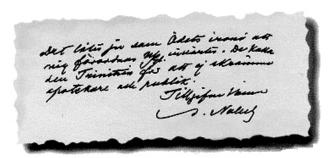


- Introduction.
- · Synthèse, régulation, dégradation.
- Les effets du NO:
 - Aspects biochimiques et cellulaires.
 - Effets cardiovasculaires.
 - NO et système nerveux.
 - NO et réponses inflammatoires.
- Approche des cibles thérapeutiques.

NO/intro: 3

Un peu d'histoire... Introduction (3)



- ➤ 1620 : Synthétisé pour la première fois par J-B Van Helmont Cu + HNO3 → Cu²⁺ + NO + H20
 - ➤ 1867 : le nitrite d'amyl permet de diminuer la pression sanguine

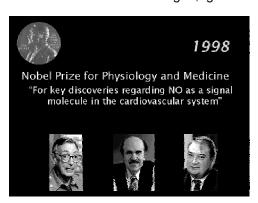
Jan-Baptista Van Helmont 1580-1644 1914-1918 : remplir les canons de nitroglycérine entrainait des chutes de tension! Premières pilules de nitroglycérine pour le traitement de l'angine de poitrine. NO/intro: 4

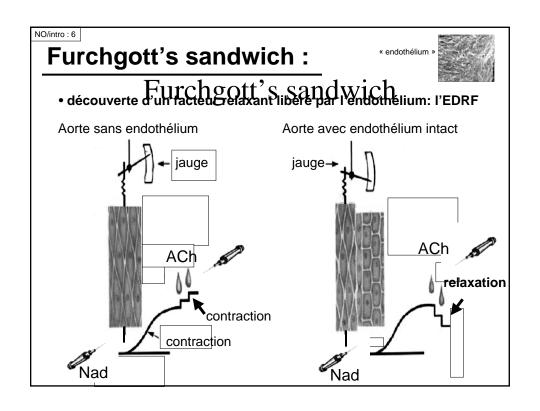
Un peu d'histoire... Introduction (4)

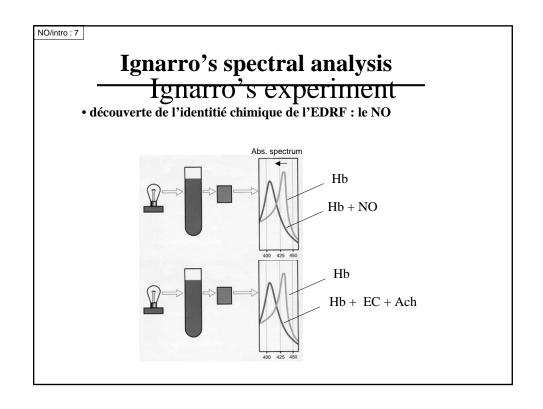
Alfred Nobel suffered from angina pectoris and was prescribed nitroglycerine. In a letter to a friend he wrote:

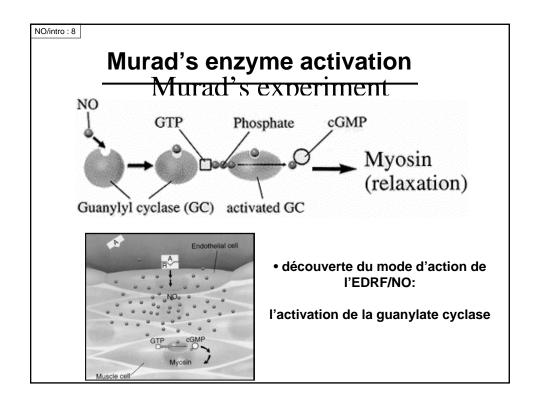
"It sounds like the irony of fate that I have been prescribed nitroglycerine internally. They have named it Trinitrin in order not to upset pharmacists and the public.

Your affectionate friend,

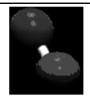

A. Nobel"


NO/intro:5


Un peu d'histoire...suite...


