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 Preface 

Regression analysis, especially nonlinear regression, is an essential tool to analyze 
biological (and other) data. Many researchers use nonlinear regression more than any 
other statistical tool. Despite this popularity, there are few places to learn about nonlinear 
regression. Most introductory statistics books focus only on linear regression, and entirely 
ignore nonlinear regression. The advanced statistics books that do discuss nonlinear 
regression tend to be written for statisticians, exceed the mathematical sophistication of 
many scientists, and lack a practical discussion of biological problems. 

We wrote this book to help biologists learn about models and regression. It is a practical 
book to help biologists analyze data and make sense of the results. Beyond showing some 
simple algebra associated with the derivation of some common biological models, we do 
not attempt to explain the mathematics of nonlinear regression. 

The book begins with an example of curve fitting, followed immediately by a discussion of 
how to prepare your data for nonlinear regression, the choices you need to make to run a 
nonlinear regression program, and how to interpret the results and troubleshoot 
problems. Once you have completed this first section, you’ll be ready to analyze your own 
data and can refer to the rest of this book as needed. 

This book was written as a companion to the computer program, GraphPad Prism 
(version 4), available for both Windows and Macintosh. Prism combines scientific 
graphics, basic biostatistics, and nonlinear regression.  You can learn more at 
www.graphpad.com. However, almost all of the book will also be useful to those who use 
other programs for nonlinear regression, especially those that can handle global curve 
fitting. All the information that is specific to Prism is contained in the last section and in 
boxed paragraphs labeled “GraphPad notes”. 

We thank Ron Brown, Rick Neubig, John Pezzullo, Paige Searle, and James Wells for 
helpful comments.  

Visit this book’s companion web site at www.curvefit.com. You can download or view this 
entire book as a pdf file. We’ll also post any errors discovered after printing, links to other 
web sites, and discussion of related topics. Send your comments and suggestions to 
Hmotulsky@graphpad.com . 

Harvey Motulsky 
President, GraphPad Software 
GraphPad Software Inc. 
Hmotulsky@graphpad.com 

Arthur Christopoulos 
Dept. of Pharmacology 
University of Melbourne 
arthurc1@unimelb.edu.au 
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A. Fitting data with nonlinear regression  

1. An example of nonlinear regression 

As a way to get you started thinking about curve fitting, this first chapter presents a 
complete example of nonlinear regression. This example is designed to introduce you to 
the problems of fitting curves to data, so leaves out many details that will be described in 
greater depth elsewhere in this book. 

GraphPad note: You’ll find several step-by-step tutorials on how to fit curves 
with Prism in the companion tutorial book, also posted at www.graphpad.com.  

Example data 
Various doses of a drug were injected into three animals, and the change in blood pressure 
for each dose in each animal was recorded.  We want to analyze these data.  
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14 A. Fitting data with nonlinear regression 

log(dose) Y1 Y2 Y3 

-7.0 1 4 5 

-6.5 5 4 8 

-6.0 14 14 12 

-5.5 19 14 22 

-5.0 23 24 21 

-4.5 26 24 24 

-4.0 26 25 24 

-3.5 27 31 26 

-3.0 27 29 25 

Step 1: Clarify your goal. Is nonlinear regression the appropriate 
analysis? 
Nonlinear regression is used to fit data to a model that defines Y as a function of X. Y must 
be a variable like weight, enzyme activity, blood pressure or temperature. Some books 
refer to these kinds of variables, which are measured on a continuous scale, as “interval” 
variables. For this example, nonlinear regression will be used to quantify the potency of 
the drug by determining the dose of drug that causes a response halfway between the 
minimal and maximum responses. We’ll do this by fitting a model to the data. 

Three notes on choosing nonlinear regression: 

• With some data, you may not be interested in determining the best-fit values of 
parameters that define a model. You may not even care about models at all. All 
you may care about is generating a standard curve that you can use to 
interpolate unknown values. If this is your goal, you can still use nonlinear 
regression. But you won’t have to be so careful about picking a model or 
interpreting the results.  All you care about is that the curve is smooth and 
comes close to your data.  

• If your outcome is a binomial outcome (for example male vs. female, pass vs. fail, 
viable vs. not viable) linear and nonlinear regression is not appropriate. Instead, 
you need to use a special method such as logistic regression or probit analysis. 
But it is appropriate to use nonlinear regression to analyze outcomes such as 
receptor binding or enzyme activity, even though each receptor is either 
occupied or not, and each molecule of enzyme is either bound to a substrate or 
not. At a deep level, binding and enzyme activity can be considered to be binary 
variables. But you measure binding of lots of receptors, and measure enzyme 
activity as the sum of lots of the activities of lots of individual enzyme molecules, 
so the outcome is really more like a measured variable. 

• If your outcome is a survival time, you won’t find linear or nonlinear regression 
helpful. Instead, you should use a special regression method designed for 
survival analysis known as Proportional hazards regression or Cox regression. 
This method can compare survival for two (or more) groups, after adjusting for 
other differences such as the proportions of males and females or age.  It can 
also be used to analyze survival data where subjects in the treatment groups are 
matched. Other special methods fit curves to survival data assuming a 
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theoretical model (for example the Weibull or exponential distributions) for how 
survival changes over time.  

GraphPad note: No GraphPad program performs logistic regression, probit 
analysis, or proportional hazards regression (as of 2003). 

 

Step 2: Prepare your data and enter it into the program. 
For this example, we don’t have to do anything special to prepare our data for nonlinear 
regression. See Chapter 2 for comments on transforming and normalizing your data prior 
to fitting a curve. 

Entering the data into a program is straightforward. With Prism, the X and Y columns are 
labeled. With other programs, you may have to specify which column is which. 

Step 3: Choose your model 
Choose or enter a model that defines Y as a function of X and one or more parameters.  
Section C explains how to pick a model. This is an important decision, which cannot 
usually be relegated to a computer (see page 66). 

For this example, we applied various doses of a drug and measured the response, so we 
want to fit a “dose-response model”. There are lots of ways to fit dose-response data (see I. 
Fitting dose-response curves). In this example, we’ll just fit a standard model that is 
alternatively referred to as the Hill equation, the four-parameter logistic equation or the 
variable slope sigmoidal equation (these three names all refer to exactly the same model). 
This model can be written as an equation that defines the response (also called the 
dependent variable Y) as a function of dose (also called the independent variable, X) and 
four parameters: 

50
HillSlopeLogEC

X

Top-BottomY=Bottom+
101+

10
 
 
 

 

The model parameters are Bottom, which denotes the value of Y for the minimal curve 
asymptote (theoretically, the level of response, if any, in the absence of drug), Top, which 
denotes the value of Y for the maximal curve asymptote (theoretically, the level of 
response produced by an infinitely high concentration of drug), LogEC50, which denotes 
the logarithm of drug dose (or concentration) that produces the response halfway between 
the Bottom and Top response levels (commonly used as a measure of a drug’s potency), 
and the Hill Slope, which denotes the steepness of the dose-response curve (often used as 
a measure of the sensitivity of the system to increments in drug concentrations or doses).  
The independent variable, X, is the logarithm of the drug dose. Here is one way that the 
equation can be entered into a nonlinear regression program: 
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Y=Bottom + (Top-Bottom)/(1+10^(LogEC50-X)*HillSlope) 

Note: Before nonlinear regression was readily available, scientists commonly 
transformed data to create a linear graph. They would then use linear 
regression on the transformed results, and then transform the best-fit values of 
slope and intercept to find the parameters they really cared about. This 
approach is outdated. It is harder to use than fitting curves directly, and the 
results are less accurate. See page 19. 

Step 4: Decide which model parameters to fit and which to 
constrain 
It is not enough to pick a model. You also must define which of the parameters, if any, 
should be fixed to constant values.  This is an important step, which often gets skipped. 
You don’t have to ask the program to find best-fit values for all the parameters in the 
model. Instead, you can fix one (or more) parameter to a constant value based on controls 
or theory. For example, if you are measuring the concentration of drug in blood plasma 
over time, you know that eventually the concentration will equal zero. Therefore you 
probably won’t want to ask the program to find the best-fit value of the bottom plateau of 
the curve, but instead should set that parameter to a constant value of zero. 

Let’s consider the four parameters of the sigmoidal curve model with respect to the 
specific example above. 

Parameter Discussion 

Bottom The first dose of drug used in this example already has an effect. There is no 
lower plateau. We are plotting the change in blood pressure, so we know that 
very low doses won’t change blood pressure at all. Therefore, we won’t ask the 
program to find a best-fit value for the Bottom parameter. Instead, we’ll fix that 
to a constant value of zero, as this makes biological sense. 

Top We have no external control or reference value to assign as Top. We don’t know 
what it should be. But we have plenty of data to define the top plateau 
(maximum response). We’ll therefore ask the program to find the best-fit value 
of Top. 

LogEC50 Of course, we’ll ask the program to fit the logEC50. Often, the main reason for 
fitting a curve through dose-response data is to obtain this measure of drug 
potency. 

HillSlope Many kinds of dose-response curves have a standard Hill slope of 1.0, and you 
might be able to justify fixing the slope to 1.0 in this example. But we don’t 
have strong theoretical reasons to insist on a slope of 1.0, and we have plenty of 
data points to define the slope, so we’ll ask the program to find a best-fit value 
for the Hill Slope. 

 

Tip: Your decisions about which parameters to fit and which to fix to constant 
values can have a large impact on the results.  

You may also want to define constraints on the values of the parameters. For example, you 
might constrain a rate constant to have a value greater than zero. This step is optional, 
and is not needed for our example.  



 

 1. An example of nonlinear regression 17 

Step 5: Choose a weighting scheme 
If you assume that the average scatter of data around the curve is the same all the way 
along the curve, you should instruct the nonlinear program to minimize the sum of the 
squared distances of the points from the curve. If the average scatter varies, you’ll want to 
instruct the program to minimize some weighted sum-of-squares.  Most commonly, you’ll 
choose weighting when the average amount of scatter increases as the Y values increase, 
so the relative distance of the data from the curve is more consistent than the absolute 
distances. This topic is discussed in Chapter 14. Your choice here will rarely have a huge 
impact on the results. 

For this example, we choose to minimize the sum-of-squares with no weighting. 

Step 6: Choose initial values 
Nonlinear regression is an iterative procedure. Before the procedure can begin, you need 
to define initial values for each parameter. If you choose a standard equation, your 
program may provide the initial values automatically. If you choose a user-defined 
equation that someone else wrote for you, that equation may be stored in your program 
along with initial values (or rules to generate initial values from the X and Y ranges of 
your data). 

If you are using a new model and aren’t sure the initial values are correct, you should 
instruct the nonlinear regression program to graph the curve defined by the initial values. 
With Prism, this is a choice on the first tab of the nonlinear regression dialog. If the 
resulting curve comes close to the data, you are ready to proceed. If this curve does not 
come near your data, go back and alter the initial values.  

Step 7: Perform the curve fit and interpret the best-fit parameter 
values 
 

Here are the results of the nonlinear regression as a table and graph.  
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When evaluating the results, first ask yourself these five questions (see Chapter 4): 

1. Does the curve come close to the data? You can see that it does by looking at the 
graph. Accordingly the R2 value is high (see page 34). 

2. Are the best-fit values scientifically plausible? In this example, all the best-fit 
values are sensible. The best-fit value of the logEC50 is -5.9, right in the middle of 
your data. The best-fit value for the top plateau is 26.9, which looks about right by 
inspecting the graph. The best-fit value for the Hill slope is 0.84, close to the value 
of 1.0 you often expect to see. 

