Antimicrobial resistance in *Streptococcus pneumoniae* isolates from Belgian community acquired pneumonia, with special reference to efflux mechanism.

Ann Lismond

Pharmacologie cellulaire et moléculaire
Promoteurs: Pr. F. Van Bambeke, Pr. P. Tulkens
Why pneumonia?

Causes of death - standardised death rate, EU-27, 2010
(per 100 000 inhabitants)

Community-Acquired Pneumonia

• Leading cause of morbidity & mortality worldwide

• Mortality: <1% to ~48% associated to severity & risk factors

• Incidence varies depending on period of the year & age

• Long-term prognosis worst for pneumococcal CAP
Causative organisms:
Streptococcus pneumoniae

- Gram + cocci, non motile

- Polysaccharidic capsule (>90 serotypes) → target of current vaccine

- Extremely adaptive: naturally competent (transformation) & recombination

- Upper respiratory tract commensal (20-70% adults)
• **Cause of**
 - Mucosal infections: AOM, CAP, sinusitis, AECB…
 - Invasive infections: bacteraemia, sepsis, meningitis,…
Main antibiotic classes used against *S. pneumoniae*

S. pneumoniae resistance mechanisms:

- **β-Lactams**
 - Decreased affinity of PBP (mosaic genes)

- **Macrolides**
 - Ribosomal alteration:
 - Ribosomal methylation (23S)
 - Ribosomal mutation (23S domain V)
 - Mutation in riboproteins L4 or L22
 - Efflux: pumps MefA/E/I

- **Fluoroquinolones**
 - Mutations in Topoisomerase IV / DNA Gyrase
 - Efflux: pumps PmrA, PatA, PatB
Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries
Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries
Comparison of antibiotic resistance rates of *S. pneumoniae* in various countries
Belgium guidelines for initial oral empiric antibiotic therapy for outpatients with CAP (2008)

No risk factor:

- Allergy to Penicillin?
 - With risk factors: yes
 - Children: -CFX-axetil or -MXF

- AMX
 - + amoxiclav

If no improvement after 48h: + Macrolide

BAPCOC: Belgian Antibiotic Policy Coordination Committee (Belgium)
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance ?
 – Vaccine coverage ~ prevalent serotypes ?
 – Interest of new molecules in development ?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Belgian collection of S. *pneumoniae*

Antimicrobial susceptibility of *Streptococcus pneumoniae* isolates from vaccinated and non-vaccinated patients with a clinically confirmed diagnosis of community-acquired pneumonia in Belgium

Ann Lis mond a, Sylviane Carbonnelle a,1, Jan Verhaegen b, Patricia Schatt c, Annelies De Bel d, Paul Jordens e, Frédérique Jacobs f, Anne Dediste g, Frank Verschuren h, Te-Din Huang i,2, Paul M. Tulkens a,*, Youri Glupczynski j, Françoise Van Bambeke a

a Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, b Laboratorium microbiologie, Universitair Ziekenhuis Gasthuisberg, Leuven, Belgium
Laboratoire de microbiologie, Cliniques Notre-Dame de Grâce, Gosselies, Belgium
d Microbiologie en ziekenuishygïïe, Universitair Ziekenhuis Brussel, Brussels, Belgium
e Afdeling pneumologie, O.L.V. Ziekenhuis, Aalst, Belgium
f Clinique des maladies infectieuses, Hôpital Erasme, Brussels, Belgium
g Laboratoire de microbiologie, CHU Saint-Pierre, Brussels, Belgium
h Service des urgences, Cliniques universitaires Saint-Luc, Brussels, Belgium
i Laboratoire de microbiologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
j Laboratoire de microbiologie, CHU Mont-Godinne, Yvoir, Belgium
General protocol

Patient with suspicion of pneumonia

Sampling for microbiology Clinical examination, X-ray

Isolation of SP CAP diagnostic

Microbiology (A. Lismond)

Analysis of the case
- Symptoms, severity
- X-ray
- AB: previous, current
- Contact of GP
- Reason(s) of referral to hospital

Clinic: clinical file (Dr. Carbonnelle)

Microbiological & clinical data are assembled (anonymous)

for 249 isolates, collected between 04/2007 and 03/2009
European Committee on Antimicrobial Susceptibility Testing (EUCAST)

MIC = Minimal Inhibitory Concentration

Wild type (WT): organism characterized by the absence of acquired and mutational resistance mechanisms to the drug.