Introduction (5)
> 1992 : Le NO est déclaré « Molécule de l'année » par le magazine scientifique « Science »

▶1998 : Le Prix Nobel est attribué aux Prs Furchgott, Ignarro et Murad



NO/intro: 9

NO: Propriétés physico-chimiques Propriétés physico-chimiques

- Le NO est un gaz (liquide à -152°C, solide à -164°C)
- Le NO est un radical (nombre impair d'électrons : 11e- >< O₂ :12), relativement instable
- Faible solubilité dans l'eau (1,7 mmol/l à 25°C)
- Composé lipophile (passage aisé à travers les membranes), hautement diffusible

- Introduction.
- Synthèse, régulation, dégradation.
- Les effets du NO:
 - Aspects biochimiques et cellulaires.
 - Effets cardiovasculaires.
 - NO et système nerveux.
 - NO et réponses inflammatoires.
- Approche des cibles thérapeutiques.

NO/Synthèse/régulation/dégradation : 1

Les NO synthases (1)

eNOS: NO synthase endothéliale ou NOS3

> constitutive,

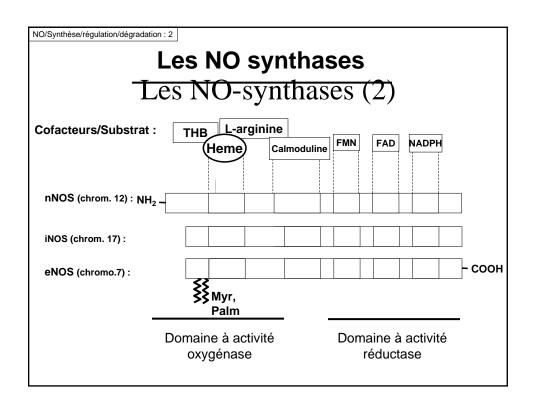
> activée par le Ca²⁺ et/ou par phosphorylations

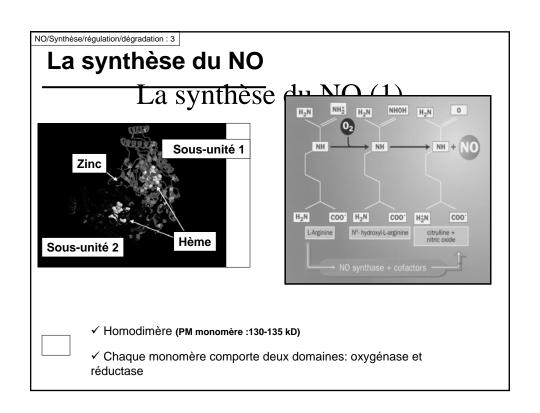
principalement dans l'endothélium vasculaire mais aussi dans les myocytes cardiaques, les cellules mésangiales rénales, les plaquettes,....

nNOS: NO synthase neuronale ou NOS1

> constitutive, activée par le Ca2+

> principalement dans le système nerveux et le muscle squel.

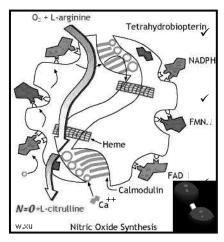

iNOS: NO synthase inductible ou macrophagique ou NOS2


> inductible par des agents proinflammatoires et des

endotoxines (LPS, interferon γ , (IL1 β , TNF α , ...))

> principalement dans les macrophages et les cellules

musculaires lisses,...)



NO/Synthèse/régulation/dégradation : 4

La synthèse du NO

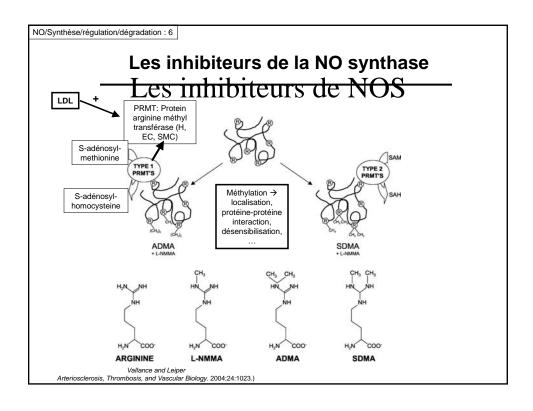
La synthèse du NO (2)