3. How precise are the best-fit parameter values? You don’t just want to know what 
the best-fit value is for each parameter. You also want to know how certain that 
value is.  It isn’t enough to look at the best-fit value. You should also look at the 
95% confidence interval (or the SE values, from which the 95% CIs are calculated) 
to see how well you have determined the best-fit values. In this example, the 95% 
confidence intervals for all three fitted parameters are reasonably narrow 
(considering the number and scatter of the data points). 

4. Would another model be more appropriate? Nonlinear regression finds parameters 
that make a model fit the data as closely as possible (given some assumptions). It 
does not automatically ask whether another model might work better. You can 
compare the fit of models as explained beginning in Chapter 21.  

5. Have you violated any assumptions of nonlinear regression? The assumptions are 
discussed on page 30. Briefly, nonlinear regression assumes that you know X 
precisely, and that the variability in Y is random, Gaussian, and consistent all the 
way along the curve (unless you did special weighting). Furthermore, you assume 
that each data point contributes independent information.   

See chapters 4 and 5 to learn more about interpreting the results of nonlinear regression. 
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2.  Preparing data for nonlinear regression 

Avoid Scatchard, Lineweaver-Burk and similar transforms whose 
goal is to create a straight line 
Before nonlinear regression was readily available, shortcuts were developed to analyze 
nonlinear data. The idea was to transform the data to create a linear graph, and then 
analyze the transformed data with linear regression. Examples include Lineweaver-Burk 
plots of enzyme kinetic data, Scatchard plots of binding data, and logarithmic plots of 
kinetic data.  

Tip: Scatchard plots, Lineweaver-Burk plots and related plots are outdated. 
Don’t use them to analyze data.  

The problem with these methods is that they cause some assumptions of linear regression 
to be violated. For example, transformation distorts the experimental error. Linear 
regression assumes that the scatter of points around the line follows a Gaussian 
distribution and that the standard deviation is the same at every value of X. These 
assumptions are rarely true after transforming data. Furthermore, some transformations 
alter the relationship between X and Y. For example, when you create a Scatchard plot the 
measured value of Bound winds up on both the X axis( which plots Bound) and the Y axis 
(which plots Bound/Free). This grossly violates the assumption of linear regression that 
all uncertainty is in Y, while X is known precisely. It doesn't make sense to minimize the 
sum of squares of the vertical distances of points from the line, if the same experimental 
error appears in both X and Y directions. 

Since the assumptions of linear regression are violated, the values derived from the slope 
and intercept of the regression line are not the most accurate determinations of the 
parameters in the model. The figure below shows the problem of transforming data. The 
left panel shows data that follows a rectangular hyperbola (binding isotherm). The right 
panel is a Scatchard plot of the same data (see "Scatchard plots" on page 205). The solid 
curve on the left was determined by nonlinear regression. The solid line on the right 
shows how that same curve would look after a Scatchard transformation. The dotted line 
shows the linear regression fit of the transformed data. Scatchard plots can be used to 
determine the receptor number (Bmax, determined as the X-intercept of the linear 
regression line) and dissociation constant (Kd, determined as the negative reciprocal of 
the slope). Since the Scatchard transformation amplified and distorted the scatter, the 
linear regression fit does not yield the most accurate values for Bmax and Kd. 
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Don’t use linear regression just to avoid using nonlinear regression. Fitting curves with 
nonlinear regression is not difficult. Considering all the time and effort you put into 
collecting data, you want to use the best possible technique for analyzing your data. 
Nonlinear regression produces the most accurate results. 

Although it is usually inappropriate to analyze transformed data, it is often helpful to 
display data after a linear transform. Many people find it easier to visually interpret 
transformed data. This makes sense because the human eye and brain evolved to detect 
edges (lines) — not to detect rectangular hyperbolas or exponential decay curves.  

Transforming X values 
Nonlinear regression minimizes the sum of the square of the vertical distances of the data 
points from the curve. Transforming X values only slides the data back and forth 
horizontally, and won’t change the vertical distance between the data point and the curve. 
Transforming X values, therefore, won’t change the best-fit values of the parameters, or 
their standard errors or confidence intervals.  

In some cases, you’ll need to adjust the model to match the transform in X values. For 
example, here is the equation for a dose-response curve when X is the logarithm of 
concentration.   

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) 

 

If we transform the X values to be concentration, rather than the logarithm of 
concentration, we also need to adapt the equation. Here is one way to do it: 

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-log(X))*HillSlope)) 

 

Note that both equations fit the logarithm of the EC50, and not the EC50 itself.  See “Why 
you should fit the logEC50 rather than EC50” on page 263. Also see page 100 for a 
discussion of rate constants vs. time constants when fitting kinetic data. Transforming 
parameters can make a big difference in the reported confidence intervals. Transforming 
X values will not. 

Don’t smooth your data  
Smoothing takes out some of the erratic scatter to show the overall trend of the data. This 
can be useful for data presentation, and is customary in some fields. Some instruments 
can smooth data as they are acquired.  

Avoid smoothing prior to curve fitting. The problem is that the smoothed data violate 
some of the assumptions of nonlinear regression. Following smoothing, the residuals are 
no longer independent. You expect smoothed data points to be clustered above and below 
the curve. Furthermore, the distances of the smoothed points from the curve will not be 
Gaussian, and the computed sum-of-squares will underestimate the true amount of 
scatter. Accordingly, nonlinear regression of smoothed data will determine standard 
errors for the parameters that are too small, so the confidence intervals will be too 
narrow. You’ll be misled about the precision of the parameters. Any attempt to compare 
models will be invalid because these methods are based on comparing sum-of-squares, 
which will be wrong. 
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The graphs below show original data (left) and the data after smoothing (right).  
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 Fit actual data Fit smoothed data 
Parameter Best-fit SE Best-fit SE 

Y0 2362 120.5 2363 38.81 

k 0.4902 0.05577 0.4869 0.01791 

Plateau 366.4 56.70 362.4 18.43 

Sum-of-squares 7,811,565 814,520 

 

The best-fit values of the parameters are almost the same when you fit smoothed data as 
when you fit the actual data. But the standard errors are very different. Smoothing the 
data reduced the sum-of-squares by about a factor of nine, so reduced the reported 
standard errors by about a factor of three. But smoothing the data doesn’t make the 
estimates of the parameter values more precise. The standard errors and confidence 
intervals are simply wrong since the curve fitting program was mislead about the scatter 
in the data. 

Transforming Y values 

Dividing, or multiplying, all Y values by a constant is OK. 
Multiplying or dividing all Y values by a constant does not change the best-fit curve. You’ll 
get the same (or equivalent) best-fit values of the parameters with the same confidence 
intervals. It is a good idea to transform to change units to prevent your Y values from 
being very high or very low (see next section). And it is OK to multiply or divide by a 
constant to make the units more convenient.  

Note that some parameters are expressed in units of the Y axis, so if you change the Y 
values, you’ll also change the units of the parameter. For example, in a saturation binding 
study, the units of the Bmax (maximum binding) are the same as the units of the Y axis. If 
you transform the Y values from counts/minute to sites/cell, you’ll also change the units 
of the Bmax parameter. The best-fit value of that parameter will change its numerical value, 
but remain equivalent. 
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Subtracting a constant is OK 
Subtracting a constant from all Y values will not change the scatter of the data around the 
best-fit curve so will not affect which curve gets selected by nonlinear regression.  

Think carefully about nonlinear transforms 
As mentioned above, transforming Y values with a linear transformation (such as dividing 
all values by a constant, or subtracting a constant from all values), won't change the 
nature of the best-fit curve. In contrast, nonlinear transformations (such as converting Y 
values to their logarithms, square roots, or reciprocals) will change the relative position of 
data points from the curve and cause a different curve to minimize the sum-of-squares. 
Therefore, a nonlinear transformation of Y values will lead to different best-fit parameter 
values. Depending on the data, this can be good or bad.  

Nonlinear regression is based on the assumption that the scatter of data around the curve 
follows a Gaussian distribution. If he scatter of your data is in fact Gaussian, performing a 
nonlinear transform will invalidate your assumption. If you have data with Gaussian 
scatter, avoid nonlinear Y transforms. If, however, your scatter is not Gaussian, a 
nonlinear transformation might make the scatter more Gaussian. In this case, it is a good 
idea to apply nonlinear transforms to your Y values.   

Change units to avoid tiny or huge values 
In pure math, it makes no difference what units you use to express your data. When you 
analyze data with a computer, however, it can matter. Computers can get confused by very 
small or very large numbers, and round-off errors can result in misleading results.  

When possible try to keep your Y values between about 10-9 and 109, changing units if 
necessary. The scale of the X values usually matters less, but we’d suggest keeping X 
values within that range as well. 

Note: This guideline is just that. Most computer programs will work fine with 
numbers much larger and much smaller. It depends on which program and 
which analysis.  

Normalizing 
One common way to normalize data is to subtract off a baseline and then divide by a 
constant. The goal is to make all the Y values range between 0.0 and 1.0 or 0% and 100%. 
Normalizing your data using this method, by itself, will not affect the results of nonlinear 
regression. You’ll get the same best-fit curve, and equivalent best-fit parameters and 
confidence intervals.  

If you normalize from 0% to 100%, some points may end up with normalized values less 
than 0% or greater than 100. What should you do with such points? Your first reaction 
might be that these values are clearly erroneous, so should be deleted. This is not a good 
idea. The values you used to define 0% and 100% are not completely accurate. And even if 
they were, you expect random scatter. So some points will end up higher than 100% and 
some points will end up lower than 0%. Leave those points in your analysis; don’t 
eliminate them.  

Don’t confuse two related decisions: 
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• Should you normalize the data? Normalizing, by itself, will not change the best-
fit parameters (unless your original data had such huge or tiny Y values that 
curve fitting encountered computer round-off or overflow errors). If you 
normalize your data, you may find it easier to see what happened in the 
experiment, and to compare results with other experiments.  

• Should you constrain the parameters that define bottom and/or top plateaus to 
constant values? Fixing parameters to constant values will change the best-fit 
results of the remaining parameters, as shown in the example below. 

Averaging replicates 
If you collected replicate Y values (say triplicates) at each value of X, you may be tempted 
to average those replicates and only enter the mean values into the nonlinear regression 
program. Hold that urge! In most situations, you should enter the raw replicate data. See 
page 87. 

Consider removing outliers 
When analyzing data, you'll sometimes find that one value is far from the others. Such a 
value is called an outlier, a term that is usually not defined rigorously. When you 
encounter an outlier, you may be tempted to delete it from the analyses. First, ask yourself 
these questions: 

• Was the value entered into the computer correctly? If there was an error in data 
entry, fix it.  

• Were there any experimental problems with that value? For example, if you noted 
that one tube looked funny, you have justification to exclude the value resulting 
from that tube without needing to perform any calculations.  

• Could the outlier be caused by biological diversity? If each value comes from a 
different person or animal, the outlier may be a correct value. It is an outlier not 
because of an experimental mistake, but rather because that individual may be 
different from the others. This may be the most exciting finding in your data!  

After answering “no” to those three questions, you have to decide what to do with the 
outlier. There are two possibilities.  

• One possibility is that the outlier was due to chance. In this case, you should 
keep the value in your analyses. The value came from the same distribution as 
the other values, so should be included.  

• The other possibility is that the outlier was due to a mistake - bad pipetting, 
voltage spike, holes in filters, etc. Since including an erroneous value in your 
analyses will give invalid results, you should remove it. In other words, the value 
comes from a different population than the other and is misleading. 

The problem, of course, is that you can never be sure which of these possibilities is 
correct. Statistical calculations can quantify the probabilities. 

