

Maritza Barcia-Macay (Patterson) Unité de Pharmacologie cellulaire et moléculaire

Activity of antibiotics against extracellular and intracellular forms of *Staphylococcus aureus*

Pharmacodynamic studies in vitro using a model of human THP-1 macrophages I. INTRODUCTION

Staphylococcus aureus

Bacteria with the greatest pathogenic potential in human infections.

A major cause of nosocomial and community-acquired infections.

1. skin and soft tissue infections

impetigo

erysipelas

cellulitis

furuncle

abscess

2. food-poisoning

3. Deep-organ infections

endocarditis

pneumonia

osteomyelitis

All these infections are difficult to treat :

- recurrence / persistence
 - in relation with the intracellular character of S. aureus
 - → selection of antibiotics based on pharmacokinetic / pharmacodynamics properties
- resistance to currently available antibiotics
 - \rightarrow need of drugs acting on multiresistant strains

All these infections are difficult to treat :

- recurrence / persistence
 - in relation with the intracellular character of S. aureus
 - → selection of antibiotics based on pharmacokinetic / pharmacodynamics properties
- resistance to currently available antibiotics
 - \rightarrow need of drugs acting on multiresistant strains

Intracellular infection by S. aureus

Normal process of phagocytosis

Intracellular infection by S. aureus

Incomplete phagocytosis of S. aureus

Intracellular infection by S. aureus

Bacteria able to survive in different host cells : phagocytes and non-phagocytes

Neutrophils Macrophages Mammary epithelial cells Enterocytes Keratinocytes Osteoblasts Fibroblasts Endothelial cells

Brouillette et al, Vet Microbiol (2004) 101:253-262; Microb Pathog. (2003) 35:159-68.

All these infections are difficult to treat :

- recurrence / persistence
 - in relation with the intracellular character of S. aureus
 - \rightarrow selection of antibiotics based on

pharmacokinetic / pharmacodynamics properties

- resistance to currently available antibiotics
 - \rightarrow need of drugs acting on multiresistant strains

Antibiotic pharmacokinetics / pharmacodynamics

general concept

Craig CID (1998) 26:1-10

Antibiotic pharmacokinetics / pharmacodynamics

intracellularly

PHARMACOKINETICS

PHARMACODYNAMICS

Carryn et al, Infect Dis Clin North Am. (2003) 17:615-34

All these infections are difficult to treat :

- recurrence / persistence
 - in relation with the intracellular character of S. aureus
 - → selection of antibiotics based on pharmacokinetic / pharmacodynamics properties

resistance to currently available antibiotics

 \rightarrow need of drugs acting on multiresistant strains

The world first commercially available antibiotic appeared in 1941

Most worrying resistance phenotypes having emerged over time

year	phenotype	first description	
1960	HA-MRSA	England	
1967	MDR HA-MRSA	Europe, Australia, Japan	
1980	Genta-R MRSA	USA, Ireland, UK	
1993	CA-MRSA	Australia	
1997	VISA	Japan	
2002	VRSA	USA	

Percentage of MRSA resistance in Europe in 2004: *S. aureus* proportion of invasive isolates MRSA in 2004

Data from the European antimicrobial resistant surveillance system, EARSS.

Prevalence of resistance to other antibiotic classes

Fluit et al., J Clin Microbiol (2001) 39: 3727-3732

All these infections are difficult to treat :

- recurrence / persistence
 - in relation with the intracellular character of S. aureus
 - → selection of antibiotics based on pharmacokinetic / pharmacodynamics properties
- resistance to currently available antibiotics

 \rightarrow need of drugs acting on multiresistant strains

Need for new antistaphylococcal agents

A lot of drugs in the pipeline ...

F. Van Bambeke, symposium on *S. aureus* – Brussels, 11-1-2007

II. AIM OF THE STUDY

recurrence / persistence

in relation with the intracellular character of S. aureus

 \rightarrow selection of antibiotics based on

pharmacokinetic / pharmacodynamics properties

- To develop an intracellular model allowing to compare the activity of antibiotics on a pharmacodynamic basis
- resistance to currently available antibiotics
 - \rightarrow need of drugs acting on multiresistant strains
 - To evaluate the cellular pharmacokinetics and the intracellular activity towards multiresistant strains of a new antibiotic in development

III. METHODOLOGY

Setting-up of the intracellular model

Method

1) opsonization of S. aureus with human serum

- 2) phagocytosis of the bacteria by THP-1 macrophages (ratio 4 bacteria vs 1 macrophage)
- 3) elimination of extracellular *S. aureus* (gentamicin 100 X MIC).
 Rinse of infected macrophages (time-zero)
- 4) intracellularly infected macrophages, ready to test antibiotic activity
- 5) maintenance of gentamicin at its MIC during the whole incubation period for controls to avoid extracellular contamination

Setting-up of the intracellular model cell line ?