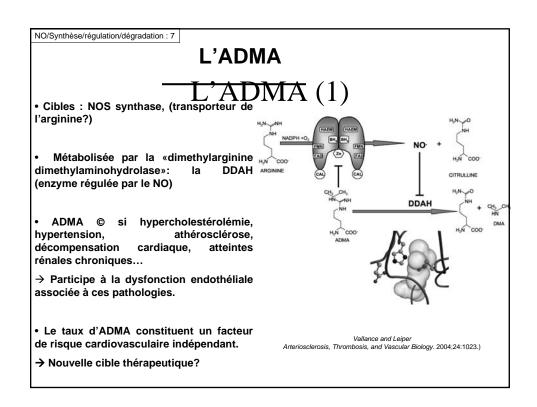
Substrat / Produits:

L-arginine, O₂/ L-citrulline, NO

Cofacteurs et groupements prosthétiques :

NADPH, FAD, FMN, Hème, THB, CaM


Inhibiteur compétitif endogène:

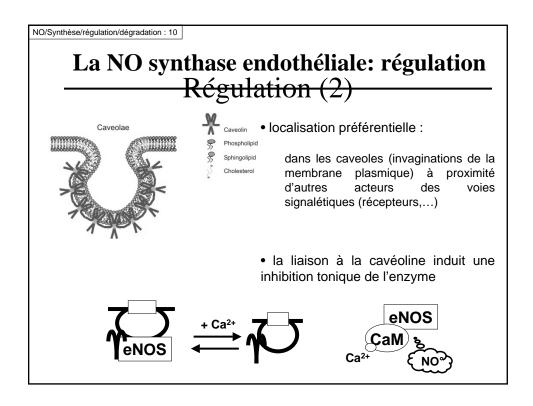

ADMA

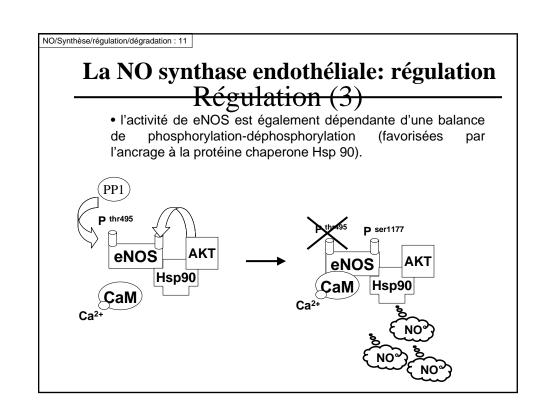
NO/Synthèse/régulation/dégradation : 5

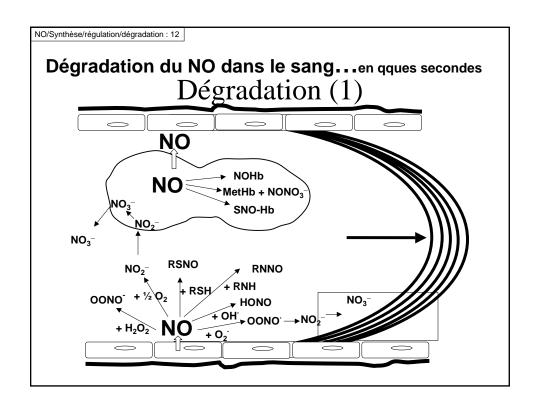
Les inhibiteurs de la NO synthase Les inhibiteurs de NOS

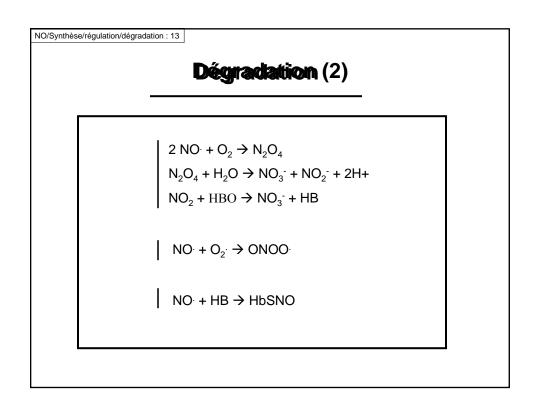
- Analogues méthylés de l'arginine:
 - Manque de spécificité pour les différentes isoformes de la NOS
 - Faux substrat compétition avec la L-arginine
 - → Outils expérimentaux.
- ADMA (Asymetric DiMethylArginine) :
 - Inhibiteur endogène
 - L'ADMA est issue du métabolisme de protéines contenant des arginines méthylées.

