

Oral session PK/PD to guide dosing in special populations – presentation O1160 – 16 Apr 2019

Determination of optimal loading and maintenance doses for continuous infusion of vancomycin in critically ill patients: population pharmacokinetic modelling and simulation

Dinh H. Vu¹, Duy A. Tran¹, Isabelle K. Delattre², Trong T. Ho¹, Thi Hong G. Do³, Pham Hong N. Pham³, Xuan C. Dao³, Nhan T. Tran³, Gia B. Nguyen³, Françoise Van Bambeke², Paul M. Tulkens², Hoang A. Nguyen¹

¹ Ha Noi University of Pharmacy, Ha Noi, Viet Nam
² Université catholique de Louvain (UCLouvain), Brussels, Belgium
³ Bach Mai Hospital, Ha Noi, Viet Nam

Amsterdam - 2019

Conflict of interest disclosure

☑ I have no Conflict of Interest to report.

□ I have the following Conflict of Interest(s) to report:

Please tick the type of affiliation / financial interest and specify the name of the organisation:

Receipt of grants/research supports: ______

Receipt of honoraria or consultation fees:

Participation in a company sponsored speaker's bureau:

Stock shareholder:

Spouse/partner:

□ Other: _____

PK/PD of vancomycin

PK/PD of vancomycin

Bactericidal effect

Moise-Broder et al. Clin Pharmacokinet 2004; 43:925-942

Prevention of emergence of resistance

Table 3 Variables associated with emergence of hVISA in the multivariate analyses

	Variable	Relative Risk	95% confidence interval	P-value
Day 1	$AUC_{0-24h}/MIC_{BMD} \ge 521$	0.14	0.03–0.60	0.008
	CL _{CR}	0.93	0.88–0.98	0.004
	Presence of IE	4.94	1.67–14.68	0.004
	Skin and soft tissue source	4.89	1.43–16.71	0.01
Day 2	$AUC_{24-48h}/MIC_BMD \geq 650$	0.16	0.02–1.28	0.08
	CL _{CR}	0.95	0.91–0.98	0.007
	Presence of IE	4.62	1.67–12.77	0.003

Martirosov et al. BMC Infect Dis 2017; 17:554

- AUC/MIC > 400: microbiological response
- AUC/MIC of 500-600: prevent the emergence of resistance.
- Targeted AUC of 400 600 for *S. aureus* of MIC≤1.

Vancomycin continuous infusion in critically-ill patients

VAN continuous infusion (1 compartment modeling)

1. a loading dose of 35 mg/kg was suggested

FIG. 2. The effect of loading dose on rapid attainment of target vancomycin concentrations. Different weight-based doses are simulated for a critically ill patient with a creatinine clearance of 100 ml/min/1.73 m², followed by administration as a 35-mg/kg/day continuous infusion.

Roberts et al. Antimicrob Agents Chemother 2011; 55:2704-9

2. the maintenance dose was adjusted based on CrCl

TABLE 1 Initial daily doses of vancomycin according to estimated creatinine clearance

CG-CrCL ^a (ml/min)	Daily dose (mg/kg)				
>150	45				
120-150	40				
80-119	30				
50–69	25				
25–50	14				
<25 (anuria)	7				

" Creatinine clearance, estimated using the Cockcroft-Gault formula.

Cristallini et al. Antimicrob Agents Chemother 2016;60:4750-6.

Vancomycin continuous infusion in critically-ill patients

High loading dose (35mg/kg/3h): Enough maintenance dose?

FIG 1 Distribution of vancomycin concentrations at the end of the loading dose (T1), at 12 h (T2), and at 24 h after the onset of therapy (T3). The shaded zone indicates target drug concentrations, assessed at T2 and T3.

Cristallini et al. Antimicrob Agents Chemother 2016;60:4750-6.

What about patients with Augmented Renal Clearance (ARC) ?

→ What should be the optimal loading dose and maintenance dose?

Methods

TDM protocol for VAN continuous infusion in Bach Mai hospital

Loading dose (weight based [20 mg/kg])

ABW (kg)	LD (g)	Infusion intruction:
< 40	0.75	$LD \leq 1g$ diluted in 250ml of solvent
40 - 65	1.0	then infused over 60 mins.
66 - 90	1.5	LD from 1 to 1.5g diluted in 250ml
		solven then infused over 90 mins.
> 90	2.0	LD > 1.5g diluted in 500ml solven
		then infused over 120 mins.

Maintenance dose (eGFR based)

eGFR (ml/min)	Infusion rate (mg/h)
<10	12
10-20	20
21 - 30	32
31 - 45	40
46 - 60	64
61 - 85	84
86 - 110	104
>110	124

Dose adjustment (concentration)

Vancomycin concentration (mg/L)	Dose adjustment
0.5	Add a loading dose (20 mg/kg) and increase
0 - 5	infusion rate (+ 20 mL/h or + 60mg/h)
6 10	Add a loading dose (15 mg/kg) and increase
6 - 10	infusion rate (+ 15 mL/h or + 45mg/h)
11 – 15	Add a loading dose (10 mg/kg) and increase
	infusion rate (+ 10 mL/h or + 30mg/h)
16 – 19	Increase infusion rate (+ 5 mL/h or + 15 mg/h)
20-30	No change
31 – 35	Reduce infusion rate (- 5 mL/h or -15mg/h)
> 25	Stop infusion for 6h and reduce infusion rate (-
~ 33	10 mL/h or -30mg/h)

Retrospective data collection.

