In vitro pharmacodynamic evaluation of intracellular activity of antibiotics alone or in combination against a small colony variant (SCV) of Staphylococcus aureus

> <u>H.A. Nguyen</u>,¹ O. Denis,² A. Vergison,³ P.M Tulkens,¹ M. Struelens,² F. Van Bambeke¹

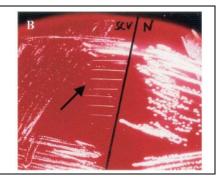
Ehrlich II

¹ Unité de Pharmacologie cellulaire et moléculaire Université catholique de Louvain

² Laboratoire de Microbiologie Hôpital Erasme, Université libre de Bruxelles

³ Département de Maladies Infectieuses Pédiatriques Hôpital des enfants Reine Fabiola, Univeristé libre de Bruxelles

Brussels, Belgium



Small Colony Variant (SCV): a phenotype that facilitates persistent and recurrent infections

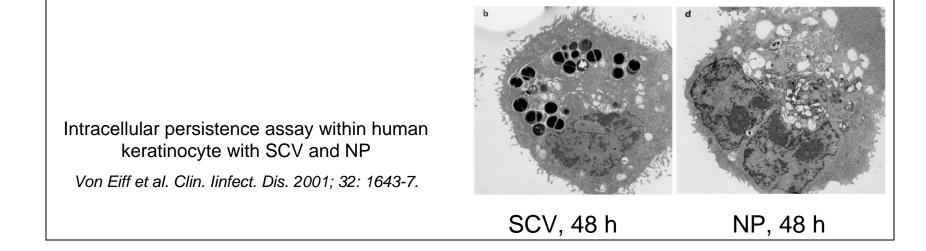
- SCVs show a particular phenotype
 - Growth: tiny, non-pigmented, non-hemolytic colonies
 - Reduced production of α -toxin
 - Auxotrophic for haemin, thymidine, menadione...
 - Can revert to their normal phenotype

Growth of SCV in comparison to normal isogenic phenotype on Columbia blood agar

Kahl BC et al. J. Clin. Microbiol. 2003;41: 410-3

• SCVs have been isolated in patients suffering from chronic, relapsing and difficult-to-treat infections

- CF Vergison et al. J. Antimicrob. Chemother. 2007; 59: 893-9
- Infection of skin (Darier's disease), bone (osteomyelitis), device-associated infections ...

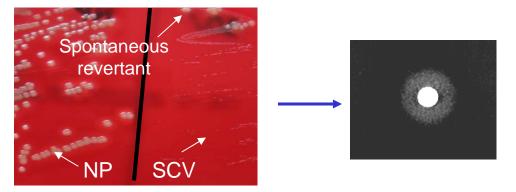

Proctor RA et al. Clin. Infect. Dis. 1995; 20: 95-102. von Eiff C et al. Clin. Infect. Dis 2001; 32: 1643-1647. von Eiff C et al. Injury 2006; 37 (Suppl 2): S26-33.

SCVs are difficult to eradicate

- Reduced susceptibility to antibiotics
 - Slow growth
 - Metabolic defects

Chuard C et al. J. Antimicrob. Chemother. 1997; 39: 603-608 Proctor RA and von Humboldt A. Drug Resist. Updat.1998; 1: 227-325

 More persistent within intracellular milieu ⇒ evasion host defenses and antibiotic actions

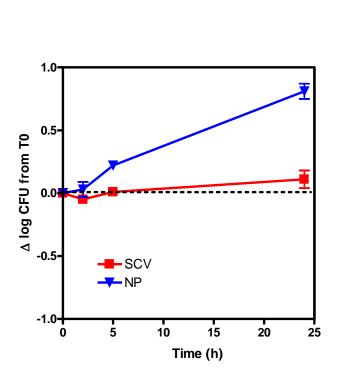


How to target intracellular SCVs?

