

Antibiotic accumulation and efflux in eukaryotic cells:

a journey at the frontier of pharmacokinetics and pharmacodynamics

Unité de Pharmacologie cellulaire et moléculaire

F. Van Bambeke

Magic bullets need to reach their target

Paul Ehrlich (1854–1915)

"...the goal is...to find chemical substances that have special affinities for pathogenic organisms and that, like *magic bullets*, go straight to their targets..."

Magic bullets need to reach their target

for appropriate time and in sufficient concentration ...

Birth of antibiotic "PK-PD"

SAP

ISAP classical view of PK/PD

but classical PD predicts concentration-effects for all drugs

but classical PD predicts concentration-effects for all drugs

S. aureus; 24 h

Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

Can we conciliate both theories ?

log concentration (X MIC)

S. aureus; 24 h

△ log CFU (24 h - 0 h)

2

0

-2-

-3-

-4-

-5-

-6-

-2

Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

Target accessibility becomes critical for intracellular activity

Main routes of drug entry in cells

Accumulation of magic bullets in eukaryotic cells

glycopeptides

Vancomycin, the parent compound

The glycopeptide oritavancin, a voluminous, amphiphilic molecule

From vancomycin to oritavancin

From vancomycin to oritavancin

From vancomycin to oritavancin

Cooper et al (1996) J Antibiot 49: 575-81

Oritavancin, a cationic amphiphile

Oritavancin, a cationic amphiphile

New chemical entity

New pharmacodynamic properties ?

New pharmacokinetic profile ?

But also ... new potential side effects ?

Spectrum of activity

bacteria	resistance	vancomycin	oritavancin
enterococci	susc.	1-2	0.06-0.25
	VanA	>128	1-4
	VanB	8-128	0.125
S. aureus	Methi-S	1-2	1
	Methi-R	1-4	1-2
	GISA	8	1-8
	GRSA	> 128	0.5

highly active on susc. enterococci
active on VAN-resistant strains

Van Bambeke et al. (2004) Drugs 64:913-36

Pharmacodynamic profile

VANCOMYCIN: modestly bactericidal • slow ORITAVANCIN: highly bactericidal: • rapid

• no or little conc. effect

conc. dependent

Pharmacokinetic properties

parameter	Vancomycin	Oritavancin
	(15 mg/kg)	(3 mg/kg)
peak (mg/L)	20-50	31
trough (mg/L)	5-12	1.7
	(24 h)	(24 h)
protein binding	10-55 %	90 %
terminal t ¹ / ₂ (h)	4-8	360
	 daily administration retention in the organism ? 	
Van Bambeke <i>et al</i> . (2004) Drugs 64:913-3		

Aim of the study

cellular pharmacodynamics:

activity against intracellular *S. aureus*

cellular toxicity:

morphological and biochemical alterations

Aim of the study

Kinetics of accumulation-efflux

Oritavancin accumulation and release are slow

accumulation

J774 macrophages; extracell. conc. 25 mg/L; 24 h

Van Bambeke et al. (2004) AAC 48:2853-60

efflux

Comparison with other antibiotics

Oritavancin reaches exceptional cellular accumulation levels

J774 macrophages; extracell. conc. 25 mg/L; 24 h

Van Bambeke et al. (2004) AAC 48:2853-60

Subcellular localization

Subcellular localization

Mechanism of cellular accumulation

Mechanism of cellular accumulation

Oritavancin kinetics of accumulation are very similar to those of tracers of (adsorptive) endocytosis

Van Bambeke et al. (2004) AAC 48:2853-60

Aim of the study

Intracellular activity on S. aureus

control oritavanci

Oritavancin can destroy intracellular bacteria

THP-1 macrophages; extracell. conc. 25 mg/L; 24 h

Time-effect for intracellular activity

Oritavancin shows time- and concentration-dependent intracellular bactericidal effects

J774 macrophages

Seral et al (2003) AAC 47: 2283-92

Dose-effect for extracell. vs intracell. activity

intracellular activity < extracellular activity

	extra	intra	
static conc.	0.3 X MIC	4.8 X MIC	
max. effect	- 5.55 log	- 3.15 log	

THP-1 macrophages; 24 h

Dose-effect

intracellular activity < extracellular activity, but bactericidal effects reached at clinically-relevant concentrations

