

Hilton Conference Centre, Düsseldorf, Germany

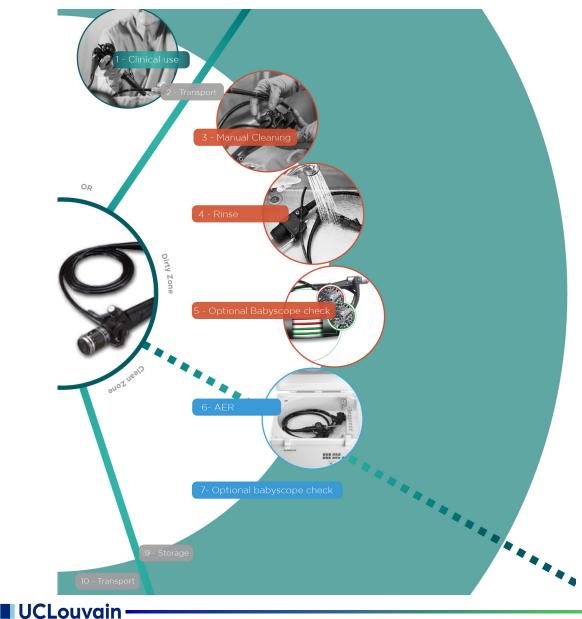




Simulated reprocessing model for flexible endoscopes: assessment of routine cleaning to prevent accumulation of build-up biofilm

### Ph.D. Wafi Siala<sup>1</sup>, Prof. Dr. Michel Delmée<sup>2</sup>, **Prof. Dr. Françoise Van Bambeke<sup>1</sup>**

<sup>1</sup>Laboratory of molecular and cellular pharmacology, Louvain Drug Research Institute, <sup>2</sup>Medical Microbiology, Institute of Clinical and Experimental Research,


UCLouvain, Brussels, Belgium



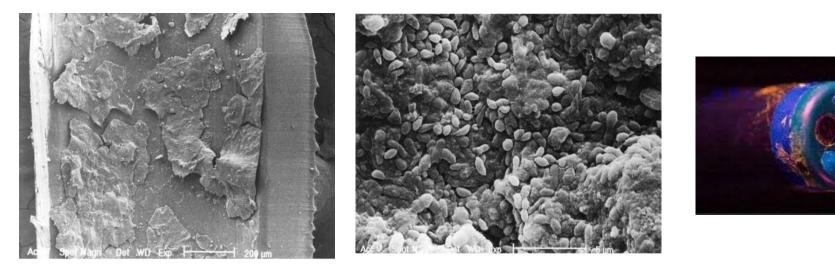


### **Endoscope reprocessing**

11-Apr-19



Dusseldorf - IDC 2019


# Flexible endoscopes are reprocessed with a **low margin of safety** :

- Process subjected to human error
- Requires good training of staff
- Complex design of endoscopes
- High-Level disinfection is not sterilization
- Biofilms may form in endoscopes
- → Each step must be optimized to deliver endoscopes that are safe for patients

\*AER: Automated Endoscope Reprocessors



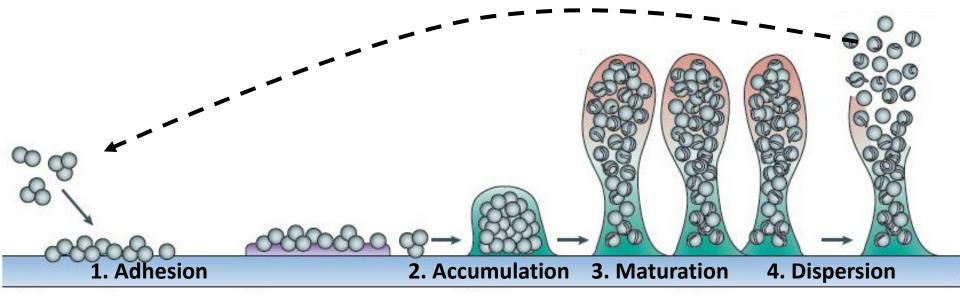
### **Biofilms in endoscopes**



Pajkos et al., J Hosp Infect. 2004;58:224-9.