Statisticians have devised several methods for detecting outliers. All the methods first 
quantify how far the outlier is from the other values. This can be the difference between 
the outlier and the mean of all points, the difference between the outlier and the mean of 
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the remaining values, or the difference between the outlier and the next closest value. 
Next, standardize this value by dividing by some measure of scatter, such as the SD of all 
values, the SD of the remaining values, or the range of the data. Finally, compute a P value 
answering this question: If all the values were really sampled from a Gaussian population, 
what is the chance of randomly obtaining an outlier so far from the other values? If this 
probability is small, then you will conclude that the outlier is likely to be an erroneous 
value, and you have justification to exclude it from your analyses.  

One method of outlier detection (Grubbs’ method) is described in the companion book 
Prism 4 Statistics Guide. No outlier test will be very useful unless you have lots (say a 
dozen or more) replicates. 

Be wary of removing outliers simply because they seem "too far" from the rest. All the data 
points in the figure below were generated from a Gaussian distribution with a mean of 
100 and a SD of 15. Data sets B and D have obvious "outliers". Yet these points came from 
the same Gaussian distribution as the rest. Removed these values as outliers can make the 
the mean of the remaining points would be further from its true value (100) rather than 
closer to it. 
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Tip: Be wary when removing a point that is obviously an outlier.  
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3.  Nonlinear regression choices 

Choose a model for how Y varies with X 
Nonlinear regression fits a model to your data. In most cases, your goal is to get back the 
best-fit values of the parameters in that model. If so, it is crucial that you pick a sensible 
model. If the model makes no sense, even if it fits the data well, you won’t be able to 
interpret the best-fit values. 

In other situations, your goal is just to get a smooth curve to use for graphing or for 
interpolating unknown values. In these cases, you need a model that generates a curve 
that goes near your points, and you won’t care whether the model makes scientific sense. 

Much of this book discusses how to pick a model, and models commonly used in biology. 

If you want to fit a global model, you must specify which parameters are shared among 
data sets and which are fit individually to each data set. This works differently for 
different programs. See page  70. 

Fix parameters to a constant value? 
As part of picking a model, you need to decide which parameters in the model you will set 
to a constant value based on control data. For example, if you are fitting an exponential 
decay, you need to decide if the program will find a best-fit value for the bottom plateau or 
whether you will set that to a constant value (perhaps zero). This is an important decision. 
That is best explained through example.  

Here are data to be fit to an exponential decay. 
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We fit the data to an exponential decay, asking the computer to fit three parameters, the 
staring point, the rate constant, and the bottom plateau. The best-fit curve, shown above 
looks fine. But as you can see below, many exponential decay curves fit your data almost 
equally well.  
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The data simply don’t define all three parameters in the model. You didn’t collect data out 
to long enough time points, so your data simply don’t define the bottom plateau of the 
curve. If you ask the program to fit all the parameters, the confidence intervals will be very 
wide – you won’t determine the rate constant with reasonable precision. If, instead, you 
fix the bottom parameter to 0.0 (assuming you have normalized the data so it has to end 
up at zero), then you’ll be able to determine the rate constant with far more precision.  

Tip: If your data don’t define all the parameters in a model, try to constrain one 
or more parameters to constant values. 

It can be a mistake to fix a parameter to a constant value, when that constant value isn’t 
quite correct. For example, consider the graph below with dose-response data fit two 
ways. First, we asked the program to fit all four parameters:  bottom plateau, top plateau, 
logEC50 (the middle of the curve) and the slope. The solid curve shows that fit. Next, we 
used the mean of the duplicates of the lowest concentration to define the bottom plateau 
(1668), and the mean of the duplicates of the highest concentration to define the top 
plateau (4801). We asked the program to fix those parameters to constant values, and 
only fit logEC50 and slope. The dashed curve shows the results. By chance, the response 
at the lowest concentration was a bit higher than it is for the next two concentrations. By 
forcing the curve to start at this (higher) value, we are pushing the logEC50 to the right. 
When we fit all four parameters, the best-fit value of the logEC50 is -6.00. When we fixed 
the top and bottom plateaus to constant values, the best-fit value of the logEC50 is -5.58. 
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In this example, fixing parameters to constant values (based on control measurements) 
was a mistake. There are plenty of data points to define all parts of the curve. There is no 
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need to define the plateaus based on duplicate determinations of response at the lowest 
and highest dose.  

Tip: If you are going to constrain a parameter to a constant value, make sure 
you know that value quite accurately. 

Initial values 
Nonlinear regression is an iterative procedure. The program must start with estimated 
initial values for each parameter. It then adjusts these initial values to improve the fit.  

If you pick an equation built into your nonlinear regression program, it will probably 
provide initial values for you. If you write your own model, you’ll need to provide initial 
values or, better, rules for computing the initial values from the range of the data. 

You'll find it easy to estimate initial values if you have looked at a graph of the data, 
understand the model, and understand the meaning of all the parameters in the equation. 
Remember that you just need estimated values. They don't have to be very accurate. 

If you are having problems estimating initial values, set aside your data and simulate a 
family of curves (in Prism, use the analysis “Create a family of theoretical curves”). Once 
you have a better feel for how the parameters influence the curve, you might find it easier 
to go back to nonlinear regression and estimate initial values. 

Another approach to finding initial values is to analyze your data using a linearizing 
method such as a Scatchard or Lineweaver-Burk plot. While these methods are obsolete 
for analyzing data (see page 19), they are a reasonable methods for generating initial 
values for nonlinear regression. If you are fitting exponential models with multiple 
phases, you can obtain initial values via curve stripping (see a textbook of 
pharmacokinetics for details).  

Page 43 shows an example where poor initial values prevent nonlinear regression from 
finding best-fit values of the parameters.  

Weighting 
The goal of regression is to find best-fit values for the parameters of the model (e.g., slope 
and intercept for linear regression, other parameters, such as rate constants, for nonlinear 
regression). More precisely, the goal is the find values for the parameters that are most 
likely to be correct. It turns out that you can’t decide which parameter values are most 
likely to be correct without first making an assumption about how the data are scattered 
around the line or curve.  

Most commonly, linear and nonlinear regression make two assumptions: 

• The scatter follows a Gaussian (also called a “Normal”) distribution. 

• That the standard deviation of the scatter (the average amount of scatter) is the 
same for all values of X.  

Given these two assumptions, how does nonlinear regression decide which parameter 
values are most likely to be correct? The answer, discussed in more detail in Chapter 13, is 
that the parameters that are most likely to be correct are those that generate a curve that 
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minimizes the sum of the squares of the vertical distance between data points and curve. 
In other words, least-squares regression minimizes: 

( )2
Data CurveY -Y∑  

If the scatter really is Gaussian and uniform, least-squares regression finds the parameter 
values that are most likely to be correct. 

It is possible to change the first assumptions, and make some other assumption about the 
scatter. But the Gaussian assumption works well, and is used for almost all curve fitting. 
The only real exception is robust nonlinear regression, designed to reduce the influence of 
outliers, which uses different assumptions. 

GraphPad note: Prism 4 does not perform robust nonlinear regression, but the 
next version almost certainly will. 

The second assumption is that the average amount of scatter is the same all the way along 
the curve, at all values of X. This assumption is often not true. Instead, the average 
amount of scatter often increases as Y increases. With this kind of data, a least-squares 
method tends to give undue weight to the points with large Y values, and ignore points 
with low Y values. To prevent this, it is common to apply a weighting scheme. 

The most common alternative to minimizing the sum of the squares of the vertical 
distances of the points from the curve, is to minimize the sum of the squares of the 
relative distances of the points from the curve. In other words, minimize this quantity: 
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This is called relative weighting or weighting by 1/Y2. 

If you know that the scatter is not uniform, you should choose an appropriate weighting 
scheme. Often it will be hard to know what weighting scheme is appropriate. Fortunately, 
it doesn’t matter too much. Simulations have shown that picking the wrong weighting 
scheme, while making the best-fit values less accurate, doesn’t make as large an impact as 
you might guess.  

If you collected replicate values at each value of X, you might be tempted to weight by the 
standard deviation of the replicates. When replicates are close together with a small 
standard deviation, give that point lots of weight. When replicates are far apart, so have a 
large standard deviation, give that point little weight. While this sounds sensible, it 
actually doesn’t work very well. To see why, read the section starting on page 87. 

See Chapter 14 for more information on unequal weighting of data points.  

Other choices 
Your program will give you lots of choices for additional calculations, and for how you 
want to format the results. For GraphPad Prism, see Chapters 45 to 47. If you are new to 
nonlinear regression, leave all these settings to their default values, and spend your time 
learning about models and about interpreting the results. Then go back and learn about 
the various options. 
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4. The first five questions to ask about 
nonlinear regression results 

Nonlinear regression programs can produce lots of output, and it can be hard to know 
what to look at first. This chapter explains the first five questions you should ask when 
interpreting nonlinear regression results. The next chapter explains the rest of the results. 

Does the curve go near your data? 
The whole point of nonlinear regression is to fit a model to your data – to find parameter 
values that make the curve come near your data points. The first step in evaluating the 
results, therefore, is to look at a graph of your data with the superimposed curve.  

Tip: Don’t neglect this first step. Look at your data with the superimposed 
curve. 

If your goal is simply to create a standard curve from which to interpolate unknown 
values, it may be enough to look at the curve. You may not care about the best-fit values of 
the parameters and their standard errors and confidence intervals. More commonly, 
however, you will be fitting curves to your data in order to understand your system. Under 
this circumstance, you need to look carefully at the nonlinear regression results. 
Nonlinear regression generates quite a few results, and the rest of this chapter is guide to 
interpreting them. 

Are the best-fit parameter values plausible? 
When evaluating the parameter values reported by nonlinear regression, the first thing to 
do is check that the results are scientifically plausible. When a computer program fits a 
model to your data, it can’t know what the parameters mean. Therefore, it can report best-
fit values of the parameters that make no scientific sense.  For example, make sure that 
parameters don’t have impossible values (rate constants simply cannot be negative). 
Check that EC50 values are within the range of your data. Check that maximum plateaus 
aren’t too much higher than your highest data point.  

If the best-fit values are not scientifically sensible, then the fit is no good. Consider 
constraining the parameters to a sensible range, and trying again. 

For help with troubleshooting results that just don’t make sense, see Chapter 6. 

How precise are the best-fit parameter values? 
You don’t just want to know what the best-fit value is for each parameter. You also want to 
know how certain that value is.   

Nonlinear regression programs report the standard error of each parameter, as well as the 
95% confidence interval.  If your program doesn’t report a 95% confidence interval, you 
can calculate one using the equation on page 103. Or you can quickly estimate the 
confidence interval as the best fit value plus or minus two standard errors.  
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If all the assumptions of nonlinear regression are true, there is a 95% chance that the 
interval contains the true value of the parameter. If the confidence interval is reasonably 
narrow, you’ve accomplished what you wanted to do – found the best fit value of the 
parameter with reasonable certainty. If the confidence interval is really wide, then you’ve 
got a problem. The parameter could have a wide range of values. You haven’t nailed it 
down. See Chapter 6 for troubleshooting tips. 

Note that the confidence interval and standard error are calculated from one experiment 
based on the scatter of the points around the curve. This gives you a sense of how well you 
have determined a parameter. But before making any substantial conclusions, you’ll want 
to repeat the experiment. Then you can see how the parameter varies from experiment to 
experiment. This includes more sources of experimental variation than you see in a single 
experiment. 

For details, see part E. Confidence intervals of the parameters. 

Tip: The standard errors and confidence intervals are important results of 
regression. Don’t overlook them. 

Would another model be more appropriate? 
Nonlinear regression finds parameters that make a model fit the data as closely as 
possible (given some assumptions). It does not automatically ask whether another model 
might work better. You can compare the fit of models as explained beginning in Chapter 
21. 

Even though a model fits your data well, it may not be the best, or most correct, model. 
You should always be alert to the possibility that a different model might work better. In 
some cases, you can’t distinguish between models without collecting data over a wider 
range of X. In other cases, you would need to collect data under different experimental 
conditions. This is how science moves forward. You consider alternative explanations 
(models) for your data, and then design experiments to distinguish between them. 