Comparison with other antibiotics

oritavancin is one of the most active drugs against intracellular S. aureus

THP-1 macrophages; 24 h

Aim of the study

- activity against multi-resistant Gram-positive (S. aureus)
- rapid bactericidal activity
- retention in the organism

any place for intracellular infections?

cellular pharmacokinetics:

accumulation and subcellular distribution in eukaryotic cells

cellular pharmacodynamics:

activity against intracellular bacteria

cellular toxicity:

morphological and biochemical alterations

Morphological studies

polar lipids

Rat embryo fibroblasts; 25 mg/L; 3 days J774 macrophages, 25 mg/L; 1 day

Van Bambeke *et al.* (2005) AAC – in press

Biochemical studies : time-effects

accumulation of phospholipids and cholesterol develops in parallel with oritavancin cellular concentration

Rat embryo fibroblasts; 25 mg/L

Van Bambeke et al. (2005) AAC – in press

Biochemical studies : dose-effects

Rat embryo fibroblasts, 3 days J774 macrophages, 1 day

Van Bambeke et al. (2005) AAC – in press

Model of the interaction of oritavancin with eukaryotic cells

Can we dissociate activity from toxicity ?

cellular alterations co-exist with destroyed bacteria

THP-1 macrophages; 25 mg/L; 24 h

Can we dissociate activity from toxicity ?

comparison with two other lysosomotropic cationic antibiotics

- polycationic, hydrophilic
- endocytosis
- phospholipidosis

Lysosomotropic antibiotics and activity on *S. aureus*

GEN and ORI are both conc.-dependent intracellularly

J774 macrophages

Lysosomotropic antibiotics and activity on *S. aureus*

GEN and ORI are both conc.-dependent intracellularly

J774 macrophages

Lysosomotropic antibiotics and activity on *S. aureus*

But GEN activity limited at clinically-relevant conditions

J774 macrophages

Phospholipidosis developing on a conc.-dependent manner

Toxic potential variable at clinically-relevant conditions

Toxic potential variable at clinically-relevant conditions

Rat embryo fibroblasts

Toxic potential variable at clinically-relevant conditions

Rat embryo fibroblasts

Can we dissociate activity from toxicity ?

both processes are dependent on cellular concentration ...

... and develop in parallel

Conclusion

amphiphilic glycopeptides, a new type of « magic bullets»

pharmacodynamics: bactericidal, conc-dep. activity

cellular pharmacodynamics:

conc. and time-dependent bactericidal activity

towards extra AND intra *S. aureus*

pharmacokinetics: lysosomotropic accumulation

cellular toxicity:

conc. and time-dependent cellular toxicity

rt embryo fibroblasts; 25 mg/L; 3 days 74 macrophages, 25 mg/L; 1 day Bambeke et al. (2005) AAC - in press

Questions for future work

Take home message

cellular accumulation, the best and the worse of properties...

Intracellular "PK-PD"

Intracellular "PK-PD"

Efflux of magic bullets

from eukaryotic cells

macrolides quinolones

physico-chemical properties are inadequate for reaching an intracellular target !

Extrusion by efflux pumps

general mean of protection

against cell invasion by diffusible molecules

Mechanisms of active efflux

Antibiotics as substrates of efflux pumps

Antibiotic class	bacte Gram (+)	ria Gram(-)	fungi	superior eucaryotes
β-lactams fusidic acid				
macrolides				
streptogramins				
tetracyclines				
aminoglycosides				
chloramphenicol				
rifamycins				
sulfamides				
trimethoprim				
fluoroquinolones				

Antibiotics as substrates of efflux pumps

Macrolides and quinolones as cell-associated antibiotics

Infection, 1995;23 Suppl 1:S10-4.

Clinical relevance of intracellular and extracellular concentrations of macrolides.

Carbon C.

C.H.U. Bichat-Claude Bernard, Paris, France.

