26th ECCMID Amsterdam, Nether 9 – 12 April 2016 **ESCMID**

#P0762

Amsterdam, Netherlands

Cooperation between active efflux and porin alteration is sufficient to confer high-level resistance to meropenem in *Pseudomonas aeruginosa* clinical isolates

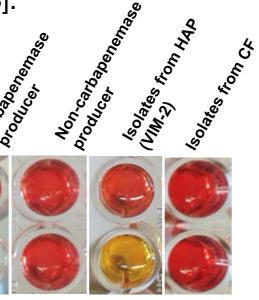
H. Chalhoub¹, Y. Sáenz², H. Rodriguez-Villalobos³, O. Denis⁴, B.C. Kahl⁵, P.M. Tulkens¹, F. Van Bambeke¹ ¹ Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; ² Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; ³ Cliniques Universitaires Saint-Luc, Brussels, Belgium; ⁴ Hôpital Erasme, Brussels, Belgium; ⁵ University Hospital Münster, Münster, Germany.

Introduction & Purpose

Carbapenems are used for treating infections caused by multidrug-resistant Gram-negative bacteria, which may promote the risk of emergence of high-level resistance usually ascribed to carbapenemase expression [1]. Upon screening of a collection of Pseudomonas aeruginosa (Pa) isolates from patients suffering of cystic fibrosis, MICs \geq 64 mg/L for meropenem were observed in carbapenemase(s) - negative strains.

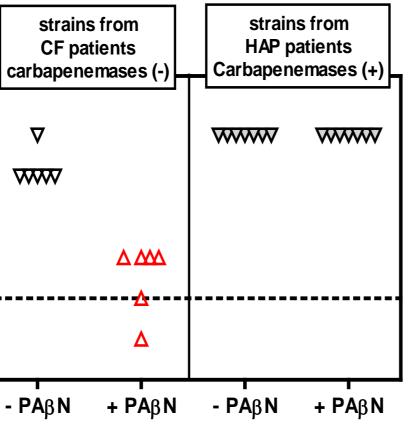
• Our aim was to examine whether activity of efflux pumps, alterations of porins and expression of other β -lactamase(s) than carbapenemase(s) could explain the high-level resistance to meropenem in these strains.

Methods


- □ Six meropenem resistant (MEM-R) strains isolated from clinically-confirmed cystic fibrosis (CF) cases were compared to seven MEM-R strains collected from patients suffering from hospital-acquired pneumonia (HAP) (Table 1).
- □ Meropenem (MEM) MICs were measured by microdilution in CA-MHB according to CLSI [2] in the absence or presence of the efflux pump inhibitor Phe-Arg-β-naphthylamide (PAβN; 20 mg/L [no toxicity at this concentration]).
- □ Carbapenemases (VIM, IMP, NDM, OXA-48, KPC), ESBLs blaBEL (BEL-1 to 3), PER (PER-1 to 5, 7), GES (GES-1 to 18), VEB (VEB-1 to 7), CTX-M (1, 2, 9), blaTEM, blaSHV, and blaOXA (1, 2, 9, 10, 18, 20, 23, 24, 30, 58, 198), and AmpC expression was assessed by molecular techniques (PCR) and/or phenotypic tests (double disk for metallo- β -lactamases ; ESBL NDP and Carba NP tests [3]).
- □ oprD2 gene and its promoter were sequenced.
- □ *mexA*, *mexX* and *mexC* transcripts were quantified by qPCR.

References

- Boyle DP and Zembower TR. Urol Clin North Am. 2015 Nov; 42(4):493-505.
- Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
- Poirel L et al., J Clin Microbiol. 2015 Sep; 53(9):3003-8
- European Committee on Antimicrobial Suscpetibility Testing. Breakpoint tables for interpretation of MICs and zone diameters – version 6.0. 2016.
- **Figure 1**: Phenotypic screening of carbapenemases Carba NP test [3]. → Carbapenemase phenotypic detection returned for HAP strains (Fig. 1), with presence of bla_{VIM-2} [metallo- β -lactamase gene] confirmed by PCR. **Figure 2**: Influence of the efflux inhibitor (PAβN) on EUCAST susceptibility breakpoint [4]). strains from **CF** patients 256-(128-64-(T/bu) \overline{W} 32-MIC MEM - **ΡΑ**βΝ \rightarrow Meropenem MICs were decreased of 2 to 4 log₂ dilutions in the presence of PABN for all CF


Results

in meropenem-resistant strains using the

negative results for CF strains but positive results

meropenem MIC in CF vs. HAP strains (the horizontal dotted line shows the current meropenem

strains but not for HAP strains (Fig. 2).