Have you violated any of the assumptions of nonlinear 
regression? 
Nonlinear regression is based on a set of assumptions. When reviewing your results, 
therefore, you should review the assumptions and make sure you have not violated them. 

• X is known precisely. All the “error” (scatter) is in Y. 

• The variability of Y values at any particular X value follows a known distribution. 
Almost always, this is assumed to be a Gaussian (Normal) bell-shaped 
distribution.   

• Standard nonlinear regression assumes that the amount of scatter (the SD of the 
residuals) is the same all the way along the curve. This assumption of uniform 
variance is called homoscedasticity.  Weighted nonlinear regression assumes 
that the scatter is predictably related to the Y value. See Chapter 14. 

• The observations are independent. When you collect a Y value at a particular 
value of X, it might be higher or lower than the average of all Y values at that X 
value. Regression assumes that this is entirely random. If one point happens to 
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have a value a bit too high, the next value is equally likely to be too high or too 
low.  

If you choose a global model, you also are making two additional assumptions (see page 
69): 

• All data sets are expressed in same units. If different data sets were expressed in 
different units, you could give different data sets different weights just by 
expressing the values in different units.  

• The scatter is the same for each data set.  At each X value, for each data set, the 
scatter should be the same  (unweighted fit) or should vary predictably with Y 
(and be accounted for by weighting).  
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5.  The results of nonlinear regression 

The previous chapter discussed the five most important questions to ask when reviewing 
results of nonlinear regression. This chapter explains the rest of the results. 

Confidence and prediction bands 
The plot of the best-fit curve can include the 95% confidence band of the best-fit curve, or 
the 95% prediction band. The two are very different.  
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The confidence band tells you how well you know the curve. You can be 95% sure that the 
true best-fit curve (which you could only know if you had an infinite number of data 
points) lies within the confidence band.  

The prediction band shows the scatter of the data. If you collected many more data points, 
you would expect 95% to fall within the prediction band.  

Since the prediction band has to account for uncertainty in the curve itself as well as 
scatter around the curve, the prediction band is much wider than the confidence band. As 
you increase the number of data points, the confidence band gets closer and closer to the 
best-fit curve, while the prediction band doesn’t change predictably. In the example 
below, note that the confidence bands (shown as solid) contain a minority of the data 
points. That’s ok. The confidence bands have a 95% change of containing the true best-fit 
curve, and with so much data these bands contain far fewer than half the data points. In 
contrast, the dashed prediction bands include 95% of the data points.  
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Correlation matrix 
If the standard errors are large (so the confidence intervals are wide), you’ll want to 
investigate further. One possibility is that the model is somewhat redundant, so two 
parameters are linked. Some programs report a correlation matrix to help diagnose this 
problem. 

For every pair of parameters, the correlation matrix reports a value showing you how 
tightly those two parameters are linked. This value is like a correlation coefficient, ranging 
in value from -1 to +1.  

The program finds the best fit values of each parameter. That means that if you change the 
value of any parameter (without changing the rest), the sum of squares will go up (the fit 
will be worse). But what if you change the value of one parameter and fix it, and then ask 
the program to find a new best-fit value for another parameter? One extreme is when the 
parameters are completely unlinked. Changing one parameter makes the fit worse, and 
you can’t compensate at all by changing the other. In this extreme case, the value reported 
by the correlation matrix would be zero. The other extreme is when the two parameters 
are completely intertwined. Changing one parameter makes the fit worse, but this can be 
completely compensated for by changing the other. The value reported in the correlation 
matrix would be +1 (if you compensate for an increase in one parameter by increasing the 
other) or -1 (if you compensate for an increase in one parameter by decreasing the other).  

Parameters in most models are somewhat related, so values in the range -0.8 to + 0.8 are 
seen often. Higher correlations (greater than 0.9, and especially greater than 0.99 (or 
lower than -0.9 or -0.99) mean that data simply don’t define the model unambiguously. 
One way to solve this problem is to simplify the model, perhaps by fixing a parameter to a 
constant value. Another solution is to collect more data (either use a wider range of X 
values, or include data from another kind of experiment in a global fit).  

GraphPad note: Prism does not report the correlation matrix. Let us know if 
you’d like to see the covariance matrix in future versions.  

Sum-of-squares 

Sum-of-squares from least squares nonlinear regression 
The sum-of-squares (SS) is the sum of the squares of the vertical distances of the points 
from the curve. It is expressed in the units used for the Y values, squared. Standard (least 
squares) nonlinear regression works by varying the values of the model parameters to 
minimize SS. If you chose to weight the values and minimize the relative distance squared 
(or some other weighting function), goodness-of-fit is quantified with the weighted sum-
of-squares.  

You’ll only find the SS value useful if you do additional calculations to compare models. 

Sy.x (Root mean square) 
The equation below calculates the value, sy.x, from the sum-of-squares and degrees of 
freedom: 

y x
SSs =
N-P⋅  
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Sy.x is the standard deviation of the vertical distances of the points from the line, N is the 
number of data points, and P is the number of parameters. Since the distances of the 
points from the line are called residuals, sy.x is the standard deviation of the residuals. Its 
value is expressed in the same units as Y. Some programs call this value se.  

R2 (Coefficient of Determination) 
The value R2 quantifies goodness of fit. R2 is a fraction between 0.0 and 1.0, and has no 
units. Higher values indicate that the curve comes closer to the data. You can interpret R2 
from nonlinear regression very much like you interpret r2 from linear regression. By 
tradition, statisticians use uppercase (R2) for the results of nonlinear and multiple 
regressions and lowercase (r2) for the results of linear regression, but this is a distinction 
without a difference. 

When R2 equals 0.0, the best-fit curve fits the data no better than a horizontal line going 
through the mean of all Y values. In this case, knowing X does not help you predict Y. 

When R2=1.0, all points lie exactly on the curve with no scatter. If you know X, you can 

calculate Y exactly. You can think of R2 as the fraction of the total variance of Y that is ex-
plained by the model (equation).  

Tip: Don't make the mistake of using R2 as your main criterion for whether a fit 
is reasonable. A high R2 tells you that the curve came very close to the points, 
but doesn’t tell you that the fit is sensible in other ways. The best-fit values of 
the parameters may have values that make no sense (for example, negative rate 
constants) or the confidence intervals may be very wide. 

R2 is computed from the sum of the squares of the distances of the points from the best-fit 
curve determined by nonlinear regression. This sum-of-squares value is called SSreg, which 
is in the units of the Y-axis squared. To turn R2 into a fraction, the results are normalized 
to the sum of the square of the distances of the points from a horizontal line through the 
mean of all Y values. This value is called SStot. If the curve fits the data well, SSreg will be 
much smaller than SStot.  

The figure below illustrates the calculation of R2. Both panels show the same data and 
best-fit curve. The left panel also shows a horizontal line at the mean of all Y values, and 
vertical lines showing how far each point is from the mean of all Y values. The sum of the 
square of these distances (SStot) equals 62735. The right panel shows the vertical distance 
of each point from the best-fit curve. The sum of squares of these distances (SSreg) equals 
4165.  

 

R2 is calculated using this equation. 
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reg2

tot

SS 4165R =1.0- =1.0- =1.0-0.0664=0.9336
SS 62735

 

Note that R2 is not really the square of anything. If SSreg is larger than SStot, R2 will be 
negative. While it is surprising to see something called "squared" have a negative value, it 
is not impossible (since R2 is not actually the square of R). R2 will be negative when the 
best-fit curve fits the data worse than a horizontal line at the mean Y value. This could 
happen if you pick an inappropriate model (maybe you picked an exponential association 
model rather than an exponential dissociation model), or enforce an inappropriate 
constraint (for example, if you fix the Hill slope of a dose-response curve to 1.0 when the 
curve goes downhill).  

Warning: If you want to compare the fit of two equations, don't just compare R2 
values. Comparing curves is more complicated than that. 

Does the curve systematically deviate from the data? 
If you've picked an appropriate model, and your data follow the assumptions of nonlinear 
regression, the data will be randomly distributed around the best-fit curve. You can assess 
this in three ways: 

• The distribution of points around the curve should be Gaussian. 

• The average distance of points from curve should be the same for all parts of the 
curve (unless you used weighting). 

• Points should not be clustered. Whether each point is above or below the curve 
should be random.  

Residuals and runs help you evaluate whether the curve deviates systematically from your 
data. 

Residuals from nonlinear regression 
A residual is the distance of a point from the curve. A residual is positive when the point is 
above the curve, and is negative when the point is below the curve. If you listed the 
residuals of a particular curve fit in the form of a table, you would use the same X values 
as the original data, but the Y values would be the vertical distances of each corresponding 
point from the curve. 

A sample residual plot is shown below. If you look carefully at the curve on the left, you’ll 
see that the data points are not randomly distributed above and below the curve. There 
are clusters of points at early and late times that are below the curve, and a cluster of 
points at middle time points that are above the curve. This is much easier to see on the 
graph of the residuals in the inset. The data are not randomly scattered above and below 
the X-axis. 
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Runs test from nonlinear regression 
The runs test determines whether the curve deviates systematically from your data. A run 
is a series of consecutive points that are either all above or all below the regression curve. 
Another way of saying this is that a run is a consecutive series of points whose residuals 
are either all positive or all negative. 

If the data points are randomly distributed above and below the regression curve, it is 
possible to calculate the expected number of runs. If there are Na points above the curve 
and Nb points below the curve, the number of runs you expect to see equals 
[(2NaNb)/(Na+Nb)]+1. In most cases, you’ll find about equal number of points above and 
below the curve, so Naa nd Nb each equal N/2, where N is the total number of points. With 
this approximation, the rule is that you expect to see about 1+ N/2 runs.  

If you observe fewer runs than expected, it may be a coincidence or it may mean that you 
picked an inappropriate regression model and the curve systematically deviates from your 
data. The P value from the runs test answers this question: If the data really follow the 
model you selected, what is the chance that you would obtain as few (or fewer) runs as 
observed in this experiment?  

The P values are always one-tailed, asking about the probability of observing as few runs 
(or fewer) than observed. If you observe more runs than expected, the P value will be 
higher than 0.50. 

If the runs test reports a low P value, conclude that the data don’t really follow the 
equation you have selected.  

In the example above, you expect 21 runs. There are 13 runs, and the P value for the runs 
test is 0.0077. If the data were randomly scattered above and below the curve, there is less 
than a 1% chance of observing so few runs. The data systematically deviate from the curve. 
Most likely, the data were fit to the wrong equation. 
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Testing whether the residuals are Gaussian 
Least-squares nonlinear regression (as well as linear regression) assumes that the 
distribution of residuals follows a Gaussian distribution (robust nonlinear regression does 
not make this assumption). You can test this assumption by using a normality test on the 
residuals. This test is usually available in a many statistical and some curve-fitting 
programs. 

GraphPad note: Prism allows you to test whether your data or residuals follow a 
Gaussian distribution by performing a normality test on the residuals. From the 
residual table, click Analyze and choose Column Statistics. Then choose a 
normality test as part of the Column Statistics analysis. 

Could the fit be a local minimum? 

The nonlinear regression procedure adjusts the parameters in small steps in order to 
improve the goodness-of-fit. If the procedure converges on an answer, you can be sure 
that altering any of the variables a little bit will make the fit worse. But it is theoretically 
possible that large changes in the variables might lead to a much better goodness-of-fit. 
Thus the curve that nonlinear regression decides is the “best” may really not be the best. 
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Think of latitude and longitude as representing two parameters you are trying to fit. Now 
think of altitude as the sum-of-squares. Nonlinear regression works iteratively to reduce 
the sum-of-squares. This is like walking downhill to find the bottom of the valley. See page 
91.  When nonlinear regression has converged, changing any parameter increases the 
sum-of-squares. When you are at the bottom of the valley, every direction leads uphill. 
But there may be a much deeper valley over the ridge that you are unaware of. In 
nonlinear regression, large changes in parameters might decrease the sum-of-squares. 