- <u>AB pharmacokinetic properties</u>:
 - Capacity to penetrate within host cells and to rejoin the infected compartment.
- <u>AB pharmacodynamic properties</u>:
 - Capacity to exert optimal bactericidal activity
 - in the intracellular environment
 - even against slowly growing bacteria

Aims of the study

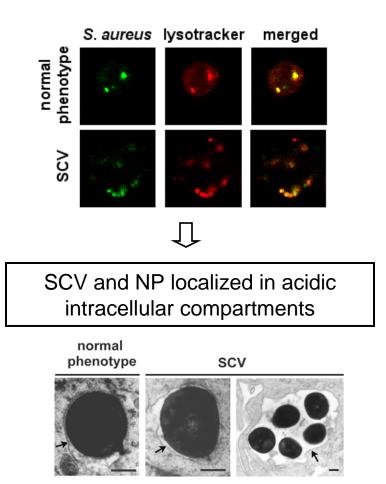
- To compare the intracellular activity of a series of ATBs
 - against a stable mecA-negative, thymidine-dependent SCV variant, isolated from a CF patient, its isogenic normal phenotype (NP) and revertant counterparts.
 - In a model of THP-1 human macrophages


Thymidine dependency

Selected antistaphylococcal agents:

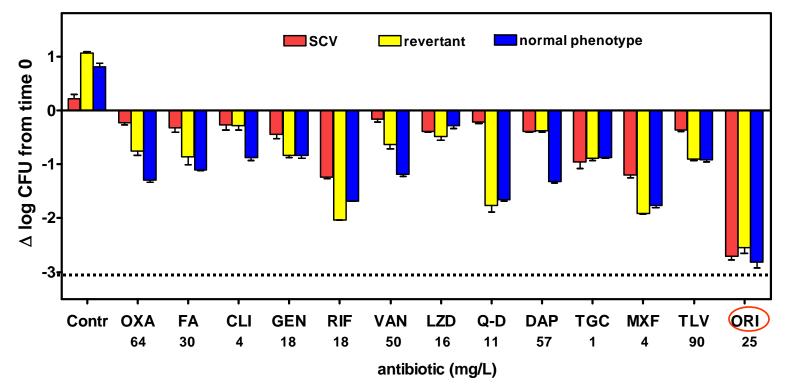
- First line antistaphyloccal agents: OXA, GEN, VAN, MXF, CLI, RIF.
- New alternatives for resistant *S. aureus*: LZD, TGC, DAP, Q-D.
- Investigational compounds: ORI, TLV.