The serum levels of the three macrolides-roxithromycin, clarithromycin and azithromycin-vary considerably. The prediction of the antibacterial effect against extracellular pathogens is based on circulating concentrations of free drug, peak and trough levels, the rate of killing, and the presence of a post-antibiotic effect. Intracellular activity depends on the distribution of the antibiotic and the localization of the bacteria, and is variable. Roxithromycin uptake is greater than that of erythromycin. The intracellular half-life may be long for some compounds (azithromycin > roxithromycin). The intracellular distribution is bimodal, both in the lysosomes and the cytoplasm, but the mechanisms of uptake have not yet been established. At low pH, accumulation is low and macrolides are less active in an acidic medium. Intracellular concentrations cannot readily be predicted on the basis of extracellular levels. Different models have shown that the greater the intracellular concentration, the better the clinical effect. In addition, the transport of macrolides by cells into the infected focus may play an important role in the therapeutic outcome. These factors influence the clinical indications for macrolides, their dosing regimens and breakpoints. In future, macrolides will be developed that are more selective for intracellular infections, while others, which will achieve significant serum levels, will be useful for a broader range of diseases. However, new compounds should be evaluated in different models of infection before clinical studies are instituted. The analysis of failures remains the most important approach in defining concentration/effect relationships.

Infection. 1991;19 Supp17:S365-71.

Quinolones in the treatment of lower respiratory tract infections caused by intracellular pathogens.

Chidiac C, Mouton Y.

Department of Infectious Diseases, University of Lille II, Central Hospital, Tourcoing, France.

Intracellular pathogens are inhibited to varying degrees, depending upon the strain of the organism and the quinolone tested. Quinolones achieve levels in the lower respiratory tract that equal or exceed serum concentrations, and they also achieve good intracellular concentrations. Experimental models of intracellular infection have demonstrated the efficacy of ciprofloxacin, difloxacin, fleroxacin, ofloxacin and pefloxacin. Animal models of experimental legionellosis have confirmed in vivo their efficacy in this field. Thus, quinolones appear to be a safe and efficacious alternative treatment in lower respiratory tract infection (LRTI) due to intracellular pathogens. Considering the in vitro and experimental studies, quinolones should play an important role in the treatment of LRTI caused by intracellular pathogens, and prospective controlled studies are strongly recommended.

Aim of the study

amphiphilic antibiotics

- accumulating in eucaryotic cells
- considered as useful for treating intracellular infections
- known substrates of efflux pumps in bacteria

Aim of the study

amphiphilic antibiotics

- accumulating in eucaryotic cells
- considered as useful for treating intracellular infections
- known substrates of efflux pumps in bacteria

Efflux pumps expressed in J774 macrophages

ABC multidrug transporters

How to inhibit ABC transporters ?

How to inhibit ABC transporters ?

How to inhibit ABC transporters ?

Differential recognition by MDR pumps

Influence of ATP-depletion and pump inhibitors on accumulation at equilibrium

AZM 3 h; CIP 2 h

Michot et al. AAC (2004) 48:2673-82

Aim of the study

amphiphilic antibiotics

- accumulating in eucaryotic cells
- considered as useful for treating intracellular infections
- known substrates of efflux pumps in bacteria

Models of intracellular infection

L. monocytogenes

cytosol

phagolysosomes

azithromycin and L. monocytogenes

verapamil 20 µM; 24 h

azithromycin and S. aureus

verapamil 20 µM; 24 h

ciprofloxacin and L. monocytogenes

gemfibrozil 250 µM; 24 h

ciprofloxacin and S. aureus

gemfibrozil 250 µM; 24 h

Influence of pump inhibitors on antibiotic distribution

verapamil enhances azithromycin concentration In cytosol and vacuoles

Influence of pump inhibitors on antibiotic distribution

gemfibrozil enhances ciprofloxacin cytosolic content

Are these effects clinically-relevant?

constitutive efflux makes AZM and CIP activity suboptimal in a clinically-meaningful range of concentrations

Aim of the study

amphiphilic antibiotics

- accumulating in eucaryotic cells
- considered as useful for treating intracellular infections
- known substrates of efflux pumps in bacteria

Aim of the study

amphiphilic antibiotics

- accumulating in eucaryotic cells
- considered as useful for treating intracellular infections
- known substrates of efflux pumps in bacteria