This problem (called finding a local minimum) is intrinsic to nonlinear regression, no 
matter what program you use. You will rarely encounter a local minimum if you have 
collected data with little scatter and  over an appropriate range of X values, have chosen 
an appropriate equation, and have provided a sensible initial value for each parameter. 

To test for the presence of a false minimum, run nonlinear regression several times. Each 
time provide a different set of initial values. If these fits all generate the same parameter 
values, with the same sum-of-squares, you can be confident you have not encountered a 
false minimum. 
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6. Troubleshooting “bad” fits 

This chapter shows you five examples of bad fits, and explains what went wrong in each 
one and how the analysis can be salvaged. 

Poorly-defined parameters 
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In this example, a response was measured at five concentrations, and the results were fit 
to a sigmoidal dose-response curve with variable slope, also called a four-parameter 
logistic equation or the Hill equation. 

When you first look at the results, all may seem fine. The R2 is high, and both the logEC50 
and the Hill slope have reasonable best-fit values.  

A closer look shows you the trouble. The confidence interval of the EC50 spans 15 orders of 
magnitude (ranging from homeopathy to insolubility). The confidence interval for the Hill 
Slope is also extremely wide, extending from -11 (a steep curve heading down as you go 
from left to right) to +12 (a steep curve heading up hill). With such wide confidence 
intervals, the curve fit is not at all helpful. 

Tip: Always look at the confidence intervals for best-fit values. If the confidence 
intervals are extremely wide, the fit is not likely to be very helpful. 

The problem is clear once you think about it. Nonlinear regression was asked to fit four 
parameters -- the bottom plateau, the top plateau, logEC50 and Hill slope. But the data 
don’t extend far enough to define the bottom and top plateaus. Since the top and bottom 
are not defined precisely, neither is the middle, so the logEC50 is very imprecise.  

It is easy to salvage this experiment and get useful results. Since the data were normalized 
to run from 0 to 100, there is no need to ask the nonlinear regression program to fit the 
best-fit values of the Bottom and Top. Instead, constrain Bottom to equal 0 and Top to 
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equal 100. Now you only have to ask the program to fit two parameters (logEC50 and 
slope). Here are the revised results. 
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The confidence interval of the logEC50 extends plus or minus 0.2 log units, so the EC50 is 
known within a factor of 1.6 (the antilog of 0.2) . Since the curve is defined by so few 
points, the Hill Slope is still not defined very well, but the confidence interval is much 
narrower than it was before. 

Tip: If you data are normalized in any way, think carefully about whether any of 
the parameters in the equation you selected can be fixed to a constant value. 

Model too complicated 
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This example shows results of a competitive binding assay. The nonlinear regression fit a 
two-component competitive binding curve in order to find the two LogEC50 values and the 
relative fraction of each component. 

The curve follows the data nicely, so R2 is high.  But look closer and you’ll see some major 
problems. The confidence interval for the parameter fraction (the fraction of sites that are 
of high-affinity) ranges from 0 to 1 – all possible values. The two log EC50 values are 
almost identical with extremely wide confidence intervals. With such wide confidence 
intervals, this fit is not helpful. 
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Part of the problem is the same as with example 1. These data were normalized to run 
from 0 to 100, so the values of Bottom and Top ought to be constrained to those values. 
Here are the revised results. 
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The curve still looks fine, and now the results look better, at first glance. But the 
confidence interval for the logEC50 of the second site is extremely wide. This is because the 
best-fit value of the parameter fraction is 100%, meaning that all the sites are of the first 
type. Of course the confidence interval for the second site is wide, if the program isn’t 
convinced that that site even exists. 

Is there any evidence for the existence of this second site? Here are the results fitting it to 
a one-site competitive binding model, constraining the Bottom and Top to 0 and 100. 
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The sum-of-squares is a bit lower with the one-site fit than two two-site fit. And the one-
site fit has a logEC50 value with a narrow (useful) confidence interval. There simply is 
nothing in the data to suggest the presence of a second site. When you fit two sites, the 
program complies with your request, but the results are nonsense.  

It is possible to compare two models statistically (see Chapter 21), but there is no point in 
a statistical comparison when the fit of one of the models (the two-site model in this 
example) simply makes no sense. 
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Tip: Don’t fit a complicated (i.e. two sites or phases) model if a simpler model 
fits the data just fine. 

The model is ambiguous unless you share a parameter 
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This example shows dose-response data for two experimental conditions, where the 
results were measured as the generation of a radiolabelled intracellular second 
messenger. Here are the results of fitting each curve to a variable slope dose-response 
curve. 

 Control Treated 

Best-fit values   

     BOTTOM 183.2 270.4 

     TOP 1739 3637 

     LOGEC50 -9.323 -5.548 

     HILLSLOPE 0.8244 0.4677 

     EC50 4.7520e-010 2.8310e-006 

95% Confidence 
Intervals 

  

     BOTTOM 70.26 to 296.1 179.5 to 361.2 

     TOP 1648 to 1829 -4541 to 11815 

     LOGEC50 -9.506 to -9.141 -9.414 to -1.682 

     HILLSLOPE 0.5626 to 1.086 0.09042 to 0.8450 

     EC50 3.1220e-010 to 
7.2350e-010 

3.8550e-010 to 
0.02079 

 

The fit of the control data is OK, although we’d prefer a narrower confidence interval for 
the bottom plateau. And since the bottom is a bit uncertain, so is the middle, resulting in a 
confidence interval for the EC50 that is wider than we’d like. 

The fit of the treated data is not satisfactory at all. The confidence intervals are so wide 
that you really can’t conclude anything. This is not surprising. The treated data don’t 
begin to plateau at high concentrations, so the best-fit value of the top plateau is very 
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uncertain. The middle of the curve is defined by the top and bottom, so the EC50 is very 
uncertain as well. 

One solution would be to normalize all the data from 0 to 100 and fix the top and bottom 
plateaus at those values. But in these experiments, we don’t have good control data 
defining the bottom and top. A better alternative is to use global fitting. If we are willing to 
assume that both curves have the same bottom, top and slope, we can use nonlinear 
regression to find one best-fit value for those parameters for both data sets, and to find 
individual EC50 values for each data set. This assumes that while the treatment may affect 
the EC50 (this is what we want to find out), the treatment does not affect the basal or 
maximum responses or the steepness (slope) of the curve. 

Here are the results. 

 Control Treated 

Best-fit values   

     BOTTOM (Shared) 267.5 267.5 

     TOP (Shared) 1748 1748 

     LOGEC50 -9.228 -6.844 

     HILLSLOPE (Shared) 0.8162 0.8162 

     EC50 5.9170e-010 1.4310e-007 

95% Confidence Intervals   

     BOTTOM (Shared) 211.7 to 323.3 211.7 to 323.3 

     TOP (Shared) 1656 to 1840 1656 to 1840 

     LOGEC50 -9.409 to -9.047 -7.026 to -6.662 

     HILLSLOPE (Shared) 0.6254 to 1.007 0.6254 to 1.007 

     EC50 3.9000e-010 to 
8.9780e-010 

9.4110e-008 to 
2.1770e-007 

 

The parameter Bottom is now determined by both data sets, so has a narrower confidence 
interval. The parameter Top is also shared, so the nonlinear regression algorithm is able 
to come up with a reasonable best-fit value and confidence interval. Since both the top 
and bottom are now determined with a reasonable degree of certainty, the middle of the 
curve is also determined reasonably well. The program was able to fit EC50 values for both 
curves, with reasonable values and acceptably narrow confidence intervals. 

This analysis only worked because we assumed that the treatment changed the logEC50 
without changing the bottom, top or slope of the curve. Whether this assumption is 
reasonable depends on the scientific context of the experiment. 

The key decision here was to share the value of the parameter Top. Sharing the Bottom 
and HillSlope helped narrow the confidence intervals, but was not essential. 

Tip: When fitting a family of curves, think carefully about whether it makes 
sense to share the value of some parameters among data sets. 
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Bad initial values 

10-9 10-8 10-7 10-6 10-5 10-4 10-3

0

1000

2000

3000

Dose (M)

R
es

po
ns

e

 

This dose response curve was fit to the equation below, a sigmoidal dose-response curve 
that fit the parameter pEC50 rather than logEC50 . The pEC50 is an alternative way of 
expressing the concentration giving the middle of the curve. It equals -1 times the 
logEC50). 

Y=Bottom + (Top-Bottom)/(1+10^((-pEC50 - X)*HillSlope)) 

 

Nonlinear regression failed to fit the model to the data. Instead it reports “Does not 
converge”.  

The data look fine. The equation was entered properly. What could be wrong? To help 
diagnose the problem, plot the curve generated by the initial values. 
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Oops. Why is the curve so far from the points? Review the rules entered for initial values.  
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Now the problem is apparent. The initial value of the pEC50 was set equal to the average of 
the lowest (-9) and highest (-3) X values, or -6. But the equation is written in terms of the 
pEC50, not the logEC50. The initial value for the pEC50 should have been about 6, not -6. 
This mistake ensured that the curve generated by the initial values is quite far from the 
data points, so far that the program is stuck. You can see why. If the program changes the 
value of pEC50 to make it a bit larger (the curve further to the left) or a bit smaller (the 
curve further to the right) the sum-of-squares doesn’t change. All the data points are 
under the top plateau of the curve defined by the initial values. Since the sum-of-squares 
doesn’t change with small changes in the pEC50 value, the program has no clue about 
which way it should go. It doesn’t know if the initial value of pEC50 is too high or too low. 
Since it is stuck, the program reports “Does not converge”. It would needs to make much 
larger changes in the value of pEC50 to affect the sum-of-squares, but the nonlinear 
regression procedure doesn’t do this.  

The solution is clear – use better initial values. We change the rule for the initial value of 
pEC50 to -1 times the XMID, which is 6. Now the curve generated by the initial values is 
close to the points, and curve fitting proceeds without problem.  
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Tip: If nonlinear regression won’t converge on a best-fit solution, graph the 
curve generated by the initial values, and change those initial values if the curve 
is far from the data. 
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This example shows the kinetics of association binding. We attempted to fit it to this 
equation, where X is time. For details about this kind of experiment, see page 234. 

( )( )on offLigand× k +k × X
maxY= Y 1-e  

The parameter Ligand is the concentration of radioactively labeled ligand used in the 
experiment. That is set by the experimenter, so we constrain Ligand to a constant value, 
and ask nonlinear regression to find best-fit values for Ymax, kon and koff.  

The nonlinear regression program gives an error message such as “Bad model”. But the 
model is correct – that equation describes the kinetics of ligand binding. To check that the 
problem was unreasonable initial values, let’s graph the curve defined by the initial values.  
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While that is hardly a best-fit curve, it does come quite close to the points, close enough 
for curve fitting to work. So why does nonlinear regression fail?  Look more carefully at 
the equation. Note the term Ligand×Kon+Koff. Ligand is a constant, but we are trying to 
fit both Kon and Koff from one experiment. The data simply don’t define both values. You 
can see that if the value of Kon is reduced a bit, the curve will be exactly the same if the 
value of Koff is increased. There is no way to fit one set of data to determine values of both 
Kon and Koff – the answer is ambiguous. We are trying to fit a model that simply is not 
entirely defined by our data. 
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The simplest way to solve this problem is to determine the value of Koff from a separate 
dissociation experiment. Let’s say its value is 0.0945. Now we can constrain Koff to be a 
constant with that value, and the curve fitting can proceed. Here are the results: 
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Best-fit values
     LIGAND
     KON
     KOFF
     YMAX
Std. Error
     KON
     YMAX
95% Confidence Intervals
     KON
     YMAX
Goodness of Fit
     Degrees of Freedom
     R²
     Absolute Sum of Squares
     Sy.x

1.0000e-009
6.9075e+007
0.00945
2336

4.5071e+006
32.67

5.9845e+007 to 7.8306e+007
2269 to 2402

28
0.9772
316408
106.3

 

It is possible to determine the values of both Kon and Koff, just not from one data set. To 
do this, fit a family of association curves (each with a different concentration of 
radioligand) and share the values of Kon and Koff among all the data sets. See page 236. A 
related approach is to simultaneously analyze association and dissociation experiments. 
See page 237. 