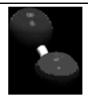
L'ADMA L'ADMA (2)	
Pour augmenter la production de NO	Pour limiter la production de NO
Supplémentation en Arginine Supplémentation en antioxydants pour © l'activité de la DDAH	Inhibiteurs de la DDAH
Uprégulation transcriptionnelle de la DDAH Activateurs de la DDAH	
Thérapie génique pour © la DDAH	
Therapeutic Strategies to Alter NO Production via Vallance an Arteriosclerosis, Thrombosis, and V	d Leiper


NO/Synthèse/régulation/dégradation : 9

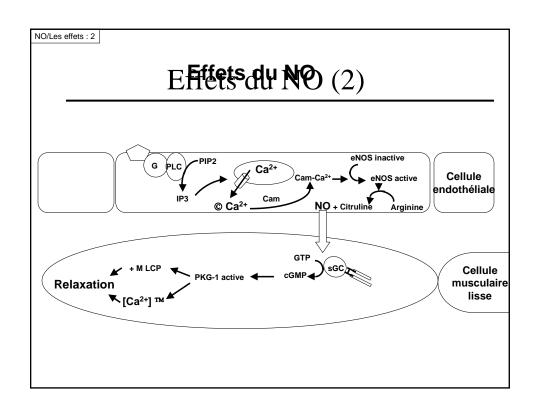

La NO synthase endothéliale: régulation Régulation (1)

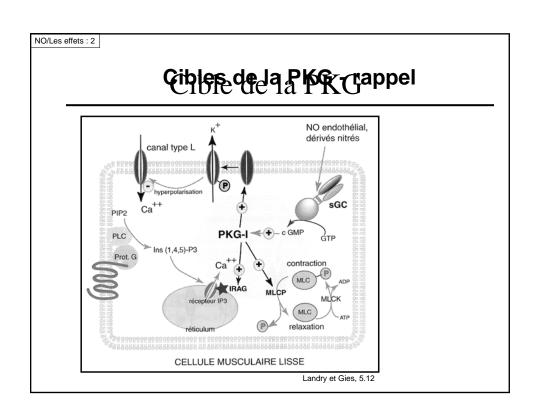

La régulation de eNOS est un processus qui se déroule à différents niveaux :

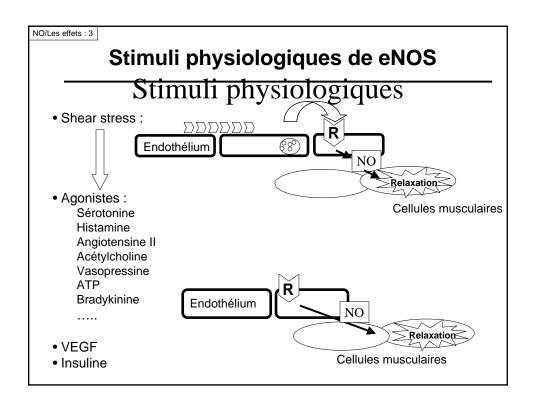

- une régulation au niveau de l'expression (action sur le promoteur, modulation de la stabilité de l'ARNm, ...).
- une régulation post-traductionnelle qui implique :
 - Translocation
 - Changements de la concentration cytosolique en calcium
 - (De)Phosphorylations : Ser 1177, Thr495, Ser 114
 - Interactions protéines-protéines : cavéoline, Hsp 90, kinases, dynamine, NOSIP, ...
 - phosphatases