« Build up biofilm forms due to the repeated exposure to disinfectants and to cycles of wet and dry phases. » (Alfa et al., BMC Infect Dis. 2009; 9: 56)

# → Biofilm-contaminated endoscopes are a permanent source of germs transmitted to patients



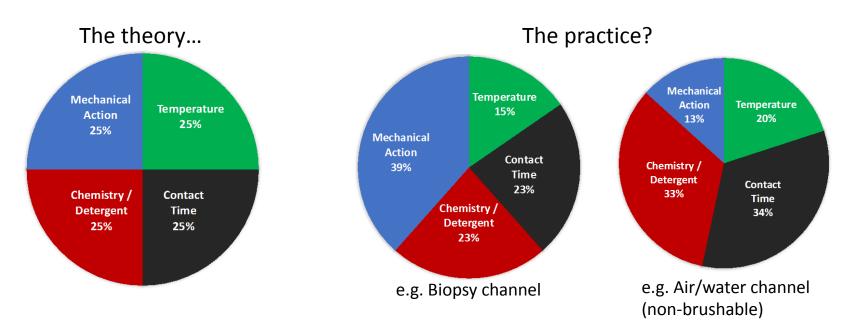



# The impact of biofilms on reprocessing

Biofilms are microbial communities, often composed of multiple species, developing on surfaces or at interfaces and encased in a self-produced matrix of polymers (EPS)

- They form where there is water, nutrients and the adequate temperature (... all of which can be found in a soiled endoscope)
- They are tolerant to high concentrations of biocides
- $\rightarrow$  Biofilms increase the cleaning challenge
- $\rightarrow$  If biofilms persist in endoscopes, they are a threat to patient safety




Otto, Nature Reviews Microbiology, 2009; 7: 555–56

UCLouvain \_\_\_\_\_\_

Dusseldorf - IDC 2019

### The role of cleaning in endoscope reprocessing

Cleaning is the physico-chemical removal of all soils and bioburden, it is determined by **Sinner's cycle** :



• How can we make sure that cleaning will be effective?

UCLouvain

11-Apr-19

- What happens when the biofilm is forming is cleaning still effective?
- Is a more thorough cleaning procedure needed to prepare the endoscope for effective disinfection?





## The added value of models

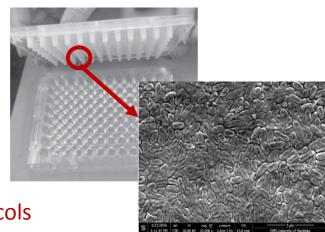
Models can simulate the clinical reality and can be used to gather valuable information

For surgical instrument cleaning, the Fibrin PCD [Process challenge devices] model<sup>1</sup> provides the means to evaluate and compare detergents and cleaning processes on realistic but **worst-case soils** 

A build-up biofilm model was developed<sup>2</sup> to evaluate the efficacy of cleaning on **mature 8-days biofilms** 

The goal of the present study is to optimize a model to simulate the effectiveness of endoscope cleaning protocols **in conditions where early biofilm develops** 




<sup>1</sup> Wehrl et al., ZentralSterilization 2018; 26:382-396

<sup>2</sup> Da Costa et al., J Microbiol Methods 2016;127:224-229

<sup>3</sup> Alfa et al., ZentralSterilization 2005; 13:387-402 - US patent 6,447,990

Louvain 11-Apr-19

Dusseldorf - IDC 2019



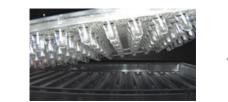


### The in vitro model

#### **One cycle**

Simulated endoscope use -Incubation in ATS\* (30 min, 4h, 24h) at room temperature

Cleaning with detergent (10 ml/l, 5 min, 20 or 40°C)




2 x

Rinsing 2 x

Rinsing 2 x





Disinfection in peracetic acid (40°C, 3 min, 900 ppm)