Tips for troubleshooting nonlinear regression 
If your program generates an error message rather than curve fitting results, you probably 
won’t be able to make sense of the exact wording of the message. It tells you where in the 
curve fitting process the error occurred, but will rarely help you figure out why the error 
occurred.  

Nonlinear regression depends on choosing a sensible model. If you are not familiar with 
the model (equation) you chose, take the time to learn about it. If you fit the wrong model, 
the results won’t be helpful. 

It is not enough to just pick a model. You also have to decide which parameters in the 
model should be fit by nonlinear regression, and which should be fixed to constant values. 
Failing to do this is a common cause of nonlinear regression problems. 

Successful nonlinear regression requires a reasonable initial value for each parameter. In 
other words, the curve generated by those initial values must come close enough to the 
data points that the regression procedure can figure out which parameters are too high 
and which are too low. A vital first step in troubleshooting nonlinear regression is to plot 
the curve that results from those initial values. If that curve is far from the data, you’ll 
need to change the initial values of the parameters. Even if your program picks the initial 
values for you, you still should review them if the fit is problematic. 

If the model has several compartments or phases, see if a simpler model (fewer 
compartments of phases) fits your data.  
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B. Fitting data with linear regression 

7. Choosing linear regression 

Linear regression can be viewed as just a special case of nonlinear regression. Any 
nonlinear regression program can be used to fit to a linear model, and the results will be 
the same as if you had chosen linear regression. Because linear regression is usually 
performed separately from nonlinear regression, we explain linear regression separately 
here. 

The linear regression model 
Linear regression fits this model to your data: 

Y=intercept+slope×X  

0

Y intercept

∆Y
∆X

X

Y

Slope=∆Y/∆X

 

The slope quantifies the steepness of the line. It equals the change in Y for each unit change 
in X. It is expressed in the units of the Y axis divided by the units of the X axis. If the slope is 
positive, Y increases as X increases. If the slope is negative, Y decreases as X increases. 

The Y intercept is the Y value of the line when X equals zero. It defines the elevation of the line.  

Note: Most programs (including GraphPad Prism) offer separate analysis 
choices for linear and nonlinear regression. That is why we wrote separate 
chapters for linear regression. But you can enter a linear model into a nonlinear 
regression program, and it will work fine. Linear regression is just a simpler, 
special, case. 

Don’t choose linear regression when you really want to compute 
a correlation coefficient 
Linear regression and correlation are related, and it is easy to mix them up. 
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Correlation calculations are not actually a kind of regression. This is because correlation 
calculations do not find a best-fit line. Instead, correlation quantifies how consistently two 
variables vary together. When a change in one variable corresponds closely to a change in 
the other, statisticians say that there is a lot of covariation or correlation. The direction 
and magnitude of correlation is quantified by the correlation coefficient, r. If r is positive, 
it means that as one variable goes up so does the other. If r is negative, it means that as one 
variable goes up, the other variable goes down. The value of r is always between -1 and +1.  

Note that the correlation coefficient quantifies the relationship between two variables. It 
doesn’t matter which you call X and which you call Y – the correlation coefficient will be 
the same either way. In contrast, linear regression finds the line that best predicts Y from 
X, so your choices of which variable to label X and which to label Y will impact the results. 

Analysis choices in linear regression 

Force the line through the origin? 
If you choose regression, you may force the line to go through a particular point such as 
the origin. In this case, linear regression will determine only the best-fit slope, as the 
intercept will be fixed. Use this option when scientific theory tells you that the line must 
go through a particular point (usually the origin, X=0, Y=0) and you only want to know 
the slope. This situation arises rarely. 

Use common sense when making your decision. For example, consider a protein assay. 
You measure optical density (Y) for several known concentrations of protein in order to 
create a standard curve. You then want to interpolate unknown protein concentrations 
from that standard curve. When performing the assay, you adjusted the 
spectrophotometer so that it reads zero with zero protein. Therefore you might be 
tempted to force the regression line through the origin. But this constraint may result in a 
line that doesn't fit the data so well. Since you really care that the line fits the standards 
very well near the unknowns, you will probably get a better fit by not constraining the line.   

Most often, you should let linear regression find both the best-fit line without any 
constraints. 

Fit linear regression to individual replicates or to means? 
If you collected replicate Y values at every value of X, there are two ways to calculate linear 
regression. You can treat each replicate as a separate point, or you can average the 
replicate Y values, to determine the mean Y value at each X, and do the linear regression 
calculations using the means.   

You should consider each replicate a separate point when the sources of experimental 
error are the same for each data point. If one value happens to be a bit high, there is no 
reason to expect the other replicates to be high as well. The errors are independent. 

Average the replicates and treat the mean as a single value when the replicates are not 
independent. For example, the replicates would not be independent if they represent 
triplicate measurements from the same animal, with a different animal used at each value 
of X (dose).  If one animal happens to respond more than the others, that will affect all the 
replicates. The replicates are not independent. 

We discuss this topic in more depth on page 87. 
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X and Y are not interchangeable in linear regression 
Standard linear regression calculations are based on the assumption that you know all the 
independent (X) values perfectly, and that all of the uncertainty or scatter is in the 
assessment of the dependent (Y) values. This is why standard linear regression (as well as 
nonlinear regression) minimizes the sum of the squares of the vertical distances of the 
points from the line.  

While these assumptions are rarely 100% valid, linear regression is nonetheless very 
useful in biological (and other) research because uncertainty in X is often much smaller 
than the uncertainty in Y. In many cases, in fact, the experimenter controls the X values, 
and therefore doesn’t have to worry about error in X. 

Standard linear regression is not so helpful when there is substantial error in determining 
both X and Y. The graph below compares two assay methods. Each point on the graph 
represents the results of two assays of a single blood sample. The result of one assay 
method is plotted on the X axis and the result of the other method is plotted on the Y axis.  

The graph shows two linear regression lines. One line was created by linear regression 
defining the results of method A to be the independent variable, known without error. 
This line minimizes the sum of the square of the vertical distances of the points from the 
line; this is the standard method for finding a line of best fit. The other line was created by 
inverse linear regression. Here we define the results of method B to be the independent 
variable known without error, and the goal (since B is on the vertical axis) is to minimize 
the sum of squares of the horizontal distances of the points from the line. 

The two lines are not the same. If you were to switch the definitions of the independent 
and dependent variables, you’d get a different best-fit linear regression line. Neither line 
is optimal for comparing the two methods. The problem is that in this situation 
(comparing results of two analysis methods), the concept of independent and dependent 
variables does not really apply. An independent variable is generally one that you control 
and is assumed to be error free. Neither the results of method A nor the results of method 
B are error free. 
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Regression with equal error in X and Y 
If you assume that both X and Y variables are subject to the same amount of error, it 
seems logical to choose a regression method that minimizes the sum of the squares of the 
perpendicular distances between data points and line. The regression method that does 
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this is called Deming regression, but its development predates Deming and was first 
described by Adcock in 1878. This method is also called Model II linear regression. 

This graph shows the best-fit line created by Deming regression (assuming equal error in 
methods A and B) as a solid line, with dashed lines showing the two lines created by linear 
regression and inverse linear regression. As you’d expect, the Deming regression line is 
between the others.  
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Regression with unequal error in X and Y 
Deming regression can also be used when X and Y are both subject to error, but the errors 
are not the same. In this case, you must enter the error of each variable, expressed as a 
standard deviation.  

How do you know what values to enter? To assess the uncertainty (error) of a method, 
collect duplicate measurements from a number of samples using that method. Calculate 
the standard deviation of the error using the equation below, where each di is the 
difference between two measurements of the same sample (or subject), and N is the 
number of measurements you made (N equals twice the number of samples, since each 
sample is measured twice).  

2
i

error

d
SD =

N
∑  

Repeat this for each method or variable (X and Y). Some programs ask you to enter the 
two SDerror values. Other programs ask you to enter λ (lamda), which is the square of the 
ratio of the two SD values. 

2

X error

Y error

SD=
SD

λ
 
 
 

 

GraphPad note: Prism requires you to enter individual SD values, but uses 
these values only to calculate λ, which is then used in the Deming regression 
calculations.  If you know λ, but not the individual SD values, enter the square 
root of λ as the SD of the X values, and enter 1.0 as the SD of the Y error.  
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8. Interpreting the results of linear regression 

What is the best-fit line? 

Best fit values of slope and intercept with confidence intervals 
Linear regression finds the best-fit values of the slope and intercept, and reports these 
values along with a standard errors and confidence intervals. 

The standard error values of the slope and intercept can be hard to interpret intuitively, 
but their main usefulness is to compute the 95% confidence intervals. If you accept the 
assumptions of linear regression, there is a 95% chance that the true value of the slope lies 
within the 95% confidence interval of the slope. Similarly, there is a 95% chance that the 
true value of the intercept lies within the 95% confidence interval of the intercept. 

95% confidence bands of a regression line 
The 95% confidence interval of the slope is a range of values, as is the 95% confidence 
interval of the intercept. Linear regression can also combine these uncertainties to graph a 
95% confidence band of the regression line. An example is shown below. The best-fit line 
is solid, and the 95% confidence band is shown by two curves surrounding the best-fit 
line.  

X

Y

 

The dashed lines that demarcate the confidence interval are curved. This does not mean 
that the confidence interval includes the possibility of curves as well as straight lines. 
Rather, the curved lines are the boundaries of all possible straight lines. The figure below 
shows four possible linear regression lines (solid) that lie within the confidence interval 
(dashed). 
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Given the assumptions of linear regression, you can be 95% confident that the two curved 
confidence boundaries enclose the true best-fit linear regression line, leaving a 5% chance 
that the true line is outside those boundaries. This is not the same as saying it will contain 
95% of the data points. Many data points will be outside the 95% confidence interval 
boundary. 

95% prediction bands of a regression line 
The 95% prediction band is different than the 95% confidence band. 

The prediction bands are further from the best-fit line than the confidence bands, a lot 
further if you have many data points. The 95% prediction interval is the area in which you 
expect 95% of all data points to fall. In contrast, the 95% confidence interval is the area 
that has a 95% chance of containing the true regression line. This graph shows both 
prediction and confidence intervals (the curves defining the prediction intervals are 
further from the regression line). 
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95% confidence interval of the X intercept 
The graph below shows a best-fit linear regression line along with its 95% confidence 
band. 
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Move along the horizontal line at Y=0, and notice where it intersects the two confidence 
bands. It crosses the upper band just beyond X=0 and crosses the lower band near X=6. 
Indeed, linear regression reports that the X intercept is 4.1 with the 95% confidence 
interval extending from -0.1 to 5.9. Note that the confidence interval for the X intercept is 
not symmetrical around the best-fit value. 

How good is the fit? 

r2 

The value r2 is a fraction between 0.0 and 1.0, and has no units. An r2 value of 0.0 means 
that knowing X does not help you predict Y. There is no linear relationship between X and 

Y, and the best-fit line is a horizontal line going through the mean of all Y values.  When r2 
equals 1.0, all points lie exactly on a straight line with no scatter. Knowing X lets you 
predict Y perfectly.  