• To examine the potential interest of combining ATBs against intracellular SCVs


Description of the model

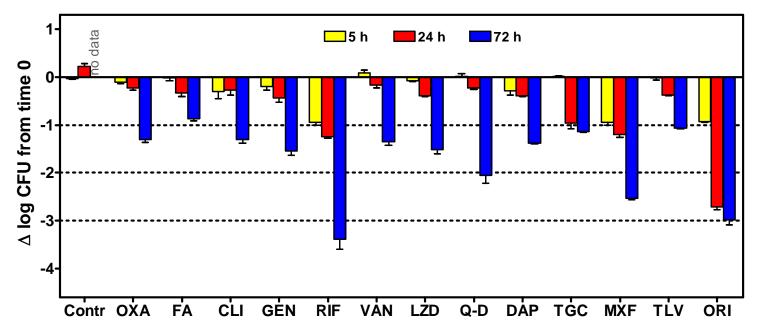
Intracellular growth of SCV

versus its NP counterpart


Subcellular localization

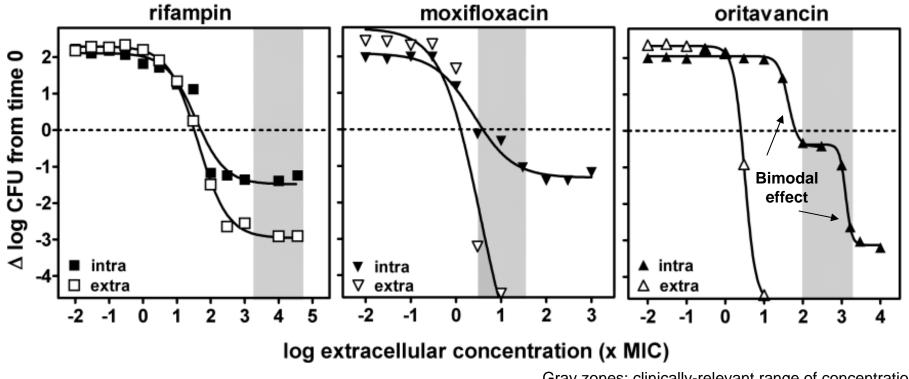
Intracellular activity :

SCV versus isogenic normal phenotype and revertant


THP-1; 24 h, antibiotics at Cmax

- Intracellular growth of NP and revertant is markedly increased
- Activity is higher against NP and revertant for all but LZD, ORI, TGC
- Enhancement is more pronounced for membrane-acting ATB: OXA, VAN, DAP, TLV
- ORI is the most active drug, with no difference against SCV or NP

Intracellular activity against SCV : time effect


THP-1; SCV, antibiotics at Cmax for up to 3 days

• At 5 h, no marked change compared to initial inoculum

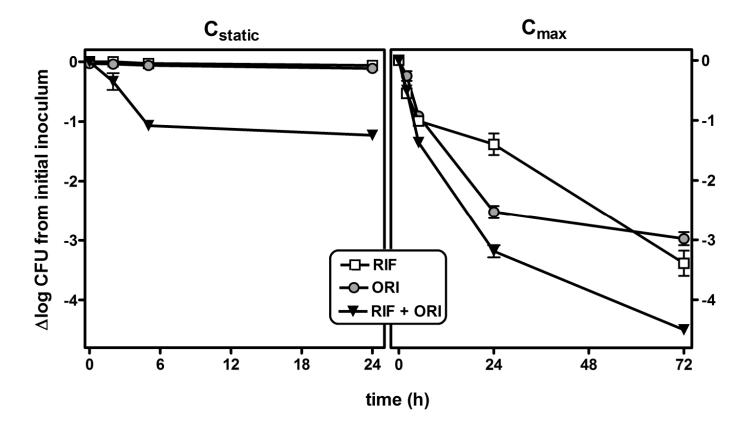
- At 24 h,
 - most antibiotics caused only a modest decrease in bacterial counts (< 1 log decrease)
 - an approx. 1 log decrease was reached for RIF, TGC, MXF
 - ORI achieved more than 2 log decrease
- At 72 h,
 - the activity of most ATBs (but TGC) increased (0.5-1 log)
 - ORI remained one of the most active drugs

Dose-response curves of the 3 most active antibiotics against extra- and intra-cellular SCV (24 h of exposure)

Gray zones: clinically-relevant range of concentrations

- Extracellular activity:
 - Highly bactericidal, concentration-dependent effects
- Intracellular activity:
 - RIF and MXF show markedly reduced activity
 - ORI shows a bimodal effect with maximal activity \approx 3 log