	-							
Clinical isolates (with patient's identification code and date of collection)	Expression of genes encoding efflux pumps (relative to PAO1)			OprD2 porin sequencing				β-lactamase
	mexA	mexX	mexC	no amino acid (WT=443)	Amino acid changes in protein sequence	Loops affected	Insertions/deletions in <i>oprD2</i> gene	
CF (DAF69 - 09/09/10)	2.2	0.8	0.0	117	D43N, S57E, S59R, D118STOP	L1	Deletion of 2 nt	
CF (DAF69 - 04/10/10)	3.7	1.7	2.3				(312-313)	
CF (DAF69 – 19/10/10)	2.3	1.2	0.2	295	D43N, S57E, S59R, E202Q, I210A, E230K, S240T, N262T, A267S, A281G, K296STOP			AmpC
CF (DAF69 – 26/10/10)	14.3	3.1	2.7			L1, L4, L5, L6	-	
CF (DAF69 - 09/11/10)	6.9	2.4	1.7			L5, L0		
CF (132 - 08/07/12)	0.3	3.5	0.7	228	D43N, S57E, S59R, change in reading frame → 229STOP	L1	Deletion of 1 nt (410)	
HAP (DS – 26/12/05)	2.3	1.0	1.0	441	V127L, E185Q, P186G, V189T, E202Q, I210A, E230K, S240T,	L2, L3,		
HAP (DS – 26/01/06)	4.3	2.8	1.4		N262T, T276A, A281G, K296Q, Q301E, R310E, G312R, A315G,	L4, L5,	Shortened loop 7	
HAP (DS – 13/02/06)	6.5	4.3	13.6		L347M, S403A, R412P* (new mutation in L8), Q424E	L6, L7, L8		
HAP (OG - 08/04/06)	6.4	9.6	5.4	276	V127L, E185Q, P186G, V189T, E202Q, I210A, E230K, S240T, N262T, T276A, W277STOP			VIM-2
HAP (OG – 02/05/06)	2.8	1.6	0.9			L2, L3,	-	
HAP (ND – 10/08/06)	3.4	7.5	1.2			L4, L5		
HAP (ND – 11/09/06)	3.7	4.8	1.3					

→ All clinical isolates showed an increase in transcription levels of mexA, mexX and/or mexC, and mutations in oprD2 gene leading to truncated OprD2 porins.

→ All CF isolates were derepressed for AmpC cephalosporinases.

All HAP isolates expressed VIM-2 metallo-β-lactamase.

meropenem in strains expressing AmpC.

- \rightarrow Incomplete restoration of susceptibility upon PA β N addition results from the coexistence of OprD2 mutations, AmpC production and/or possibly also incomplete inhibition of MEM efflux by PAβN at the concentration used.
- \rightarrow As active efflux can confer cross-resistance to other antipseudomonal agents, i.e. other β -lactams or quinolones for example, determining the mechanism of resistance to meropenem is recommended in clinical settings in order to optimize the antibiotic therapy.

Acknowledgments

H.C. is *Boursier* of the Belgian *Fonds de la recherche dans l'industrie et l'agriculture* (FRIA). This work was supported by the Région Wallonne and the Belgian Fonds de la Recherche scientifique.

Françoise Van Bambeke av. Mounier 73, B1.73.05 1200 Brussels - Belgium francoise.vanbambeke@uclouvain.be

Table 1: Molecular characterization of CF and HAP clinical isolates: expression of efflux systems, porin alterations, expression of β-lactamases.

Conclusions

Antibiotic exclusion from bacteria by concomitant efflux and reduced uptake is as effective as carbapenemases to confer high level resistance to

This poster will be made available after the meeting at http://www.facm.ucl.ac.be/posters.htm