susceptibility Testing (EUCAST)

MIC = Minimal Inhibitory Concentration

Wild type (WT) : organism characterized by the absence of acquired and mutational resistance mechanisms to the drug.

Wild type micro-organisms may or may not respond clinically to antimicrobial treatment.

Clinical resistance (EUCAST)

A micro-organism is defined as

- Susceptible (S) by a level of antimicrobial activity associated with a high likelihood of therapeutic success
- Intermediate (I) by a level of antimicrobial agent activity associated with uncertain therapeutic effect
- Resistant (R) by a level of antimicrobial activity associated with a high likelihood of therapeutic failure

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Antibiotics susceptibility

CLSI = Clinical and Laboratory Standards Institute

Susceptibility to β -Lactams:

Susceptibility to Macrolides:

wild-type population (EUCAST)

Susceptibility to Fluoroquinolones:

Belgium guidelines for initial oral empiric antibiotic therapy for outpatients with CAP (2008)

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Pneumococcal vaccines

Seroty pes	PPV23
1	х
2	х
3	х
4	х
5	x
6A	
6B	х
7F	x
8	x
9N	х
9V	x
10A	x
11A	х
12F	x
14	x
15B	x
17F	x
18C	х
19A	x
19F	x
20	х
22F	x
23F	x
33F	х

>90 ST → 24 covered by vaccines

Serogroups prevalence in collection

Vaccines for children

Vaccines for adults

Relationship non-susceptibility and serogroups

serogroup/serotype

Anibiotic non-susceptibility is mainly in SG-19, -1, -6, -14!

Percentage of non-susceptible strains in specific serogroups:

→ Strong association between serogroup & antibiotic non-susceptibility!

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?

– Interest of new molecules in development ?

- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Interest of new molecules for CAP?

Interest of new molecules for CAP?

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Efflux pumps

- Transmembrane transporter
 proteins
- Ubiquitous mechanism
- <u>Purpose</u>: expulse toxic substrates out of the cell
 → AB can be recognized as substrate

 \rightarrow Low level resistance

Efflux pumps

- Every bacterial genome has various pumps
- Same AB can be substrate of different pumps
- Narrow spectrum (Gram +) : 1 pump can recognize 1 AB class
- Substrate specificity varies within 1 AB class

Fluoroquinolones active efflux in S. pneumoniae

3 FQ transporters described:

- PmrA (Gill et al. 1999)
- PatA](Marrer *et al.* 2006)
- PatB

MIC values

S 2

MIC

MIC

MIC

		CIP	LVX	MXF	GAR	GEM	
	Efflux (%)						
present ≥2 dil°	91	45	39	61	91		
	≥2 dil°	10	-	-	-	17	
EUCAST	Breakpoints						
S≤ /R> CLSI S≤ /R≥	S≤ /R>	0.12/2	2/2	0.5 / 0.5	wt ≤ 0.12	0.12/0.5	
	I/R (%)	98 / 2	-	-	0.5 > wt	-	
	S (%)	0	100	100	99.5 wt	100	

Efflux presence? \rightarrow YES!

Prevalence? \rightarrow 39 to 91% depending on fluoroquinolone

Effect? \rightarrow Modest >< Strong: CIP (10%) & GEM (17%)

Clinical significance? \rightarrow None for anti-pneumococcal fluoroquinolones (MXF, LVX & GEM) \rightarrow MIC < bkpt \rightarrow Risk of selection of resistant strains

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?
 - Expression & Inducibility?

Identification of transporter & substrate specificity

Pump? → PatA/PatB >> PmrA → heterodimer Specificity?

OBJECTIVES

- Pneumonia treatment optimal?
 - Antibiotics recommended ~ resistance ?
 - Vaccine coverage ~ prevalent serotypes ?
 - Interest of new molecules in development ?
- Fluoroquinolones active efflux:
 - Prevalence & clinical relevance?
 - Identification of transporter & Substrate specificity?

– Expression & Inducibility?

Expression & Inducibility?

Expression & Inducibility?

Induction? →Only patA & patB →By all FQ tested, even if not substrates →In lab strains & in clinical isolates

→Reversible→Time & dose dependant

CONCLUSIONS & PERSPECTIVES

- Pneumonia treatment
 - Continuing surveillance of **antibiotics** susceptibilities and **serotypes** distribution!

\rightarrow local & up-to-date epidemiology

- Guidelines to review regularly:
 - Antibiotic resistance rate (CFX)
 - Availability of new molecules (SOL)
- Vaccines:
 - Formulation to update regularly
 - Excellent coverage for children (PCV13)
 - PCV13 is 'accepted' for adults while should be 'recommended'
 - PCV13 given earlier: from 50y
 - New vaccine independent from capsular polysaccharides?

CONCLUSIONS & PERSPECTIVES

- Fluoroquinolones active efflux:
 - Present but not clinically relevant (MXF, LVX)
 - Transporter = heterodimeric PatA/PatB (> PmrA)
 - Over-expression impacts MIC
 - Even non-substrates can induce over-expression

→ important for design of new molecules: non-substrates + non-inducers!

- Can non-antibiotics induce over-expression?
- In the clinics: can efflux be triggered by previous antibiotic treatment?

 \rightarrow new collection from AECB

Thank you !