### Quantification of residual biomass/bioburden by crystal violet staining

11-Apr-19

Dusseldorf - IDC 2019

\* Artificial Test Soil

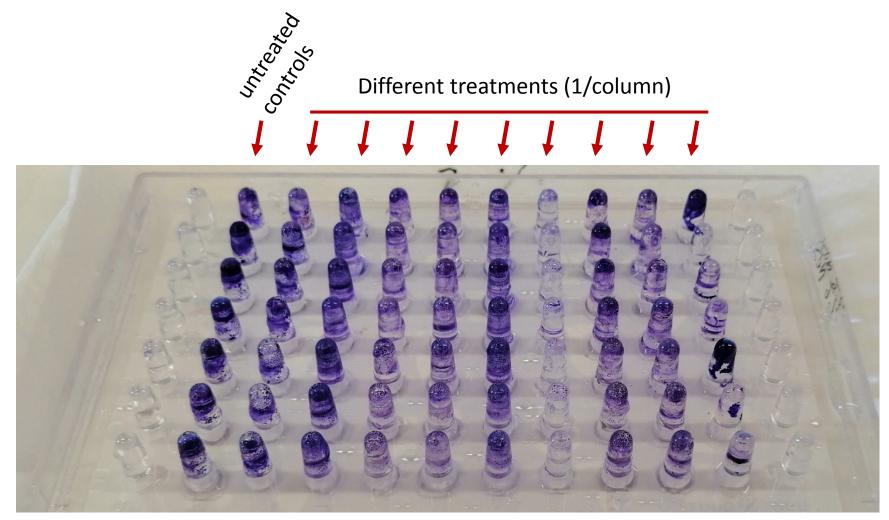


### The in vitro model: tested cleaning agents

4 detergents representing different types of commercialized cleaning agents were tested:

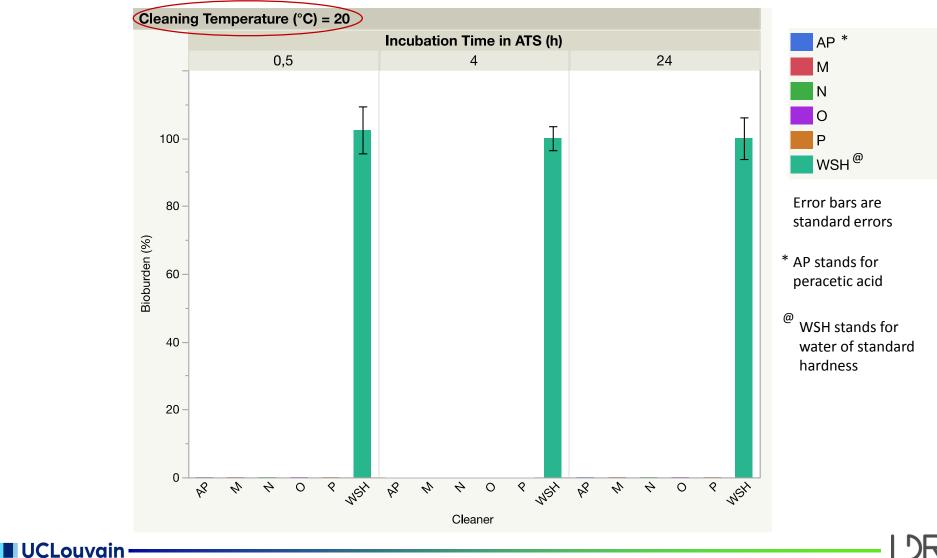
- **M** = neutral detergent (pH = 8.5 in concentrate)
- **N** = enzymatic detergent (M + 5 % w/w protease)
- **O** = multi-enzymatic detergent (M + 5 % w/w protease + 2% w/w of amylase, cellulase and lipase)
- **P** = alkaline detergent (M adjusted to pH 12.5 with KOH)

| Detergent M          |                                                    |             |  |  |  |  |  |
|----------------------|----------------------------------------------------|-------------|--|--|--|--|--|
| Category             | Raw material                                       | Mass (%)    |  |  |  |  |  |
| Solvents             | Distilled water                                    | 50,0        |  |  |  |  |  |
| Stabilizer           | 4-Phenylboronic acid                               | 2,5         |  |  |  |  |  |
| Stabilizer           | Sodium formate                                     | 3,0         |  |  |  |  |  |
| Builder              | GLDA                                               | 2,0         |  |  |  |  |  |
| Non-ionic Surfactant | Fatty alcohol<br>ethoxylated - CAS :<br>27458-92-0 | 5,0         |  |  |  |  |  |
| Solvents             | Glycerol                                           | 15,0        |  |  |  |  |  |
| Preservative         | Methylisothiazolinone                              | 0,5         |  |  |  |  |  |
| pH adjustment        | Phosphoric acid                                    | To pH 8.5   |  |  |  |  |  |
| Solvents             | Distilled water                                    | up to 100 % |  |  |  |  |  |


