

COLLOQUE ABC FRANCO - BELGE / FRENCH - BELGIAN ABC MEETING

Antibiotic efflux in eucaryotic cells: implications of ABC transporters and pharmacokinetic and pharmacodynamic consequences

Françoise Van Bambeke

Pharmacologie cellulaire et moléculaire Université catholique de Louvain Brussels, Belgium

www.facm.ucl.ac.be

Antibiotics as substrates of MDR transporters

P-glycoprotein

- \rightarrow macrolides, rifampicin
- \rightarrow anticancer agents
- \rightarrow antidepressants, antiepileptics
- \rightarrow digoxin
- $\rightarrow \dots$

MRP

- \rightarrow fluoroquinolones, β -lactams
- \rightarrow antiviral agents
- \rightarrow anticancer agents
- \rightarrow drug conjugates
- $\rightarrow \dots$

Antibiotics as substrates of MDR transporters

→ Pharmacokinetic implications → Pharmacodynamic implications

intracellular infections

Van Bambeke et al, JAC. (2003) 51:1067-77

Different behavior of closely structurally-related quinolones

ciprofloxacin

moxifloxacin

extracell. conc. 17 mg/L; probenecid 5 mM

Kinetics of accumulation and efflux for ciprofloxacin

both accumulation and efflux markedly affected by MRP inhibitors

Kinetics of accumulation and efflux for moxifloxacin

neither accumulation nor efflux affected by MRP inhibitors

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin

Quinolones as inhibitors of ciprofloxacin efflux

- ciprofloxacin efflux inhibited by ciprofloxacin
- moxifloxacin not affected

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin moxifloxacin

Putative mechanism of transport of quinolones by MRP

ciprofloxacin

moxifloxacin

" classical " model

" futile cycle "

Can we make eukaryotic cells resistant to antibiotics ?

Reduced drug accumulation in resistant macrophages

Reduced drug accumulation in resistant macrophages

Competition for efflux as a mechanism for drug interaction

indomethacin

Coworking between bacteria and macrophage pumps to reduce ciprofloxacin activity

Coworking between bacteria and macrophage pumps to reduce ciprofloxacin activity

Macrophages

Cellular concentration (ng/mg prot)								
FQ	W	/Τ	RS					
	Prob. (-)	Prob. (+)	Prob. (-)	Prob. (+)				
CIP	72	263	23	159				
MXF	262	208	241	257				

CIP R; MXF S

Coworking between bacteria and macrophage pumps to reduce ciprofloxacin activity

				_		
	50	EGD		CLIP		
		Res. (-)	Res. (+)	Res. (-)	Res. (+)	
	CIP	1.2	1.0	5.0	1.0	
Same substrate specificity	MXF	0.6	0.6	0.5	0.25	
of the MFS procaryotic pump and	CIP R; MXF S					
of the ABC eucaryotic pump !	Cellular concentration (ng/mg prot)					
	EO	WT		RS		
		Prob. (-)	Prob. (+)	Prob. (-)	Prob. (+)	
	CIP	72	263	23	159	

262

MXF

CIP R; MXF S

257

241

208

MIC (mg/L)

Coworking between bacteria and macrophage pumps to reduce ciprofloxacin activity

ciprofloxacin

No effect of bacteria and macrophage pumps on moxifloxacin activity

moxifloxacin

Daptomycin is substrate of P-gp

Daptomycin is substrate of P-gp

Daptomycin intracellular activity is increased in the presence of P-gp inhibitors

Putative mechanism of daptomycin transport by P-gp

anchoring in the membrane towards the hydrophobic chain and extrusion from the membrane

The past and present efflux team in Brussels