The figure below demonstrates how to compute r2. 

SSreg = 0.86

0

SStot = 4.91

0

reg2

tot

SS 0.86r =1- =1- =0.82
SS 4.91
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The left panel shows the best-fit linear regression line This lines minimizes the sum-of-
squares of the vertical distances of the points from the line. Those vertical distances are 
also shown on the left panel of the figure. In this example, the sum of squares of those 
distances (SSreg) equals 0.86. Its units are the units of the Y-axis squared. To use this value 
as a measure of goodness-of-fit, you must compare it to something.  

The right half of the figure shows the null hypothesis -- a horizontal line through the mean 
of all the Y values. Goodness-of-fit of this model (SStot) is also calculated as the sum of 
squares of the vertical distances of the points from the line, 4.91 in this example. The ratio 
of the two sum-of-squares values compares the regression model with the null hypothesis 
model. The equation to compute r2 is shown in the figure. In this example r2 is 0.82. The 
regression model fits the data much better than the null hypothesis, so SSreg is much 
smaller than SStot, and r2 is near 1.0. If the regression model were not much better than 
the null hypothesis, r2 would be near zero. 

You can think of r2 as the fraction of the total variance of Y that is “explained” by variation 

in X. The value of r2 (unlike the regression line itself) would be the same if X and Y were 

swapped. So r2 is also the fraction of the variance in X “explained” by variation in Y. In 

other words, r2 is the fraction of the variation that is shared between X and Y.  

In this example, 82% of the total variance in Y is “explained” by the linear regression 
model. The variance (SS) of the data from the linear regression model equals only 16% of 
the total variance of the Y values (SStot)  

Why r2 is ambiguous in constrained linear regression 
As you saw in the previous section, r2 is computed by comparing the sum-of-squares from 
the regression line with the sum-of-squares from a model defined by the null hypothesis. 
There are two ways to compute r2 when the regression line is constrained  

• Compare with the sum-of-squares from a horizontal line through the mean of all 
Y values. This line doesn't follow the constraint -- it does not go through the 
origin.  

• Compare with the sum-of-squares from a horizontal line through the origin. This 
line is usually far from most of the data, so this approach usually gives a lower r2 
values.  

GraphPad note: Because r2 is ambiguous in constrained linear regression, 
Prism doesn't report it. If you really want to know a value for r2, use nonlinear 
regression to fit your data to the equation Y=slope*X.  Prism will report r2 
defined the first way. 

The standard deviation of the residuals, sy.x 
The variable sy.x quantifies the average size of the residuals, expressed in the same units as 
Y.  Some books and programs refer to this value as se, and others as the “root mean 
square”. It is calculated from SSreg and N (number of points) using this equation: 

reg
y x

SS
s =

N-2⋅  



 

 8. Interpreting the results of linear regression 55 

You’ll only find this number useful if you perform additional calculations following linear 
regression. 

Is the slope significantly different from zero? 
If there is no relationship between X and Y, the linear regression line will be nearly 
horizontal. You can test the null hypothesis that the true slope is zero. Most programs 
report the F ratio and its degrees of freedom as well as a P value which answers this 
question: If there were no linear relationship between X and Y overall, what is the 
probability that randomly selected points would result in a regression line as far from 
horizontal (or further) than you observed? If the P value is small, you’ll conclude that 
there is a statistically significant relationship between X and Y. 

In most situations, you know that X and Y are related and you are performing linear 
regression to get the best-fit values of the slope and intercept. In these situations, there is 
no point asking whether the slope differs from 0 (you know it does) so the P value will not 
be informative. 

Is the relationship really linear? 

Residuals from a linear regression line 
Residuals are the vertical distances of each point from the regression line. The X values in 
the residual table are identical to the X values you entered. The Y values are the residuals. 
A residual with a positive value means that the point is above the line; a residual with a 
negative value means the point is below the line.  

If the assumptions of linear regression have been met, the residuals will be randomly 
scattered above and below the line at Y=0. The scatter should not vary with X. You also 
should not see large clusters of adjacent points that are all above or all below the Y=0 line. 
For an example, see “Residuals” on page 35. 

Runs test following linear regression 
The runs test determines whether your data differ significantly from a straight line. 

A run is a series of consecutive points that are either all above or all below the regression 
line. In other words, a run is a consecutive series of points whose residuals are either all 
positive or all negative. A run may consist of just a single point. 

If the data points are randomly distributed above and below the regression line, it is 
possible to calculate the expected number of runs. If there are Na points above the curve 
and Nb points below the curve, the number of runs you expect to see equals 
[(2NaNb)/(Na+Nb)]+1. If you observe fewer runs than expected, it may be simply a 
consequence of random sampling, or it may mean that your data deviate systematically 
from a straight line. The P value from the runs test answers this question: If the data 
really follow a straight line, what is the chance that you would obtain as few (or fewer) 
runs as observed in this experiment?  If the P value is low, it means that either a rare 
coincidence has occurred or that your data really follow some sort of curve rather than a 
line. 
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The P values are always one-tail, asking about the probability of observing as few runs (or 
fewer) than observed. If you observe more runs than expected, the P value will be higher 
than 0.50. 

If the runs test reports a low P value, conclude that the data don’t really follow a straight 
line, and consider using nonlinear regression to fit a curve. 

Comparing slopes and intercepts 
If you have two or more data sets, you can  test whether the slopes and intercepts of two 
or more data sets are significantly different. The method is discussed in detail in Chapter 
18 of J Zar, Biostatistical Analysis, 4th edition, Prentice-Hall, 1999.  

GraphPad note: If you check the option to compare lines, Prism performs these 
calculations automatically. 

Compares the slopes first. The P value (two-tailed) tests the null hypothesis that the 
slopes are all identical (the lines are parallel). The P value answers this question: If the 
slopes really were identical, what is the chance that randomly selected data points would 
yield slopes as different (or more different) than you observed. If the P value is less than 
0.05, conclude that the lines are significantly different. In that case, there is no point in 
comparing the intercepts. The intersection point of two lines is: 

1 2

2 1

1 1 2 2

Intercept -InterceptX=
Slope -Slope

Y=Intercept +Slope X=Intercept +Slope X⋅ ⋅
 

If the P value for comparing slopes is greater than 0.05, conclude that the slopes are not 
significantly different and calculates a single slope for all the lines. Now the question is 
whether the lines are parallel or identical. Calculate a second P value testing the null 
hypothesis that the lines are identical. If this P value is low, conclude that the lines are not 
identical (they are distinct but parallel). If this second P value is high, there is no 
compelling evidence that the lines are different. 

This method is equivalent to an Analysis of Covariance (ANCOVA), although ANCOVA 
can be extended to more complicated situations.  

See Chapter 27 for more general comments on comparing fits. 

How to think about the results of linear regression 
Your approach to linear regression will depend on your goals.  

If your goal is to analyze a standard curve, you won’t be very interested in most of the 
results. Just make sure that r2 is high and that the line goes near the points. Then go 
straight to the standard curve results.  

In many situations, you will be most interested in the best-fit values for slope and 
intercept. Don’t just look at the best-fit values, also look at the 95% confidence interval of 
the slope and intercept. If the intervals are too wide, repeat the experiment with more 
data. 
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If you forced the line through a particular point, look carefully at the graph of the data and 
best-fit line to make sure you picked an appropriate point. 

Consider whether a linear model is appropriate for your data. Do the data seem linear? Is 
the P value for the runs test high? Are the residuals random? If you answered no to any of 
those questions, consider whether it makes sense to use nonlinear regression instead. 

Checklist: Is linear regression the right analysis for these data? 
To check that linear regression is an appropriate analysis for these data, ask yourself these 
questions. Prism cannot help answer them.  

Question Discussion 

Can the relationship 
between X and Y be 
graphed as a straight line?  

In many experiments the relationship between X and Y is 
curved, making linear regression inappropriate. Either 
transform the data, or use a program (such as GraphPad 
Prism) that can perform nonlinear curve fitting. 

Is the scatter of data around 
the line Gaussian (at least 
approximately)?   

Linear regression analysis assumes that the scatter is 
Gaussian. 
 

Is the variability the same 
everywhere? 

Linear regression assumes that scatter of points around the 
best-fit line has the same standard deviation all along the 
curve. The assumption is violated if the points with high or 
low X values tend to be further from the best-fit line. The 
assumption that the standard deviation is the same 
everywhere is termed homoscedasticity. 

Do you know the X values 
precisely? 

The linear regression model assumes that X values are 
exactly correct, and that experimental error or biological 
variability only affects the Y values. This is rarely the case, 
but it is sufficient to assume that any imprecision in 
measuring X is very small compared to the variability in Y. 

Are the data points 
independent? 

Whether one point is above or below the line is a matter of 
chance, and does not influence whether another point is 
above or below the line. See "Fit linear regression to 
individual replicates or means?" on page 335. 

Are the X and Y values 
intertwined? 

If the value of X is used to calculate Y (or the value of Y is 
used to calculate X) then linear regression calculations are 
invalid. One example is a Scatchard plot, where the Y value 
(bound/free) is calculated from the X value (bound). Another 
example would be a graph of midterm exam scores (X) vs. 
total course grades (Y). Since the midterm exam score is a 
component of the total course grade, linear regression is not 
valid for these data. 
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C. Models  

9. Introducing models  

What is a model? 
A model is a mathematical description of a physical, chemical or biological state or 
process. Using a model can help you think about such processes and their mechanisms, so 
you can design better experiments and comprehend the results. A model forces you to 
think through (and state explicitly) the assumptions behind your analyses.  

Linear and nonlinear regression fit a mathematical model to your data to determine the 
best-fit values of the parameters of the model (e.g., potency values, rate constants, etc.).  

Your goal in using a model is not necessarily to describe your system perfectly. A perfect 
model may have too many parameters to be useful. Rather, your goal is to find as simple a 
model as possible that comes close to describing your system. You want a model to be 
simple enough so you can fit the model to data, but complicated enough to fit your data 
well and give you parameters that help you understand the system and design new 
experiments. 

You can also use a model to simulate data, and then analyze the simulated data. This can 
help you design better experiments. 

Two interesting quotations about models: 

"A mathematical model is neither an hypothesis nor a theory. Unlike scientific 
hypotheses, a model is not verifiable directly by an experiment. For all models are 
both true and false.... The validation of a model is not that it is "true" but that it 
generates good testable hypotheses relevant to important problems. “ 
-- R. Levins, Am. Scientist 54:421-31, 1966 

 “All models are wrong, but some are useful.” 
-- George E. P. Box 

Terminology 
The terminology used to describe models can be confusing, as some of the words are also 
used in other contexts.  

Regression 
The term “regression” dates back to Galton’s studies in the 1890s of the relationship 
between the heights of fathers and sons. The two were related, of course. But tall fathers 
tended to have sons who are shorter than they were, and short fathers tended to have sons 
who were taller. In other words, the height of sons tends to be somewhere between the 
height of his father and the mean all heights. Thus height was said to “regress to the 
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mean”. Now the term “regression” is used generally to refer to any kind of analysis that 
looks at the relationship between two or more variables. 

Model 
The regression model is an equation that defines the outcome, or dependent variable Y, as 
a function of an independent variable X, and one or more model parameters. 

Empirical vs. mechanistic models 
Empirical models simply describe the general shape of the data set that you are trying to 
fit a curve to.  The parameters of the model don’t necessarily correspond to a biological, 
chemical or physical process. 

In contrast, mechanistic models, as the name implies, are specifically formulated to 
provide an insight into a biological, chemical or physical process that is thought to govern 
the phenomenon under study.  Parameters derived from mechanistic models are 
quantitative estimates of real system properties, e.g., dissociation constants, rate 
constants, catalytic velocities etc. 