Kinetics of accumulation and efflux for azithromycin

accumulation markedly increased; efflux marginally affected

extracell. conc. 5 mg/L; verapamil 20 μ M

Seral et al (2003) AAC 47:1047-51

Kinetics of accumulation and efflux for ciprofloxacin

both accumulation and efflux markedly affected

extracell. conc. 17 mg/L; probenecid 5 mM

Michot et al. AAC (2004) 48:2673-82

Kinetics of accumulation and efflux for moxifloxacin

neither accumulation nor efflux affected

extracell. conc. 17 mg/L; probenecid 5 mM

Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin

Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin
moxifloxacin not affected

Michot et al. AAC (2005) - in press

Quinolones as inhibitors of ciprofloxacin efflux • ciprofloxacin efflux inhibited by ciprofloxacin

Michot et al. AAC (2005) – in press

Michot et al. AAC (2005) - in press

drug	influx			efflux		
	flux	half-life (min)		flux	half-life (min)	
	(pmol/mg prot/min)	control	inhibitor	(pmol/mg prot/min)	control	inhibitor
AZM	1	44	71	1	49	53
CIP	5	8	8	6	1.2	7.2
MXF	68	0.2	0.2	66	0.6	0.6

drug	influx			efflux		
	flux (pmol/mg prot/min)	half-life (min)		flux	half-life (min)	
		control	inhibitor	(pmol/mg prot/min)	control	inhibitor
AZM	1	44	71	1	49	53
CIP	5	8	8	6	1.2	7.2
MXF	68	0.2	0.2	66	0.6	0.6

drug	influx			efflux		
	flux	half-life (min)		flux	half-life (min)	
	(pmol/mg prot/min)	control	inhibitor	(pmol/mg prot/min)	control	inhibitor
AZM	1	44	71	1	49	53
CIP	5	8	8	6	1.2	7.2
MXF	68	0.2	0.2	66	0.6	0.6

drug	influx			efflux		
	flux	half-life (min)		flux	half-life (min)	
	(pmol/mg prot/min)	control	inhibitor	(pmol/mg prot/min)	control	inhibitor
AZM	1	44	71	1	49	53
CIP	5	8	8	6	1.2	7.2
MXF	68	0.2	0.2	66	0.6	0.6

drug	influx			efflux		
	flux	half-life (min)		flux	half-life (min)	
	(pmol/mg prot/min)	control	inhibitor	(pmol/mg prot/min)	control	inhibitor
AZM	1	44	71	1	49	53
CIP	5	8	8	6	1.2	7.2
MXF	68	0.2	0.2	66	0.6	0.6

Azithromycin, 'kick-back' model

Gaj et al. (1998) Biochem. Pharmacol. 55:1199-211

Ciprofloxacin, classical model

Kolaczkowski & Goffeau (1997) Pharmacol. Ther. 76:219-42

Moxifloxacin, 'futile-cycle' model

Eytan et al. (1996) JBC 271:12897-902

Questions for future research

Take home message

constitutive efflux is part of the game

→Take it into account

- in the choice of your « magic bullets » …
- for their optimal targeting
Thanks to ...

霊

OF C

Evaluating magic bullets

pharmacokinetics

H. Chanteux, M. Heremans, J.M. Michot

Thanks to

• pharmacodynamics

M. Barcia, N. Bles, S. Carryn, S. Lemaire, A. Olivier, C. Seral, S. Van de Velde

toxicodynamics

J.P. Montenez, H. Servais, D. Tyteca

• biophysics & molecular biology N. Caceres, N. Fa

New magic bullets

• chemistry

E. Colacino, C. Dax, L. Efron, T. Happaerts, M. Renard

pharmacology I. Tytgat, D. Van Ackeren

modeling
M. Prévost, M. Rooman, S. Vandevuer

Resistance to magic bullets

• efflux

L. Avrain, N. Mesaros

• glycopeptides P. Courvalin and his team

Clinical use of magic bullets

clinical pharmacy
E. Ampe, V. Basma, A. Spinewine

Playing with magic bullets

technical staff

N. Aguilera, M.C. Cambier, O. Meert, F. Renoird, M. Vergauwen

 secretary M. Breugelmans

Ehrlich's colleagues

Inspiring research on magic bullets

Evaluating research on magic bullets

P. Courvalin, A. Dalhoff, M. Delmée,H. Derendorf, Y. Glupczynski,E. Sonveaux, F. Zech

Paying for research on magic bullets

Managing research on magic bullets

M.P. Mingeot-Leclercq

P.M. Tulkens

Thank you for your attention