- Inclusion: VAN continuous infusion, ≥ 1 VAN measurement.
- Exclusion: < 18 y, used intermittent infusion within 48h, Renal Replacement Therapy.

Methods

Retrospective data

- + Patient medical records and TDM form
- + TDM data (loading and maintenance dose, VAN conc., dose adjustment...)

Pop PK Modelling

- + Nonlinear mixed effect model
- + NONMEM (Perl-speaks-NONMEM (PsN) tool kit and Xpose (Version 4)

Simulation

- + Target conc. 20-30 mg/L
- + Simulation 1: Loading dose: 10 mg/kg to 40 mg/kg.

% Patients reaching target after loading dose.

+ Simulation 2: Maintenance dose: 0.3 to 4.5 g/24h; Clcr: 10 – 240 ml/min.

% Patients reaching target at 24 hours after loading and maintenance dose.

Patient characteristics

Information	Results (n = 55)				
Demographic data					
Sex (male)	36 (65.5)				
Age (years)	55 ± 18				
Actual body weight (kg)	55.9 ± 11.1				
Clinical characteristics (at start of VAN)					
APACHE II score	14 [8 – 19]				
SOFA score	4 [3 – 6]				
CHALSON comorbidity index	1 [1 – 3]				
Mechanical ventilation	36 (65.5)				
Vasopressor	6 (10.9)				
Septic shock	4 (7.3)				
Baseline Clcr (mL/min)	76.5 ± 36.4				
Co-administered nephrotoxicity agents					
Furosemide	31 (56.4)				
NSAIDs	9 (16.4)				
ACEI/ARB	5 (9.1)				

Data presented as n (%), median [interquartile range] or mean ± standard deviation when applicable

Was VAN concentration reaching the PK/PD target ?

- Loading AND/OR maintenance dose(s) seem too low (see left)
- High concentration variability ! (see left)
- Targeting 20-30 mg/L will cover a large proportion of *S.aureus* isolated *during* the three previous years (see right)

PopPK modelling

Visual predictive check plot

Basic goodness-of-fit plots

Pop PK estimation			Current TDM pro using Vd 40	otocol L		
Parameter Pharmacokinetic parame	Unit	Final model Estimate (RSE)	Boo Med	tstrap (n= Jian (2.5 ^t	=1000) ^{:h} —97.5 th po	c)
V1	L	71.8 (15.0%)		77.9 (55.)	9–97.9)	
V2 Q Cl	L L/h L/h	167 (23.2%) 1.92 (26.6%) 3.63 (10.8%)	- - - - - - - 	183 (88.3 1.90 (0.9)	, 3–949) 6–3.41)	•V1, V2: central and peripheral compartment volume of distribution;
Covariate P _{CLcr-CL}		1.01 (18.3%)	1	L.06 (0.6	5–1.97)	 Q: inter-compartment clearance; CL: total body clearance;
V1 (CV) V2 (CV) Q (CV) CL (CV)	y % % %	30.2 (41.2%) 62.0 (56.6%) 107 (38.2%) 53.1 (48.9%)	2 6 5	27.6 (8.09 55.0 (17.8 104 (36.3 50.9 (28.1	9–47.6) 8–203) 3–153) 7–80.8)	 • P_{CLcr-CL}: fractional change on CL due to CLcr; • OFV: objective function value
Residual variability ε _{prop} (CV) OFV	%	41.4 (8.25%) 1250	- 4 12	1.4 (38.3 239	3–45.3)	

CL_{cr} is a significant covariate for CL

Simulation of the maintenance dose for a given loading dose (*)

Percentage of simulated patient reaching target concentration range at 24h post dose

	Maintenance dose (mg/day)										
CLcr (mL/min)	300	500	750	1000	1500	2000	2500	3000	3500	4000	4500
<10	16.0%	44.00/	00.0%	<mark>→74.1%</mark>	37.5%	11.3%					
10-20	4.7%	22.4%	5	<mark>74.8%</mark>	54.5%	19.4%	4.4%				
21-30		8.2%	34.5%	64.00/	<mark>69.1%</mark>	31.3%	8.9%	2.5%			
31-45			13.3%	41.2%	<mark>77.4%</mark>	50.6%	19.4%	4.9%	1.3%		
46-60				17.0%	68.5%	<mark>71.5%</mark>	36.9%	13.2%	3.3%	0.9%	
61-85					38.4%	<mark>77.0%</mark>	65.6%	32.7%	13.2%	3.9%	
86-110						51.1%	<mark>79.0%</mark>	65.3%	35.1%	14.7%	5.0%
111-130							63.5%	<mark>81.2%</mark>	63.1%	35.1%	15.2%
131-180							21.8%	59.1%	<mark>77.4%</mark>	71.0%	48.1%
181-240							0.9%	9.7%	07.070	00.070	<mark>79.1%</mark>

CLcr, creatinine clearance

* loading dose: 25 mg/kg/2h

Current maintenance dose

Best simulated result

Conclusions

- A two-compartment model fit data better.
- Larger loading (of 25-30 mg/kg) is needed, but not necessarily larger than that.
- Higher maintenance doses should be considered, especially for patients with high CLcr
- High PK variability suggests that TDM is still required.

THANK YOU!

The discussion is open...

