Phenotypic and genetic characterization of successive *Pseudomonas aeruginosa* isolates obtained from the same cystic fibrosis patient

C. Lozano¹, J. M. Azcona-Gutiérrez², F. Van Bambeke³, Y. Saénz¹

¹Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; ²Departamento de Diagnóstico Biomédico. Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain; ³Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.

BACKGROUND

Pseudomonas aeruginosa (PA) is the major causing agent of infections in cystic fibrosis (CF) patients. Different adapted morphotypes are found in chronic infections.

Objective: PA to characterize successively isolated from the same CF patient over a 4-years period (2012-2015).

MATERIAL/METHODS

- 17 PA isolates: 5 small colony variant (SCV) and 12 mucoid.
- Molecular typing: PFGE and MLST^{1,2}.
- Antimicrobial susceptibility: to 15 antibiotics was performed by diskdiffusion; AmpC hyperproduction by phenotypic test, and efflux activity was investigated using $PA\beta N^{2-4}$.
- Antimicrobial resistance mechanisms: alterations in porin OprD and integron structures were determined by PCR and sequencing; the expression of oprD and ampC genes by RT-qPCR^{2,5}.
- Virulence genes: the presence and expression of virulence genes were studied by PCR and RT-qPCR^{2,9}.
- Phenotypic assays: generation times were determined by growth curves; capacity to form biofilms by CV staining (biomass) and FDA assay (metabolic activity); elastase activity, pyocyanin/pyorubin production and motility were also determined¹⁰⁻¹³.

RESULTS

- ✓ All isolates had closely related PFGE patterns and belonged to ST412.
- Antimicrobial resistance and molecular characterization of porin OprD are shown in Table 1. AmpC hyperproduction was detected in all isolates. PA β N increased susceptibility to ciprofloxacin in all isolates, and to imipenem only among SCVs. Two class 1 integrons were detected (Fig 1).
- ✓ All isolates amplified exoS, exoY, exoT, exoA, lasA, lasB, aprA, rhIAB, rhII, rhIR, lasI, and lasR genes.
- ✓ Growth and phenotypic assay results are shown in Fig 2 and Fig 3, and expression of studied genes in Table 2.

Table 1.	Antimicrobia	al resistance and characterization of OprD		
	Isolates (No.)	Resistance phenotype ^a	OprD size	C p
SCV	5	IMP, DOR, CAZ ^I , PIP ^I , FEP ^I , TIC ^I , TZP ^I , NET, GEN ^I	189	A
Mucoid	9	susceptible	441	E
	2	IMP ¹	441	C
	1	IMP ¹ , CAZ ¹ , PIP ¹ , FEP ¹ , TIC ¹ , TZP ¹	326	C

aIMP:imipenem;DOR:doripenem;CAZ:ceftazidime;PIP:piperacillin;FEP:cefepime;TIC:ticarcillin; TZP:piperacillin-tazobactam;NET:netilmicin;GEN:gentamicin, I: intermediated resistance. ^bA:D43N, S57E, S59R (Deletion of 11 bp at codon 130; B:D43N, S57E, S59R, E202Q, I210A, E230K, S240T, N262T, A267S, A281G, K296Q, Q301E, R310G, V359L (L7 short); C:L11Q, D43N, S57E, S59R, E202Q, I210A, E230K, S240T, N262T, A267S, A281G, K296Q, Q301E, R310G, V359L (L7 short); D:D43N, S57E, S59R, E202Q, I210A, E230K, S240T, N262T, A267S, A281G, K296Q, Q301E, R310G

Fig 1. A) new integron (In1342) found in 7 isolates; B) integron found in all but one isolate.

Acknowledgements: This work was supported by the Instituto de Salud Carlos III through the project "PI16/01381" and CL has a Sara Borrell contract (CD15/00125) (Co-funded by European Regional Development Fund (FEDER) "A way to make Europe").

Fig 2. A) Generation times; B) Biofilm biomass; C) Metabolic activity of biofilm; D) Elastase assay; E) Pyorubin assay; F) Pyocyanin assay.

CONCLUSIONS

- All isolates showed the same ST and closely related PFGE patterns; however important phenotypic and genotypic differences were found among them.
- Two main groups (SCV and mucoid) were identified.
- The adaptation and persistence of PA during chronic infections result in numerous variants which can complicate the treatment and diagnosis of CF patients.

EV0460

Fig 3. A) Swimming motility; B) Swarming motility.

Table 2.	mRNA expression	n (2 ^{-<u>\</u>\Ct)}
Gene	SCV	Mucoid
ampC	702.4 ± 394.3	1170.9 ± 1220.4
oprD	0.5 ± 0.2	1.8 ± 0.7
algD	3.3 ± 1	$11029.7 \pm 5790.$
rhlR	0.9 ± 0.5	1.6 ± 0.6
lasR	5.9 ± 2.9	7.2 ± 4
lasB	0.4 ± 0.2	0.7 ± 0.3
psIA	2.4 ± 1.7	2.3 ± 0.8
pelA	1.9 ± 0.8	1.9±1.7
exoS	1.7 ± 0.5	2 ± 0.6
exoT	4.6 ± 1.6	6.5 ± 2.4
pcrV	0.5 ± 0.1	0.6 ± 0.2
рорВ	0.3 ± 0.1	0.4 ± 0.1
popD	0.8 ± 0.5	1 ± 0.3
flicA	2.3 ± 1.6	0.2 ± 0.3

REFERENCES

- 1. Rojo-Bezares et al. 2011. JMM;60:1053-4
- 2. Rojo-Bezares et al. 2016. JMM;65:311-9
- 3. CLSI 2016. 26th ed. Wayne, Penn. USA
- **4.** EUCAST 2016. Version 6.0.
- 5. Xavier et al. 2010. BMC Microbiol;10:217
- **6.** Hosseinidoust et al. 2013. AEM;79:6110-6
- 7. Edwards et al. 2001. JAM;91:29-37
- 8. Irie et al. 2012. PNAS USA;109:20632-6
- 9. Baraquet et al. 2015. J Bacteriol; 198:178-86
- 10. Peeters et al. 2008. JMM;72:157-65.
- **11.** Wei et al. 2011. PLoS One;6:e29276.
- 12. Pearson et al. 1997. J Bacteriol: 179:5756-67
- **13.** Essar et al. 1990. J Bacteriol;172:884-900

gación
ппоја
TUTE

