

#### Effect of 3',6-diNonylneamine, an amphiphilic aminoglycoside derivative, on UCL **Pseudomonas aeruginosa's shape and membrane integrity**



catholique

de Louvain

El Khoury M.<sup>1</sup>, Van der Smissen P.<sup>2</sup>, Collet J.-F.<sup>3</sup>, Zimmermann L.<sup>4</sup>, Decout J.-L.<sup>4</sup>, Mingeot-Leclercq M.-P.<sup>1</sup>



<sup>1</sup>Université catholique de Louvain, Louvain Drug Research Institute, FACM, Brussels, Belgium, <sup>2</sup> Université catholique de Louvain, de Duve Institute, CELL, Brussels, Belgium, <sup>3</sup>Université catholique de Louvain, de Duve Institute, BCHM-GRM unit, Brussels, Belgium,

<sup>4</sup>Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire ICMG FR 2607, Grenoble, France



# INTRODUCTION

Amphiphilic aminoglycosides derivatives targeting the bacterial cell wall or cell membrane have emerged for the last decade aiming the discovery of potential new antibiotics <sup>1,2</sup>. They showed important antibacterial effect even on multi drug resistant strains. In this perspective, we previously synthesized a variety of amphiphilic neamine derivatives and studied their efficacy towards *Pseudomonas aeruginosa* strains<sup>3,4</sup>. 3',6-diNonylneamine (3',6-diNn) had an important antibacterial effect and a moderate toxicity on cellular models<sup>4</sup>. This compound interacts with LPS of the bacterial outer membrane<sup>5</sup> and with the negatively charged lipids of the inner membrane<sup>6</sup>, mainly cardiolipin (CL), induces an impairment in the lateral distribution of CL and the formation of hemi fusion diaphragm (in Giant Unilamelar vesicles)<sup>6</sup>. Moreover, this interaction triggered local redistribution of cardiolipin in membrane models. These modifications were responsible of the



# Aim

he aim of this work was to investigate more the impact of the interaction 3',6-diNn's with membrane's lipids on the bacteria's length, morphology, growth rate, and redox chain in order to elucidate its mode of action.

## MATERAL & METHODS

**Bacterial strain:** ATCC27853

Effect on bacterial shape: the 3',6-diNn was either added to a liquid culture of ATCC27853 in Cation Adjusted Muller Hinton Broth (CA-MHB) or to a 1 % agarose pad. Cultures were incubated at 37°C and bacteria's were observed using a Zeiss Axio Observer Z1. Cell length was measured using MicrobeTracker (version 0.937)<sup>7</sup>. Colistin, gentamicin, and neamine were used as controls.

Scanning electron microscopy: ATCC27853 in mid log non treated or treated with 3',6-diNn at 5 times its minimal inhibitory concentration MIC for two hours were imaged by electron scanning microscopy.

Effect on growth rate: ATCC27853 cultures in CA-MHB were incubated at 37°C in the presence of 3',6-diNn at different concentrations and the OD at 620 was followed. Data were fitted to determine the growth kinetics parameters.

Effect on redox chain using 5-cyano-2,3-ditolyl tetrazolium chloride(CTC): ATCC27853 in mid log were incubated briefly with 3',6-diNn, stained with CTC and counter stained with Syto green24. They were visualized by epifluorescence.

## RESULTS

### Effect on bacterial length & width



### **Effect on bacterial morphology**



→ 3',6-diNn induced a loss of the membrane smoothness, membrane blebbing, and an heterogeneity in bacterial length. Doubling bacteria's were unable to establish scission

## Effect on bacterial growth rate & redox chain

**Growth kinetics parameters of ATCC27853** non treated (NT) or in the presence of

| dif        | ferent    | concen   | tration | is of 3',6 | 5-diNn     |        |
|------------|-----------|----------|---------|------------|------------|--------|
|            | 3',6-diNn |          |         |            |            | NT     |
|            | 0.1 MIC   | 0.25 MIC | 0.5 MIC | 0.75 MIC   | 1 MIC      |        |
| rate<br>') | 0.0105    | 0.0103*  | 0.01**  | 0.0095***  | 0.00535*** | 0.012  |
| l<br>n     | 0.0059    | 0.0059   | 0.0057  | 0.0006     | 0.00027    | 0.0065 |
| g time     | 66        | 67       | 69      | 73         | 133        | 58     |
| h<br>n     | 12.5      | 14.17    | 16.67   | 20.83      | 57.02      |        |
| ı          | 12.5      | 14.17    | 16.67   | 20.83      | 57.02      |        |

Growth rate values were compared using one way ANOVA test and Bonferroni's post test. Data labelled with \* represent significant difference compared to NT



Α Length dispersion on solid medium







Fig 4. Overall distribution of the length of non treated (NT) ATCC27853) or treated (T) followed for 4 hours with 3',6-diNn at its MIC either on agarose pad (A) or in liquid medium (B). 0, 1, 2, 3, and 4 represent the duration of incubation in hour.

The effect of 3',6-diNn was more important in liquid medium than on solid medium where after 2 hours of incubation time a maximum decrease was observed.



Fig 6. CTC stained non treated ATCC27853(A), treated with 20% ethanol (B, negative control) and with 3',6-diNn at its MIC (C) or 5x MIC (D).

→ 3′,6-diNn inhibited the growth kinetics, and the redox chain in a concentration depending manner

## CONCLUSION

Growth

μx (min<sup>-</sup>

Standard

deviatio

Doubling

g (min)

% Grow

reductio

rate

3.6-CliNn has a major effect on bacterial shape and morphology. It also seems to affect bacterial membrane proteins leading to a growth rate reduction at sub inhibitory concentrations, and an inhibition of the bacterial redox chain.



Udumula et al. 2013. Bioorganic & medicinal chemistry letters. 23(6):1671-5 Dhondikubeer et al. 2012. The Journal of Antibiotics 65: 495-498

- Ouberai et al. 2011. Biochimica et Biophysica Acta 1808: 1716-1727
- Zimmermann et al. 2013. Journal of Medicinal Chemistry 56: 7691-7705
- Sautrey et al. 2014. Antimicrobial Agents and Chemotherapy 58: 4420-4430
- Sautrey et al. 2015. submitted
- Sliusarenko et al. 2011. Molecular Microbiology 80: 612–627

## ACKNOWLEDGEMENT

We thank Dr. Géraldine Laloux for her support in initiating time lapse studies. This work was financed by the F.R.S.-FNRS and the Université catholique de Louvain.

A copy of this poster will be made available after the meeting at <u>http://www.facm.ucl.ac.be/posters.htm</u>

Mailing address: , av. Mounier73 B1.73.05, 1200 Brussels –Belgium; micheline.elkhoury@uclouvain.be