Copyright © 2017

H. Chalhoub, P.M. Tulkens and F. Van Bambeke.

Mailing address: Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium.

E-mail: francoise.vanbambeke@uclouvain.be

Introduction & Purpose

Avibactam (AVI), a novel broad-spectrum inhibitor of beta-lactamases, is marketed in combination with ceftazidime (CAZ) as Zavicefta® in the EU and Avycaz® in the US (henceforth abbreviated as CAZ-AVI) for the treatment of serious Gram-negative infections, including those caused by Pseudomonas aeruginosa and AmpC-, KPC- or ESBL producing Enterobacteriaceae. We recently showed that .the susceptibility of Pseudomonas aeruginosa isolates from patients with cystic fibrosis to CAZ increases from 36% to 76% (EUCAST breakpoints [1]) when combined with AVI [2]. Both the US label [3] and the European Summary of Product Characteristics [4] of CAZ-AVI mention that active efflux may confer resistance to this combination. We therefore explored whether MexAB-OprM affects the activity of CAZ-AVI in P. aeruginosa isolates from cystic fibrosis, taking into account that up to 1/3 of them show mutations inactivating MexAB-OprM [5].

Materials & Methods

We used (i) PAO1 and mutants thereof defective or overexpressing MexAB-OprM, and (ii) 10 clinical isolates from patients with cystic fibrosis that were resistant to CAZ but susceptible or resistant to CAZ-AVI. MICs were determined by broth microdilution (in the presence of 0.25 mg/L imipenem [sub-MIC concentration] for PAO1 and its mutants to induce AmpC expression). mexA and mexB were sequenced and MexAB-OprM functionality assessed by measuring the kinetics of efflux of the specific fluorescent substrate N-phenyl-1-naphthylamine (NPN). MexA/B proteins were rendered using Visual Molecular Dynamics software.

Avibactam is a substrate for MexAB-OprM in Pseudomonas aeruginosa

H. Chalhoub, P.M. Tulkens, F. Van Bambeke. Université catholique de Louvain, Brussels-Belgium

Description of bacterial isolates, MICs, and efflux characteristics.

0 / 1	MIC (mg/L)		Type of mutations	Molecular Representation*		NPN efflux
Strains	CAZ	CAZ-AVI	in MexAB-OprM pumps	MexA	MexB	(V _{max} – units/s)
PAO1	32	0.125	none			-0.48
PAO1 <i>∆mexAB-OprM</i>	32	0.125	no expression			-0.12
PAO1 MexAB-OprM overproducing	32	4	none			-0.72
4 cystic fibrosis isolates	128 to 512	4 to 8	truncated MexA or MexB		Muuus Muuus	-0.02 to -0.10
3 cystic fibrosis isolates	256 to 1024	16	truncated MexA			-0.01 to -0.12
3 cystic fibrosis isolates	128 to 1024	16 to 512	amino acid substitutions in MexA or MexB			-0.25 to -0.58

Color code: red for encoded parts of MexA and MexB proteins; blue for deleted residues; green for nonsynonymous substitutions of amino acids.

- Overproduction of MexAB-OprM in PAO1 markedly increased CAZ-AVI MICs (5 log₂ dilutions) 2. Chalhoub et al. J Antimicrob Chemother. 2015 May;70(5):1596-8. without increasing the MIC of CAZ, demonstrating a role of this transporter in AVI efflux. 3. https://www.allergan.com/assets/pdf/avycaz_pi. 2016. AVYCAZ®.
- □ 4 isolates with truncated MexA or MexB (low efflux activity) became susceptible to CAZ-AV while 3 other isolates had a MIC of 16 mg/L in the presence of AVI.
- elevated MICs in the presence of AVI.

Results

□ 3 isolates with amino acid substitutions in MexA or B (higher efflux activity) still showed

Conclusions

- Efflux mediated by MexAB-OprM contribut to reducing AVI activity in P. aerugino (leading to elevated MICs for CAZ-AVI).
- Testing CAZ-AVI in isolates from patients w cystic fibrosis appears useful because of t high prevalence of isolates defective MexAB-OprM.
- Yet. some of these efflux-defective isolat remain less susceptible to CAZ-AVI than t wild-type reference strain, probably due expression of other resistance mechanisr that need to be further investigated.

Acknowledgments

This work was supported by the Région Wallonne a the Belgian Fonds de la Recherche Scientifique. thank AstraZeneca Pharmaceuticals, Waltham, MA, USA, for providing us with avibactam.

References

- 1. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0, 2017. http://www.eucast.org
- 4. Zavicefta : EPAR EMA Europa.eu
- 5. Chalhoub et al. Sci Rep. 2017 Jan 16;7:40208.

This poster will be made available after the meeting at *http://www.facm.ucl.ac.be/posters.htm*

CMID
es
sa
ou
rith
he
in
es
.00
he to
he
he to