THP-1= many features of human monocytes/macrophages

Tsuchiya, Int. J. Cancer (1980) 26:171-176; Auwerx, Experientia (1991) 47:22-31

parameter	characteristics
morphological features	 morphology resembling that of monocytic leukemia cells: diameter 12-14 μm moderate basophile cytoplasm small azurophiles granules, few vacuoles nuclei irregular in shape
cytochemical features	 positive for α-naphthyl butyrate esterase negative reaction with periodic acid-Schiff and Sudan black B diploid (46,XY) chromosome number
surface antigens and receptors	CD4, CD30, Factor X receptor, Factor Xa receptor, FcRI, FcRI, GM-CSF-receptor, HDL receptor, LDL receptor, TNF receptor, C3b receptor, LFA-1 receptor, Fibronectin receptor, Leu M1, Leu M2, Leu M3, HLA-DR antigens, scavengers receptors
secreted proteins	 hormones, cytokines: TNF-α, IL-1, IL-1b, CSF-1, M-CSF, erythrocyte differentiation factor, PDGF-1 and -2, thymosin B4, killer T cell activating factor, monocyte chemotactic factor enzymes: lipoprotein lipase, lyzozyme binding proteins: apoprotein E
functional features	 phagocytosis production of lyzozyme capacity to restore the lympocyte T mitogenic responsiveness

Setting-up of the intracellular model

ATCC 25923

- clinical isolate from 1976
- fully susceptible
- widely used as a standard for microbiological testing of antibiotics

useful to compare all antibiotics towards a single strain, but may differ in virulence with current strains ...

Setting-up of the intracellular model

antibiotics ?

- Beta-lactams: first choice for susceptible strains
- Aminoglycosides: highly bactericidal extracellularly
- Rifampicin: considered as first choice for intracellular infections
- Macrolides, quinolones: high cellular accumulation
- Glycopeptides: alternative for MRSA
- Linezolid: recently introduced, active on MRSA

S. aureus intracellular model

extracell. [GEN] *		extracell. contamin.**	
	0	17.2 ± 1.9	
-2-	0.001	16.0 ± 1.0	
-	0.01	0.013 ± 0.001	
-0-	0.1	0.0026 ± 0.0003	
	1	< 0.001	

* x MIC

** % of total bacteria in culture

Bacteria multiply in phagolysosomes where pH is acidic

membrane bond vacuole

General protocol

IV. RESULTS

First goal of this thesis

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2006, p. 841–851 0066-4804/06/\$08.00+0 doi:10.1128/AAC.50.3.841–851.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Vol. 50, No. 3

Pharmacodynamic Evaluation of the Intracellular Activities of Antibiotics against *Staphylococcus aureus* in a Model of THP-1 Macrophages

Maritza Barcia-Macay, Cristina Seral,[†] Marie-Paule Mingeot-Leclercq, Paul M. Tulkens, and Françoise Van Bambeke^{*}

Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, **R**-1200 Brussels, Belgium

Received 17 August 2005/Returned for modification 30 October 2005/Accepted 8 December 2005

Human macrophages

Fully susceptible strain

Antibiotics accumulate to variable levels in THP-1 macrophages

TABLE 2. Cellular accumulation factor of antibiotics in THP-1 cells after 24 h of incubation at a fixed extracellular concentration

Antibiotic	Cellular accumulation	Extracellular concn (mg/liter)
Azithromycin Telithromycin	37.8 ± 1.3 27.9 ± 1.3	5 2
Gentamicin	4.4 ± 0.1	250
Linezolid	0.5 ± 0.0	250
Penicillin V Nafcillin Ampicillin Oxacillin	$\begin{array}{c} 1.2 \pm 0.1 \\ 2.6 \pm 0.1 \\ 1.0 \pm 0.1 \\ 4.0 \pm 0.1 \end{array}$	150 400 150 250
Teicoplanin Vancomycin Oritavancin	7.4 ± 0.2 6.3 ± 0.1 148.0 ± 12.0	150 100 25
Rifampin	17.6 ± 0.9	50
Ciprofloxacin Levofloxacin Garenoxacin Moxifloxacin	$\begin{array}{c} 5.1 \pm 0.1 \\ 7.0 \pm 0.6 \\ 9.1 \pm 0.3 \\ 7.6 \pm 0.3 \end{array}$	4.3 4 4 4

<u>High level:</u>
macrolides
oritavancin
rifampin
<u>moderate level:</u>
aminoglycoside
old glycopeptides
quinolones
linezolid
β-lactams

influence of time on activity

in all cases, intracellular activity << extracellular activity
 no direct relation between accumulation and intracellular activity

concentration-effect relationships

• sigmoidal relationships

concentration-effect relationships

- sigmoidal relationships
- Emax intra << Emax extra

concentration-effect relationships

sigmoidal relationships

• Emax intra << Emax extra

EC₅₀ extra = EC₅₀ intra for OXA and MXF
 EC₅₀ extra < EC₅₀ intra for GEN and ORI

intracellular killing is visible !

