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Bacterial membrane bilayer as drug target
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ABSTRACT

The widespread emergence of bacterial resistance has led to an urgent need to develop new strategies to regain the efficacy of
antibacterials. One of the emerging concept is to target the bacterial membrane bilayer.

Aminoglycosides are among the most potent antimicrobials to treat severe infections. In the search for new antibiotics, we
have synthesized derivatives of the small aminoglycoside, neamine in the aim to obtain amphiphilic antibiotics able to disturb
bacterial membrane bilayer. One to four hydroxyl functions of neamine were capped with phenyl, naphthyl, pyridyl, or quinolyl
rings. The 3',4"-, 3',6- and the 3',4',6-2-naphthylmethylene (2NM) derivatives were active against both sensitive and resistant S.
aureus strains. The trisubstituted derivative, also showed marked antibacterial activity against Gram (-) bacteria, including
resistant strains (1). Regarding its mechanism of action, it showed only a weak and aspecific binding to a model bacterial 16S
rRNA as well as a lower ability to decrease *H leucine incorporation into proteins in P.aeruginosa, suggesting it acts through a
mechanism probably involving membrane destabilization. To understand the molecular mechanism involved, we determined
the ability of 3',4’,6-tri-2NM neamine to interact with the bacterial membranes of P. aeruginosa or models mimicking these
membranes.

Using Atomic Force Microscopy (AFM), we observed a decrease of P. aeruginosa cell thickness. In models of bacterial lipid
membranes, we showed a lipid membrane permeabilization in agreement with the deep insertion of 3’,4’,6-tri-2NM neamine
within lipid bilayer as predicted by modeling. This new amphiphilic aminoglycoside bound to lipopolysaccharides and induced
P. aeruginosa membrane depolarization. All these effects were compared to those obtained with neamine, the disubstituted
neamine derivative (3',6-di-2NM neamine), conventional aminoglycosides (neomycin B and gentamicin) as well as to
compounds acting on lipid bilayers like colistin and chlorhexidine. All together, the data showed that 3’,4’,6-tri-2NM neamine
derivatives target the membrane of P. aeruginosa (2). This should offer promising prospects in the search for new
antibacterials against resistant drug or biocide strains.

BACKGROUND

Aminoglycosides are among the most potent antibacterials to eradicate P. aeruginosa, a persistent
opportunistic pathogen. They act by binding to 16S rRNA, causing mRNA decoding errors, mRNA and tRNA
translocation blockage, ribosome recycling inhibition and in fine protein synthesis alteration. However the
emergence of resistant strains has reduced the potential of these antibiotics leading to treatment failure. In
order to develop novel antibacterial drugs, Baussanne et al. have described the synthesis and the
antimicrobial property of neamine derivatives carrying hydrophobic groups like naphthylmethylene (2).
Among these derivatives, the 3’,4’,6-tri-2-naphtylmethylene neamine (3',4’,6-tri-2NM neamine) showed a very
interesting activity against sensitive and resistant P. aeruginosa strains as well as Staphylococcus aureus
strains.

AIM
The aim of the study is to understand the molecular mechanism involved in the mode of action of these
modified aminoglycosides. To this end, we investigated the ability of 3',4’,6-tri-2NM neamine to alter the
protein synthesis and to interact with the bacterial membranes of P. aeruginosa or models mimicking these
membranes.

MATERIALS AND METHODS

Derivatives Synthesis: Neamine derivatives were synthesized in three steps from neamine according to our previous reports (1).

Bacterial strains: P. aeruginosa [ATCC 27853] was obtained from the Pasteur Institute (Brussels, Belgium; Prof. R. Vanhoof).

Minimal Inhibitory Concentration Determination : The MICs were determined by a geometric microdilution method according to the recommendations of the CLSI norms (2007).
Luciferase Inhibition Translation : Inhibition of cell-free translation by the different compounds was quantified by using E. coli S30 Extracts System for circular DNA with the

pBEST/uc™ plasmid (Promega, Leiden, NL) as previously described (3) with modifications.

Atomic Force Microscopy: AFM images were recorded in PBS solution at room temperature, using a Nanoscope V multimode AFM. The 3',4’,6-tri-2NM neamine was injected into

the AFM liquid cell at 0.5 MIC (4 ug/mL).

Cytoplasmic Membrane Depolarization Assay: The membrane depolarization activity of compounds was determined using the membrane potential-sensitive dye DiSC,(5) (4).
Fluorescence Displacement Assay for quantifying binding affinities to LPS: The BODIPY-TR-cadaverine displacement assay was used to quantify the affinities of binding of the

test compounds to LPS (5).
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Liposomal Membrane Permeability Assay: Large Unilamellar Vesicles (LUV) composed of lipids mimicking the composition of lipid membranes of P. aeruginosa (POPE, POPG, CL; 2NM: H,C. b
molar ratio 60:21:11; (Phosphatidylethanolamine [PE], Phosphatidylglycerol [PG] and Cardiolipin [CL])) (6), were prepared by extrusion. Permeabilization of lipid membranes induced
by drugs was monitored by following the leakage of entrapped calcein within liposomes (7).
Molecular Modeling and Assembly of Neamine Derivatives with Lipids: The neamine derivative structures were first constructed using Hyperchem 7.0 (Hypercube, Inc). The
interaction and insertion of the neamine derivatives within lipids was calculated using two methods, the hypermatrix and the impala method (8).
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Protein synthesis and nanoscale imaging of P. aeruginosa cells

Figure 3. Effect on the fluorescence intensity changes of P. aeruginosa ATCC 27853
incubated with dISC(5). The experiments are performed at 10 M (Panel A) and at
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Figure 6. Interaction of nearmine (A), neomycin 8 (8), 3,6-di-2NM neamine (C)
and 34’ 6--2NM nearmine (D) with the IMPALA membrane Yellow plane = £z e
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Each value is the mean of two independent experimental determinations + SO.

3.6-d-2NM neamine (&), neamine (),
chiorhexidine (), imipenem (11 ) and
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Molecular modeling of compounds binding
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Figure 2. AFM Imaging of single P. aeruginosa ATCC 27853 call following incubation
with 3'4'6-4r-2NM nearmine at 0.5 fold MIC against P. aeruginosa 27853,
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