Activity against extra- and intra-cellular SCV: dose-effect response

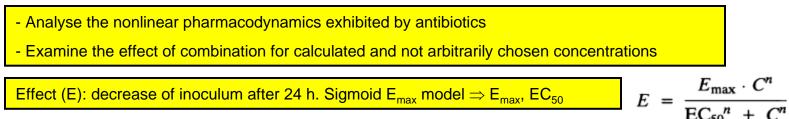

antibiotic -	Intracellular ^b				Extracellular °			
	E _{max} ^d (CI)	EC ₅₀ ^e (CI)	$C_{static}{}^{f}$	R ²	E _{max} ^d (CI)	EC ₅₀ °(CI)	$C_{static}{}^{f}$	R ²
OXA	-0.39 (-0.52 to –0.27) A,a	0.83 (0.58 to 1.17) A,a	2.03	0.966	-3.91 (-4.07 to -3.76) A,b	5.50 (4.71 to 6.43) A,b	1.66	0.993
FA	-0.36(-0.52 to –0.20) A,a	10.70 (7.77 to 14.72) B,a	6.29	0.970	-1.43 (-1.52 to -1.34) B,b	4.78 (4.15 to 5.51) B,b	2.45	0.994
CLI	-0.45 (-0.51 to –0.39) C,a	0.47(0.39 to 0.57) A,a	1.47	0.990	-2.59 (-2.85 to -2.23) C,b	2.52 (1.79 to 3.55) C,b	1.47	0.967
GEN	-0.58 (-0.76 to –0.40) A,a	0.63 (0.41 to 0.97) A,a	1.62	0.947	< -4.5 D,b	2.33 (1.75 to 3.11) C,b	1.04	0.986
RIF	-1.72 (-2.04 to –1.40) B,a	42.60 (29.42 to 61.66) C,a	5.69	0.960	-3.02 (-3;19 to -2.85) E,b	43.35 (37.66 to 49.90) D,b	4.57	0.994
VAN	-0.36 (-0.62 to –0.10) A,a	6.61 (3.77 to 11.61) D,a	5.18	0.915	-4.25 (-4.42 to -4.00) F,b	4.99 (4.27 to 5;84) E,b	1.58	0.992
LZD	-0.54 (-0.84 to –0.23) A,a	0.61 (0.38 to 0.97) A,a	1.87	0.948	-3.24 (-3.49 to -3.00) E,b	2.72 (2.21 to 3.35) C,b	1.43	0.989
Q-D	-0.60 (-0.76 to –0.44) A,a	0.25 (0.15 to 0.40) A,a	1.02	0.934	-3.50 (-3.70 to –3.30) G,b	0.75 (0.58 to 0.97) G,b	0.80	0.981
DAP	-0.50 (-0.64 to –0.35) A,a	4.17 (2.91 to 5.96) E,a	3.45	0.964	-3.78 (-4.03 to -3.53) A,b	4.54(3.58 to 5.76) H,b	1.68	0.983
TGC	-1.11 (-1.26 to 0.95) C,a	0.80 (0.50 to 1.17) A,a	1.23	0.960	-1.75 (-1.85 to -1.64) H,b	1.31(1;08 to 1.59) I,b	1.27	0.989
MXF	-1.32 (-1.45 to –1.19) C,a	2.49 (1.92 to 3.23) F,a	1.85	0.980	< -4.5 D,b	3.01 (1.45 to 6.26) J,b	1.12	0.923
TLV	-0.35 (-0.53 to –0.17) A,a	0.52 (0.31 to 0.85) A,a	3.89	0.931	< -4.5 D,b	0.88(0.64 to 1.21) G,b	0.52	0.971
ORI ^g	-0.43 (-0.56 to 0.30) na	41.61 (35.79 to 48.38) na	65	0.990	< -4.5 D,n	3.15 (3.05 to 3.24) na	1.50	0.976
	-3.13 (-3.22 to –3.00) na	1272 (1212 to 1334) na	NA	0.994				

Curve analyses for all drugs

Reduced killing activities against intracellular SCV: lower E_{max}

Activity of antibiotic combination against intracellular SCV

At fixed concentrations with RIF or ORI (over the time)

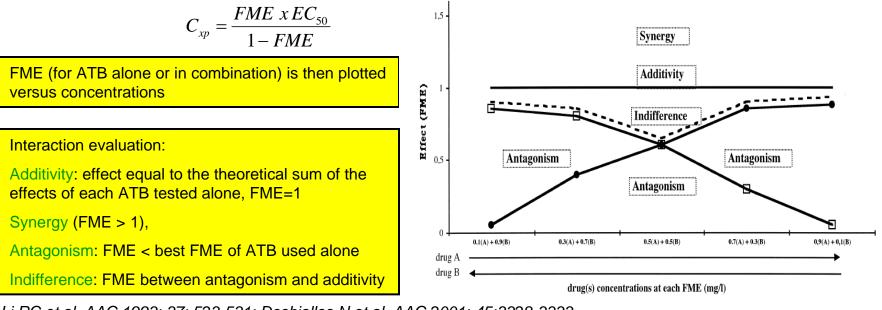


⁻ At C_{static}: 1.2 log after 24 h.