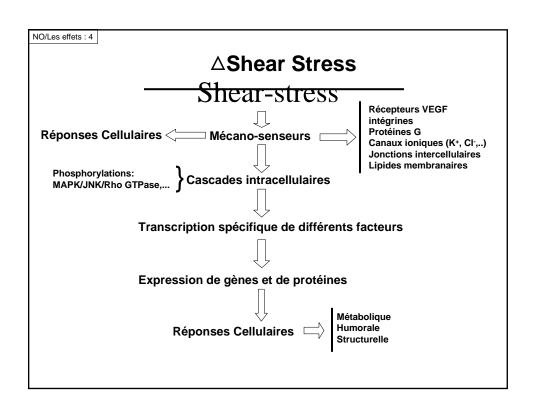

Pour en savoir plus: Fleming and Busse: Am. J. Physiol, 2003, 284, R1-R12

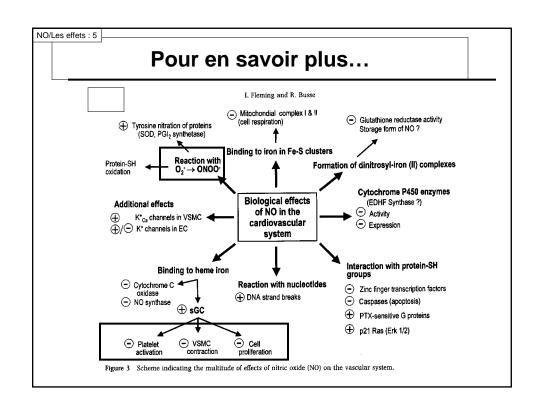
- Introduction.
- Synthèse, régulation, dégradation.
- Les effets du NO:
 - Aspects biochimiques et cellulaires.
 - Effets cardiovasculaires.
 - NO et système nerveux.
 - NO et réponses inflammatoires.
- Approche des cibles thérapeutiques.

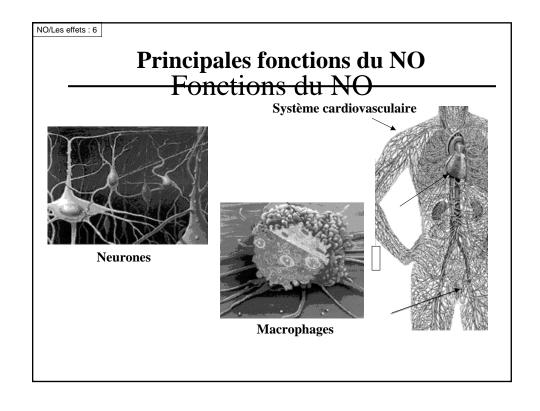

NO/Les effets : 1

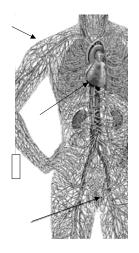

Effets du NO : aspects biochimiques Effets du NO (1)

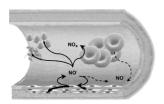

- en se combinant à l'hème de la guanylate cyclase
 - ♦ activation de l'enzyme ♦ augmentation du cGMP
 - ♦ activation de PKG-I (vasodilatation, diminution de l'adhésion plaquettaire et leucocytaire, neurotransmission)


effet autocrine ou paracrine


- en se combinant à l'hème d'autres enzymes
 - ♦ inhibition de la cytochrome oxydase (contrôle de la respiration cellulaire)
- en nitrosylant protéines, lipides.
- en se combinant avec l'anion superoxyde
 - formation de peroxynitrites (souvent cytotoxiques)

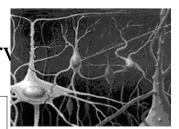






NO/Les effets : 7

Effets cardiovasculaires du NO Effets cardiovasculaires


- Vasodilatation
- Inhibition de l'adhésion plaquettaire
- Inhibition de l'adhésion leucocytaire
- Effet inotrope négatif
- TM prolifération cellulaire
- © Angiogenèse

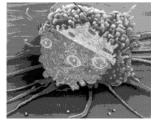
- ➤ Contrôle de la pression sanguine
- > Prévention de l'athérogenèse
- ➤ Prévention de la thrombogenèse

NO/Les effets: 8

NO et système nerveux

- NO produit par nNOS
- NO : neurotransmetteur de type NANC
- Ne répond pas aux caractéristiques des NT classiques : (c-a-d machinerie de synthèse et stockage, libération par exocytose, action via récepteurs membranaires spécifiques, existence de mécanismes d'inactivation).
- Localisation: SN central et périphérique nNOS est présente dans ~2% des neurones, nNOS est localisée dans les corps cellulaires, dendrites, axones la libération du NO n'est pas restreinte aux zones conventionnelles de libération des NT.