control

OXA

ORI

extracellular versus intracellular activity

 $\Delta \log CFU$ from time 0

extracellular versus intracellular activity

 $\Delta \log \text{CFU}$ from time 0

extracellular versus intracellular activity

conclusion

model of infection of human macrophages by *S. aureus* over 24 h allowing for the study of

influence of time and concentration on antibiotic activity
relation between activity and accumulation

intracellular activity << extracellular activity

no correlation with level of accumulation
impairing effect of acidic pH on some antibiotics

optimizing antibiotic efficacy

- choice of the drug (active extra and intracellularly)
- optimization of exposure (time and concentration)

Second goal of this thesis

Journal of Antimicrobial Chemotherapy (2006) 58, 1177–1184 doi:10.1093/jac/dkl424 Advance Access publication 24 October 2006

JAC

Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant *Staphylococcus aureus*

Maritza Barcia-Macay, Sandrine Lemaire, Marre-Paule Mingeot-Leclercq, Paul M. Tulkens and Françoise Van Rambeke*

Unité de Pharmacologie cellulaire et moléculaire, Université casholique de Louvain, B-1200 Brussels, Belgium

Received 26 July 2006; returned 29 Jugust 2006; revised 15 September 2006; accepted 25 September 2006

New drug in development

Different phenotypes of resistance

Telavancin, a new glycopeptide

Hemi-synthetic derivative of vancomycin, with new mode of action and new pharmacokinetic profile

MIC and MBC against *S. aureus* with different resistance phenotypes

		vancomycin		telavancin	
phenotype strain		MIC	MBC	MIC	MBC
MSSA	ATCC25923	1	1	0.5	0.5
WISSA	A10023923	I	I	0.0	0.5
	ATCC29213	1	1	0.5	0.5
MRSA	ATCC33591	2	4	0.5	1
	ATCC43300	2	2	0.5	0.5
VISA	NRS23	4	4	0.5	0.5
	NRS52	4	4	0.5	0.5
VRSA	VRS1	>128	>256	4	8
	VRS2	16	64	2	8
	_	-			-

MIC and MBC of vancomycin and telavancin against the S. aureus strains used.

- more active than VAN against VISA and VRSA
- bactericidal against all strains

Influence of time on EXTRACELLULAR activity

VAN vs TLV – MSSA ATCC 25923

Telavancin is more rapidly cidal than vancomycin

Influence of concentration on EXTRACELLULAR activity

VAN vs TLV - MSSA ATCC 25923

at 3 h, TEL shows bimodal conc-dependent effects
at 24 h, both drugs are bactericidal at high concentrations

EXTRACELLULAR activity of telavancin: comparison of different strains

TLV versus MSSA, MRSA, VISA, VRSA

at 3 h, TEL shows bimodal conc-dependent effects towards MSSA and MRSA

INTRACELLULAR activity of vancomycin and telavancin towards different strains

VAN and TLV versus MSSA, MRSA, VISA, VRSA

TEL shows bimodal conc-dependent effects towards MSSA / MRSA VAN is only static intracellulalry

Why bimodal effects for telavancin ?

VAN and TLV: inhibition of peptidoglycan synthesis

In MSSA and MRSA, telavancin can exert multiple modes of action

Higgins et al., AAC (2004) 49:1127-34

Telavancin cellular pharmacokinetic data rationalizing its intracellular activity

(studies with J774 macrophages)

subcellular distribution of telavancin

Same distribution as a lysosomal enzyme

High concentration in the compartment where *S. aureus* sojourns !

conclusion

model of infection of human macrophages by *S. aureus* over 24 h applicable to multiresistant strains

vancomycin

- slowly bactericidal extracellularly (MSSA and MRSA)
- poorly or not active on VISA and VRSA
- static intracellularly

telavancin

- bactericidal extra- and intracellularly, including against resistant strains
- bimodal effect against MSSA and MRSA could be related to multiple modes of action
- high accumulation in the infected compartment

V. GENERAL CONCLUSION: can we do better ?

Limitations of the model and perspectives for future work

Constant concentrations (pharmacokinetic variations not taken into account): > develop dynamic models

Protein binding (free fraction is active and able to accumulate) > develop in vivo models

Phagocytic cells (*S. aureus* also infects non phagocytic cells where its fate may be different) > develop models of infection in non-phagocytic cells

Testing of antibiotics alone

(combinations often used in the clinics to cope with resistance)
 > testing of drug combinations

THANK YOU !

THANKS TO :

Prof. M.-P. Mingeot-Leclercq Dr. C. Seral (Spain) Prof. J.- P. Herveg

Prof. V. Préat Prof. M. Delmée Prof. Y. Glupczynski Prof. B. Gallez

Prof. A. Pascual (Spain) Prof. M. Struelens (ULB)

Theravance (USA)

HURRA FACM !!!

Special thanks to O. Meert and M.-C. Cambier

2

THANKS TO YOU ALL