#### **Disinfectant used: Soluscope PAA**

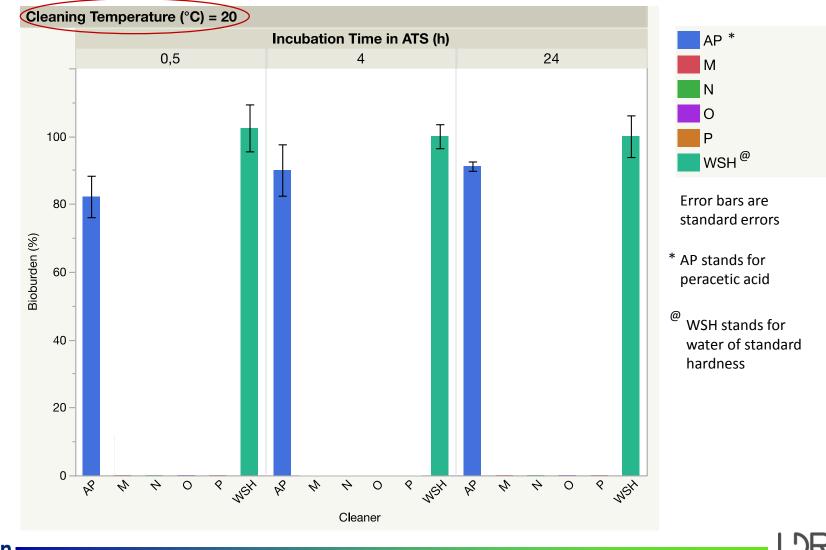
(5% peracetic acid solution) diluted at 900 ppm active peracetic acid in the final solution according to manufacturer's instructions




### **Results: biofilm formation on PEGs**

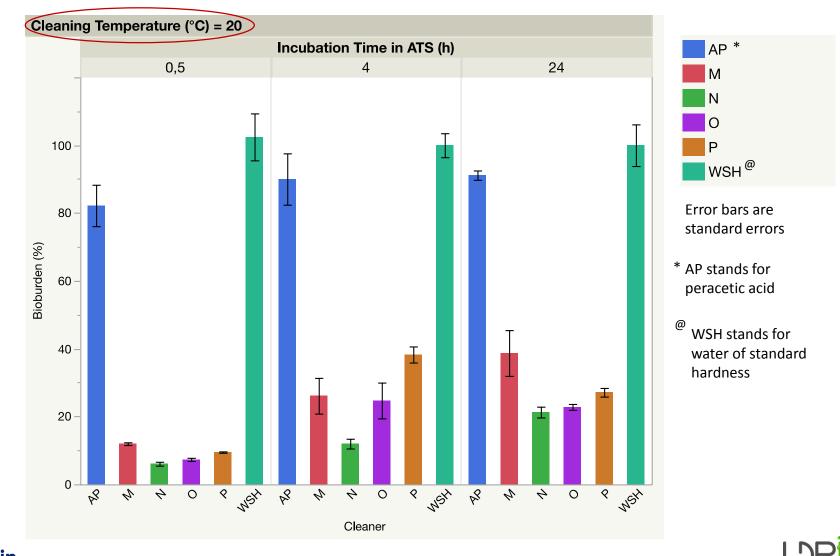
Example of the crystal violet colored substrates at the end of a cycle