NO/Les effets: 9 NO et système nerveux NO et système nerveux (2) > 2 voies de signalisation : Activation de la guanylate cyclase (neurotransmission ou action « physiologique »). Formation de peroxynitrites (neurotoxicité: hyperstimulation des récepteurs NMDA par le Mg²⁺ glutamate -cf. ischémie cérébrale maladie de Huntington, démence sénile). > Effets centraux : neurotransmission, Potentialisation à long terme – messager Ca2+ rétrograde - Plasticité (mémoire, appétit, Rising [Ca2*] nociception). NO NO synthase > Effets périphériques : neurotransmission (vidange gastrique, érection).


NO/Les effets : 10

NO et mécanismes de défenses

NO et système immunitaire (1)

L'expression de iNOS est induite notamment dans:

- les cellules participant à la réaction inflammmatoire
- l'épithélium bronchique (si asthme)
- la muqueuse du colon (si colite ulcérative)
- les synoviocytes (si maladie inflammatoire articulaire)

Production de NO OOO

Effets pro-inflammatoires:

- vasodilatation / 🌣 perméabilité vasculaire
- production de prostaglandines
- effets cytotoxiques/ cytostatiques contre bactéries, champignons, virus,....

Effets délétères si production en excès: choc septique, effets cytotoxiques sur les cellules de l'hôte.

NO/Les effets : 11

Dualité NO produit par eNOS NO et systemperinaduithiparinie (25)

<u>eNOS</u>

iNOS

✓ NO �

NO/Les effets : 12

- √ Vasodilatation bénéfique
- ✓ Anti-inflammatoire par :
 - ❖Diminution agrégation plaquettaire
 - ❖Diminution adhésion leucocytaire

- ✓ NO ◊◊◊◊◊
- ✓ Vasodilatation excessive
 † Choc
- ✓ Action pro-inflammatoire

NO et pathophysiologie
NO et physiopathologie

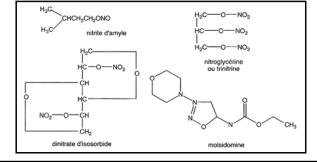
⋈ NO

NO

- « dysfonction endothéliale » hypercholestérolémie diabète
- > sténose hypertrophique du pylore du nouveau-né
- > maladies neurodégénératives
- > choc septique

- Introduction.
- Synthèse, régulation, dégradation.
- Les effets du NO:
 - Aspects biochimiques et cellulaires.
 - Effets cardiovasculaires.
 - NO et système nerveux.
 - NO et réponses inflammatoires.
- · Approche des cibles thérapeutiques.

NO/cibles: 1


Approches des cibles thérapeutiques Approches thérapeutiques

• NO : forme gazeuse

- ☐ Syndrome de détresse respiratoire, hypertension pulmonaire chez le prématuré
- Donneurs de NO : dérivés nitrés
 - ☐ Maladie coronarienne (anti-angoreux)
 - ☐ crise hypertensive aiguë

NO/cibles : 2

Approches des cibles thérapeutiques Approches thérapeutiques

- Potentialisateurs du NO : inhibiteurs sélectifs de PDE5 (PDE5 → hydrolyse du cGMP) © cGMP
 - ☐ Impuissance
- Inhibiteurs de la NO synthase : recherche d'inhibiteurs sélectifs des différentes isoformes
 - □Contrôle du choc septique (premiers essais cliniques utilisant des inhibiteurs non-slectifs décevants : ⊚ mortalité cardiovasculaire!!!)
- ADMA/DDAH (nouvelle cible?):
 - ☐ prévention de la dysfonction endothéliale associée à l'athérosclérose, l'hypertension, ...