Wild type micro-organisms may or may not respond clinically to antimicrobial treatment.
Clinical resistance (EUCAST)

A micro-organism is defined as

• **Susceptible (S)** by a level of antimicrobial activity associated with a high likelihood of therapeutic success

• **Intermediate (I)** by a level of antimicrobial agent activity associated with uncertain therapeutic effect

• **Resistant (R)** by a level of antimicrobial activity associated with a high likelihood of therapeutic failure
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance ?
 – Vaccine coverage ~ prevalent serotypes ?
 – Interest of new molecules in development ?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Antibiotics susceptibility

CLSI = Clinical and Laboratory Standards Institute
Susceptibility to β-Lactams:

- **Amoxicillin**: 3.2% R = ok
- **Cefuroxime (oral)**: 6.8% R = caution

Clinical breakpoint: EUCAST CLSI

Wild-type population (EUCAST)
Susceptibility to Macrolides:

23.7% R = NO

0.8% R = ok
Susceptibility to Fluoroquinolones:

100% S = Ok!
Belgium guidelines for initial oral empiric antibiotic therapy for outpatients with CAP (2008)

Allergy to Penicillin?

- With risk factors:
 - yes
 - - CFX-axetil or - MXF
 - + Macrolide

- no
 - + amoxiclav
 - High dose for AMX

If no improvement after 48h:

- + Macrolide
 - better than LVX
 - LVX: high dose!

BAPCOC: Belgian Antibiotic Policy Coordination Committee (Belgium)
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance?
 – Vaccine coverage ~ prevalent serotypes?
 – Interest of new molecules in development?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Pneumococcal vaccines

- >90 ST → 24 covered by vaccines

<table>
<thead>
<tr>
<th>Serotypes</th>
<th>PPV23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>6A</td>
<td>x</td>
</tr>
<tr>
<td>6B</td>
<td>x</td>
</tr>
<tr>
<td>7F</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>9N</td>
<td>x</td>
</tr>
<tr>
<td>9V</td>
<td>x</td>
</tr>
<tr>
<td>10A</td>
<td>x</td>
</tr>
<tr>
<td>11A</td>
<td>x</td>
</tr>
<tr>
<td>12F</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>x</td>
</tr>
<tr>
<td>15B</td>
<td>x</td>
</tr>
<tr>
<td>17F</td>
<td>x</td>
</tr>
<tr>
<td>18C</td>
<td>x</td>
</tr>
<tr>
<td>19A</td>
<td>x</td>
</tr>
<tr>
<td>19F</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>x</td>
</tr>
<tr>
<td>22F</td>
<td>x</td>
</tr>
<tr>
<td>23F</td>
<td>x</td>
</tr>
<tr>
<td>33F</td>
<td>x</td>
</tr>
</tbody>
</table>
Serogroups prevalence in collection

Total:
- 19
- 3
- 1
- 7
- 12
- 6
- 5
- 9
- 23
- 4
- 8

≥60y:
- 19
- 3
- 7
- 12
- 1
- 6
- 9
- 11
- 14
- 18
- 23
- 31
- 33

20-59y:
- 1
- 12
- 5
- 3
- 7
- 6
- 4
- 8
- 19
- 9
- 23
- 10

<5y:
- 19
- 7
- 1
- 6
- 3
- 5
- 22
- 23
- 33
- 9

SG frequencies (%)
Vaccines for children

N=29

<table>
<thead>
<tr>
<th>Serotypes</th>
<th>PCV7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>x</td>
</tr>
<tr>
<td>7F</td>
<td></td>
</tr>
<tr>
<td>9V</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>x</td>
</tr>
<tr>
<td>18C</td>
<td>x</td>
</tr>
<tr>
<td>19A</td>
<td></td>
</tr>
<tr>
<td>19F</td>
<td>x</td>
</tr>
<tr>
<td>23F</td>
<td>x</td>
</tr>
</tbody>
</table>

Apparent coverage of SG: ~45%

PCV-7 theoretical coverage in <5y → ~17% of isolates

Vaccination status: ~60% yes, ~38% no

PCV-13 theoretical coverage in <5y → ~93% of isolates
Vaccines for adults

N=132

PPV-23 theoretical coverage in ≥60y → 58-87%

Vaccination status: ~20% yes, ~60% no, ~20% unknown

PCV-13 theoretical coverage in ≥60y → 55-67%

→ clinical trials to combine PCV13 & PPV23
Anibiotic non-susceptibility is mainly in SG-19, -1, -6, -14!
Percentage of non-susceptible strains in specific serogroups:

→ included in PPV23 and PCV13!
→ Protection from antibiotic resistant strains!

→ Strong association between serogroup & antibiotic non-susceptibility!
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance?
 – Vaccine coverage ~ prevalent serotypes?
 – Interest of new molecules in development?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Interest of new molecules for CAP?

Macrolides:

Ketolides:

Telithromycin

Solithromycin

Interest of new molecules for CAP?