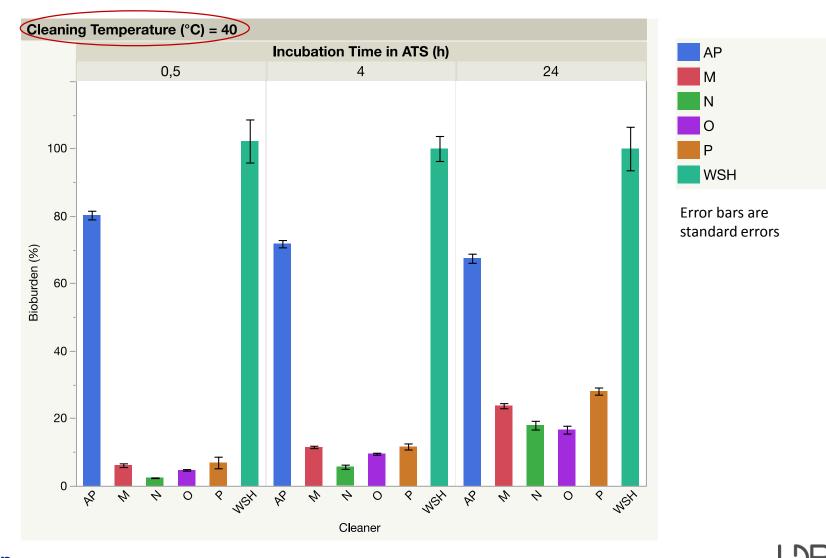

#### 30 min, 4 h and 24 hours incubation in ATS (1 cycle – 5 min cleaning time at 20°C)




11-Apr-19

#### 30 min, 4 h and 24 hours incubation in ATS (1 cycle – 5 min cleaning time at 20°C)

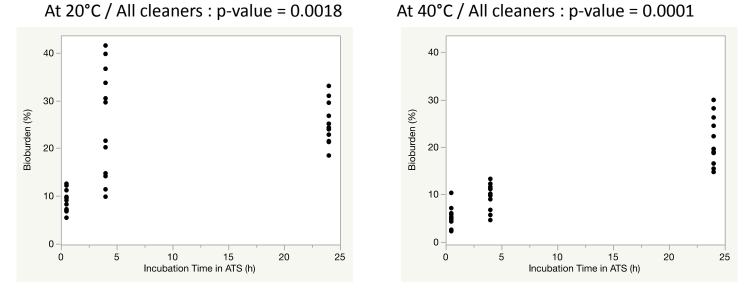



Dusseldorf - IDC 2019

#### 30 min, 4 h and 24 hours incubation in ATS (1 cycle – 5 min cleaning time at 20°C)



Dusseldorf - IDC 2019

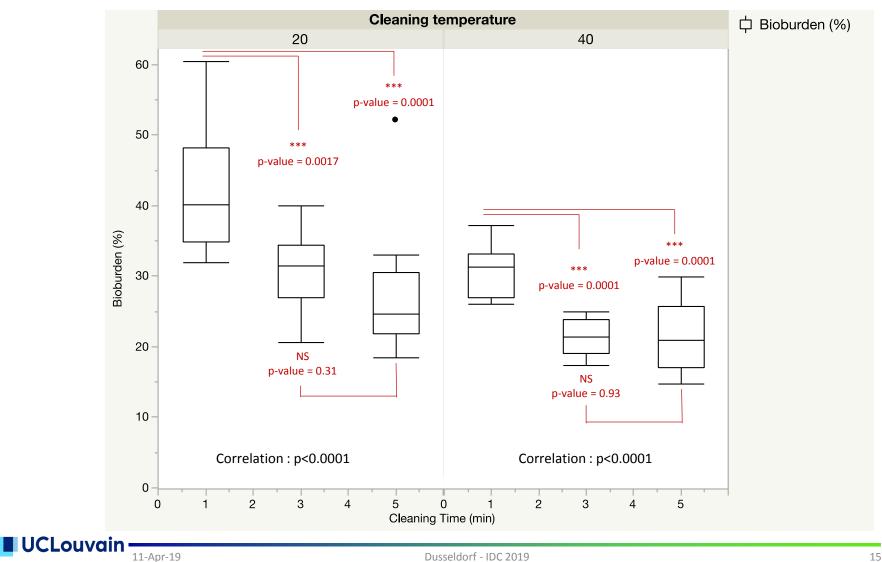

#### 30 min, 4 h and 24 hours incubation in ATS (1 cycle – 5 min cleaning time at 40°C)



Dusseldorf - IDC 2019

# Influence of incubation time in ATS and of cleaning t°

Relation between the ATS incubation time and the bioburden residue (controls excluded):




• Effect of cleaning temperature – all detergents pooled (controls excluded):

| ATS incubation<br>duration | Residual bioburden (%)<br>@ 20°C | Residual bioburden (%)<br>@ 40°C | P-value of<br>Student T test |  |  |
|----------------------------|----------------------------------|----------------------------------|------------------------------|--|--|
| 30 min                     | 8.7                              | 5.0                              | *** 0.0004                   |  |  |
| 4 h                        | 25.3                             | 9.6                              | *** 0.0003                   |  |  |
| 24 h                       | 27.5                             | 21.6                             | * 0.0305                     |  |  |

# Influence of cleaning time

Different cleaning times (1 cycle – 24 hours incubation in ATS – all cleaners pooled – controls excluded)



# Statistical comparisons (One-way ANOVA)

Detergent efficacy comparison pooling data from 20°C and 40°C cleaning during 5 minutes (comparison of least squared means), treatments with different letters are statistically different)