- At C_{max}: reaching the limit of detection (sterilize the infected macrophages)

Activity of combination RIF-ORI against intracellular SCV

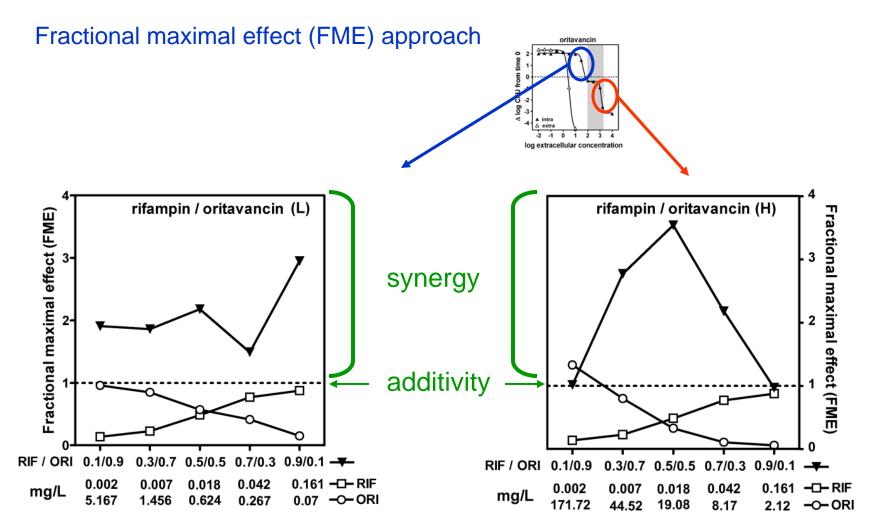
Fractional maximal effect (FME) approach



FME is defined by the ratio observed effect/theoretical effect

ATBs (A et B) are combined to a FME=1.

5 pairs: 0.1 FME_A + 0.9 FME_B, 0.3 FME_A + 0.7 FME_B, 0.5 FME_A + 0.5 FME_B, 0.7 FME_A + 0.3 FME_B, 0.9 FME_A + 0.1 FME_B


Correspoding concentrations to be tested alone and in combination:

Li RC et al. AAC 1993; 37: 523-531; Desbiolles N et al. AAC 2001; 45:3328-3333.

Ehrlich II, October 4, Nürnberg, Germany

Activity of combination RIF-ORI against intracellular SCV

Combination RIF-ORI is highly synergistic over a wide range of concentration ratios

Conclusions

- Most currently available anti-staphylococcal agents act only poorly on intracellular SCVs compared to its normal phenotype and revertant counterparts, unless upon prolonged exposure.
- None of the tested antibiotics is able to sterilize the infected macrophages, which may explain the difficulty of eradicating these organisms in CF patients.
- Among clinically-available antibiotics, RIF and MXF are the most active. Only ORI proves bactericidal activity towards both intracellular SCV and NP.
- Combination RIF-ORI is highly synergistic over a wide range of concentration ratios, reaching the limit of detection when used both at C_{max}.
- Our results suggest the interest of evaluating ATBs against intracellular SCV to select most appropriate therapies.

Acknowledgements

- Région Bruxelles Capitale
 Fonds de la Recherche Scientifique Médicale (FRSM)
 for financial support to this work
- Our collaborators: A. Vergison, O. Denis, M. Struelens, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- FACM team