- TEL-R
- TEL-I
- TEL-S

Efficacy and Safety Study of Intravenous to Oral Solithromycin (CEM-101) Compared to Intravenous to Oral Moxifloxacin in Treatment of Patients With Community-Acquired Bacterial Pneumonia

- **Condition:** Community-acquired Bacterial Pneumonia
- **Interventions:** Drug: Solithromycin; Drug: Moxifloxacin

Efficacy and Safety Study of Oral Solithromycin (CEM-101) Compared to Oral Moxifloxacin in Treatment of Patients With Community-Acquired Bacterial Pneumonia

- **Condition:** Community-acquired Bacterial Pneumonia
- **Interventions:** Drug: Solithromycin; Drug: Moxifloxacin
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance ?
 – Vaccine coverage ~ prevalent serotypes ?
 – Interest of new molecules in development ?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Efflux pumps

- Transmembrane transporter proteins
- Ubiquitous mechanism
- **Purpose**: expulse toxic substrates out of the cell
 \[\rightarrow AB \text{ can be recognized as substrate} \]
- **Effect**: decrease AB concentration within cell
 \[\rightarrow \text{Low level resistance} \]

\[\text{less AB reach target}\]

\[\text{[PmrA]}\]

\[\text{[PatA/PatB]}\]
Efflux pumps

• Every bacterial genome has various pumps
• Same AB can be substrate of different pumps
• Narrow spectrum (Gram +) : 1 pump can recognize 1 AB class
• Substrate specificity varies within 1 AB class
Fluoroquinolones active efflux in *S. pneumoniae*

3 FQ transporters described:
- PmrA (Gill *et al*. 1999)
- PatA (Marrer *et al*. 2006)
- PatB

Reserpine
Prevalence & clinical relevance?

N=183

Presence: 91%
Strong: 10%
Prevalence & clinical relevance?

N=183

Presence: 45%
Strong: 0 %
Prevalence & clinical relevance?

N=183

Presence: 39%
Strong: 0 %
Prevalence & clinical relevance?

N=183

Gemifloxacin

Presence: 91%
Strong: 17%
Prevalence & clinical relevance?

Efflux presence? → YES!

Prevalence? → 39 to 91% depending on fluoroquinolone

Effect? → Modest << Strong: CIP (10%) & GEM (17%)

Clinical significance? → None for anti-pneumococcal fluoroquinolones (MXF, LVX & GEM) → MIC < bkpt
→ Risk of selection of resistant strains
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance ?
 – Vaccine coverage ~ prevalent serotypes ?
 – Interest of new molecules in development ?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Identification of transporter & substrate specificity

Pump? → PatA/PatB >> PmrA heterodimer

Specificity?

NOR >> GEM > LVX > MXF
OBJECTIVES

• Pneumonia treatment optimal?
 – Antibiotics recommended ~ resistance?
 – Vaccine coverage ~ prevalent serotypes?
 – Interest of new molecules in development?

• Fluoroquinolones active efflux:
 – Prevalence & clinical relevance?
 – Identification of transporter & Substrate specificity?
 – Expression & Inducibility?
Expression & Inducibility?

Over-expression?

→ Impact on MICs
→ Also in clinical isolates

<table>
<thead>
<tr>
<th>CIP</th>
<th>ATCC-49619</th>
<th>SP-334</th>
<th>SP-335</th>
<th>SP-295</th>
<th>SP-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>PmrA/wt</td>
<td>0.5</td>
<td>4</td>
<td>32</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Impact on MICs

- Also in clinical isolates

PmrA PatA/B

<table>
<thead>
<tr>
<th>wt</th>
<th>wt</th>
<th>+</th>
<th>+</th>
<th>wt</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>lab mutants</td>
<td>clinical isolates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expression & Inducibility?

Induction? → Only patA & patB
 → By all FQ tested, even if not substrates
 → In lab strains & in clinical isolates
 → Reversible
 → Time & dose dependant
CONCLUSIONS & PERSPECTIVES

• Pneumonia treatment
 – Continuing surveillance of antibiotics susceptibilities and serotypes distribution!
 → local & up-to-date epidemiology
 – Guidelines to review regularly:
 • Antibiotic resistance rate (CFX)
 • Availability of new molecules (SOL)
 – Vaccines:
 • Formulation to update regularly
 • Excellent coverage for children (PCV13)
 • PCV13 is ‘accepted’ for adults while should be ‘recommended’
 • PCV13 given earlier: from 50y
 • New vaccine independent from capsular polysaccharides?
CONCLUSIONS & PERSPECTIVES

• Fluoroquinolones active efflux:
 – Present but not clinically relevant (MXF, LVX)
 – Transporter = heterodimeric PatA/PatB (> PmrA)
 – Over-expression impacts MIC
 – Even non-substrates can induce over-expression
 → important for design of new molecules:
 non-substrates + non-inducers!

 – Can non-antibiotics induce over-expression?
 – In the clinics: can efflux be triggered by previous antibiotic treatment?
 → new collection from AECB
Thank you !