ATS incubation time 30 min

ATS incubation time 4 h

ATS incubation time 24 h

| Cleaner |   |   |   | Mean<br>Bioburden<br>(%) | Cleaner |   |   |   |   |   | Mean<br>Bioburden<br>(%) | Cleaner |   |   |   |   | Mean<br>Bioburden<br>(%) |
|---------|---|---|---|--------------------------|---------|---|---|---|---|---|--------------------------|---------|---|---|---|---|--------------------------|
| WSH     | Α |   |   | 102.3                    | WSH     | A |   |   |   |   | 100.0                    | WSH     | А |   |   |   | 100.0                    |
| AP      |   | В |   | 81.2                     | АР      |   | В |   |   |   | 80.9                     | АР      |   | В |   |   | 79.3                     |
| М       |   |   | С | 9.0                      | М       |   |   | С | D |   | 18.8                     | Μ       |   |   | С |   | 31.2                     |
| Р       |   |   | С | 8.2                      | Р       |   |   | С |   |   | 25.0                     | Р       |   |   | С |   | 27.6                     |
| 0       |   |   | С | 6.0                      | 0       |   |   |   | D |   | 17.1                     | 0       |   |   |   | D | 19.7                     |
| Ν       |   |   | С | 4.2                      | N       |   |   |   |   | Е | 8.8                      | N       |   |   |   | D | 19.6                     |

#### **Observations:**

- After 30 min of incubation in ATS : No discrimination between cleaners
- After 4 hours of incubation in ATS : detergent N (enzymatic) performs best
- After 24 hours of incubation in ATS : detergent N & O (enzymatics) perform best

Dusseldorf - IDC 2019



### Conclusions

- The proposed in vitro model enables simulation of reprocessing of soiled medical devices (e.g. endoscopes) taking into account biofilm formation
- Longer incubation time in ATS resulted in overall reduction of cleaning efficacy probably due to biofilm buildup
- A cleaning time of 3 minutes seems to be as effective as 5 minutes (all data together) but it may be cleaner dependent
- When biofilm starts to form (4 h and 24 h incubation) enzymatic formulations were performing better than neutral and alkaline cleaners in this model
- A higher cleaning temperature was found to provide better cleaning efficacy at all incubation times (all cleaners pooled)



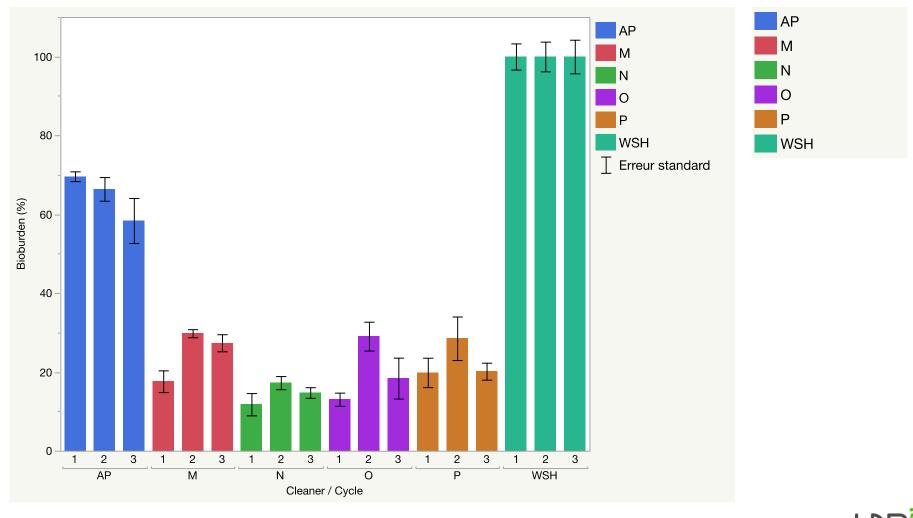
### **Perspectives**

- Monitor the levels of cultivable bacteria (CFU) surviving reprocessing on top of bioburden
- Use the model to understand how commercially available products behave with respect to cleaning temperature, contact time and concentration

 $\rightarrow$  Valuable information to optimize cleaning phases in reprocessing

- Repeat the ATS incubation / reprocessing cycles 2, 3 and 4 times to determine whether further accumulation of bioburden occurs (Preliminary data suggest otherwise)
- Use other bacterial species or multi-species inoculum in ATS
- Validate model reproducibility with other laboratories






UCLouvain -

Dusseldorf - IDC 2019

### **Appendix – Repeated cycles**

- 1, 2 or 3 cycles or use-reprocessing with 4 hours incubation in ATS (5 min cleaning time at 40°C)
- ightarrow No marked trend of biofilm buildup or reduction



20

UCLouvain \_\_\_\_\_\_

## **Appendix – Comparison of commercial cleaners**


#### 1 cycle or use-reprocessing with 24 hours incubation in ATS (3 min cleaning time at 20°C)

- E = mild-alkaline, enzymatic cleaner
- F = neutral, multi-enzymatic cleaner

UCLouvain

22-Apr-19

- G = neutral, multi-enzymatic cleaner
- H = neutral, multi-enzymatic cleaner with biocidal activity