In general, mechanistic models are more useful in most instances because they represent 
quantitative formulations of a hypothesis (see A. Christopoulos, Biomedical Applications 
of Computer Modeling, 2000, CRC Press). However, if you choose the wrong mechanistic 
model to fit to your data, the consequences are more dire than for empirical models 
because you may come to inappropriate conclusions regarding the mechanism(s) you are 
studying. 

Note: A particular model can be either empirical or mechanistic, depending on 
the context. 

Variables 
A model defines an outcome (e.g., response) Y in terms of X and one or more parameters. 
The outcome, Y, is called the dependent variable, because its value depends on the value 
of X and the values of the parameters. X is called the independent variable, often time or 
concentration set by the experimenter.  

If your model has two independent variables – say your outcome is a function of both time 
and concentration – then you need to use a “multiple regression” method.  

Parameters 
Parameters help to define the properties and behavior of the model. The regression 
method finds best-fit values of the parameters that make the model do as good a job as 
possible at predicting Y from X. In linear regression, the parameters are slope and 
intercept. If you fit a dose-response curve with nonlinear regression, one of the 
parameters is the EC50.  If you fit a kinetic exponential curve with nonlinear regression, 
one of the parameters is the rate constant. 

Error 
The regression method that finds the best-fit value of the parameters must be based on an 
assumption about how the data are scattered around the curve. Statisticians refer to 
scatter of data around a predicted value as “error”. 
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Examples of simple models 
We’ll discuss commonly used biological models later in this book, so this section is just a 
preview. 

Example 1. Optical density as a function of concentration. 
Colorimetric chemical assays are based on a simple principle. Add appropriate reactants 
to your samples to initiate a chemical reaction whose product is colored. When you 
terminate the reaction, the concentration of colored product, and hence the optical 
density, is proportional to the concentration of the substance you want to assay.  

Optical Density=Y=K [substance]=K X⋅ ⋅  
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If you measured optical density at various concentrations of substrate, you could fit this 
model to your data to find the best-fit value of K. 

Mathematically, the equation works for any value of X. However, the results only make 
sense with certain values. Negative X values are meaningless, as concentrations cannot be 
negative. The model may fail at high concentrations of substance where the reaction is no 
longer limited by the concentration of substance, or if the solution becomes so dark (the 
optical density is so high) that little light reaches the detector. At that point, the noise of 
the instrument may exceed the signal. It is not unusual that a model works only for a 
certain range of values. You just have to be aware of the limitations, and not use the model 
outside of its useful range. 

Example 2. Dissociation of a radioligand from a receptor. 
After allowing a radioactively labeled drug to bind to its receptors, wash away the free 
drug and then measure binding at various times thereafter. The rate of dissociation is 
proportional to how much is left behind. As will be explained later (see page 233), this 
means the dissociation follows an exponential decay. The model is: 

-kX
0Y=Y ×e  
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If you collect the amount of binding remaining (Y) at various times (X), you can fit to the 
exponential model to find the best fit values of Y0 and K. We’ll discuss this kind of 
experiment in more detail in chapter 39. 

Example 3. Enzyme velocity as a function of substrate concentration. 
If you measure enzyme velocity at many different concentrations of substrate, the graph 
generally looks like this: 
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Enzyme velocity as a function of substrate concentration often follows the Michaelis-
Menten equation: 

max

M

V X
Velocity=V=

X+K
⋅

 

Vmax is the limiting velocity as substrate concentrations get very large. Vmax (and V) are 
expressed in units of product formed per time. KM is expressed in units of substrate 
concentration, usually in Molar units. KM is the concentration of substrate that leads to 
half-maximal velocity.  

If you measure enzyme velocity (Y) at various concentrations of substrate (X), you can fit 
to this model to find the best-fit values of Vmax and K M.  We’ll discuss enzyme kinetics in 
more detail in Chapter 40. 
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10. Tips on choosing a model 

Overview 
In many cases, picking a model will be easy, as you will likely be choosing a model that is 
conventionally used in your field. Later in the book, we discuss in detail some of the 
models commonly used in experimental biology. If you aren’t sure about the model, take 
the time to learn. If you pick a model that isn’t right for your experimental situation, the 
regression results won’t be helpful.  

Don’t choose a linear model just because linear regression seems 
simpler than nonlinear regression 
The goal of linear and nonlinear regression is the same: to fit a model to your data by 
finding the best-fit values of one or more parameters. With linear regression, the 
parameters are the slope and intercept of a line. With nonlinear regression, the 
parameters depend on the model (e.g. the Kd and Bmax of equilibrium saturation binding, 
or the rate constant and plateau of dissociation kinetics).  

Linear regression is described in every statistics book, and is performed by every statistics 
program. Nonlinear regression is mentioned in only a few statistics books, and is not 
performed by all statistics programs. From a mathematician’s point of view, the two 
procedures are vastly different, and linear regression is much simpler. From a scientist’s 
point of view, however, the two procedures are fairly similar. Nonlinear regression is more 
general, as it can fit any model, including a linear one, to your data.  

Your choice of linear or nonlinear regression should be based on the model that makes the 
most sense for your data. Don’t use linear regression just to avoid using nonlinear 
regression.  

Tip: Most models in biology are nonlinear, so many biologists use nonlinear 
regression more often than linear regression. You should not use linear 
regression just to avoid learning about nonlinear regression.  

Don’t go out of your way to choose a polynomial model  
The polynomial model is shown below: 

2 3 4...Y A BX CX DX EX= + + + +  

You can include any number of terms. If you stop at the second (B) term, it is called a 
first-order polynomial equation, which is identical to the equation for a straight line. If 
you stop after the third (C) term, it is called a second-order, or quadratic, equation. If you 
stop after the fourth term, it is called a third-order, or cubic, equation. 

From a scientist’s point-of-view, there is nothing really special about the polynomial 
model. You should pick it when it is the right equation to model your data. However, few 
biological or chemical models are described by polynomial equations. If you fit a 
polynomial model to your data, you might get a nice-looking curve, but you probably 
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won’t be able to interpret the best-fit values of A, B, C, etc. in terms of biology or 
chemistry.  

Note: If your goal is just to get a curve to use for graphing or interpolating 
unknown values, polynomial regression can be a reasonable choice. But beware 
of extrapolating beyond the range of your data, as polynomial models can 
change direction suddenly beyond the range of your data. 

Polynomial regression is only special from the point-of-view a mathematician or 
computer programmer. Even though the graph of Y vs. X is curved (assuming you have 
chosen at least a second order equation, and no parameter equals zero), mathematicians 
consider the polynomial equation to be a linear equation. This is because a graph of any 
parameter (A, B, C…) vs. Y would be linear (holding X and the other parameters constant). 
From a programming point of view, this means it is fairly easy to write a program to fit the 
model to data.  

Tip: You should pick a model that makes sense for your data and experimental 
design. Don’t pick a polynomial model just because it is mathematically simpler 
to fit. 

Consider global models 
Global curve fitting fits several data sets at once, sharing some parameters between data 
sets. In some situations, this is the only way to determine reasonable values for the 
parameters of the models. In other situations, it helps you get much more reliable 
parameter values. Read about global fitting in Chapter 11. 

Graph a model to understand its parameters  
To make sense of nonlinear regression results, you really need to understand the model 
you have chosen. This is especially important if you enter your own model or choose a 
model you haven’t used before.  

A great way to learn about a model is to simulate a family of curves based on the model, 
and change the values of the model parameters. Then you can see how the curve changes 
when a parameter changes. 

To generate curves, you’ll need to specify the range of X values to use, as well as specifying 
values for all the parameters in the model. Some programs call this “plotting a function”. 

For example, the graph below shows a exponential decay model plotted with a single 
Plateau (0) and Span (2000), but with four different rate constants (K) (left to right: 0.7, 
0.3, 0.1, and 0.05). The value of X is time, in minutes. 

-K XY=Span×e +Plateaui  
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Don’t hesitate to adapt a standard model to fit your needs 
Most nonlinear regression programs include a list of standard models. In some cases, 
these won’t be set up quite the way you want. In that case, it is easy to rewrite the equation 
to match your needs.  

Here is a standard exponential decay equation, and its graph: 

Yo

TIME

Y

-k× X
0Y= Y × e

  

With the exponential decay model shown above, Y approaches zero at high values of X. 
This makes sense when you are measuring radioactive decay or metabolism of a drug. But 
what if you are measuring something like dissociation of a receptor from a ligand where 
there is a nonspecific binding? In this case, the curve plateaus at some value other than 
zero.  

It is easy to adapt the equation to plateau at a value other than zero. Here is one way to 
adapt the equation. 
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PlateauPlateau

Span

TIME

-k× XY= Span× e + Plateau

 

That equation will fit the span – the distance from starting place to the bottom plateau. 
But you might prefer to fit the starting Y value (Top) directly. No problem. Rearrange the 
equation like this: 

Bottom

Top

Bottom

Top

TIME

-k× XY= (Top -Bottom)× e + Bottom

 

So far, we’ve written the exponential equation in a form such that the parameter (we call it 
K) that determines how rapidly the curve descends is a rate constant, expressed in units 
of inverse time. If the X values are seconds, then the rate constant is expressed in units of 
sec-1. It is also possible to write the equations in a different form, so the parameter that 
determines how rapidly the curve descends is a time constant, in units of time. If the X 
values are in seconds, the time constant is also expressed in units of seconds. Since the 
time constant is simply the inverse of the rate constant, the dissociation equation can be 
written in one of these forms: 

τ

τ

-X/
0

-X/

Y= Y × e

Y= (Top-Bottom)× e + Bottom
 

The details of this example will only be useful to you if you are fitting data that follow an 
exponential decay model. But the ideas are more general. It is easy to adapt models to fit 
your circumstances. 

Tip: It is easy to rearrange standard equations to meet the needs of your 
experimental situation and preferences. Don’t feel constrained to use the 
equations in the form provided by someone else. 
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Be cautious about letting a computer pick a model for you 
If you find the job of picking a model to be daunting, you may be asking: Why not just let 
the computer figure out which model to fit? In fact, the program TableCurve (available 
from www.systat.com) automatically fits data to thousands of equations and then presents 
you with the equation(s) that fit the data best. Using such a program is appealing because 
it frees you from the need to choose an equation. The problem is that the program has no 
understanding of the scientific context of your experiment. The equations that fit the data 
best usually do not correspond to scientifically meaningful models, and therefore should 
be considered empirical, rather than mechanistic, models. You will, therefore, probably 
not be able to interpret the best-fit values of the parameters in terms of biological 
mechanisms, and the results are unlikely to be useful for data analysis. 

This approach can be useful when you just want a smooth curve for interpolation or 
graphing, and don't care about models or parameters. Don't use this approach when the 
goal of curve fitting is to fit the data to a model based on chemical, physical, or biological 
principles. Don't use a computer program as a way to avoid understanding your 
experimental system, or to avoid making scientific decisions. 

Tip: In most cases, choosing a model should be a scientific, not a statistical or 
mathematical, decision. Don’t delegate the decision to a computer program or 
consulting statistician. 

Choose which parameters, if any, should be constrained to a 
constant value 
It is not enough to pick a model. You also need to decide whether any of these parameters 
can be constrained to constant values. Nonlinear regression will find best-fit values for the 
rest.  

You must make this decision based on how (if) you have normalized the data and based 
on controls (for example, controls may define the bottom plateau of a dose-response or 
kinetic curve).  

Tip: One of the most common errors in curve fitting is to ask the program to fit 
all the model parameters in situations where some parameters should clearly be 
fixed to a constant value. No program can make this decision for you. 
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11. Global models 

What are global models? 
The example models in the previous chapters each define a single curve. Routinely, 
therefore, you would fit those models to a single set of data. This is the way curve fitting is 
usually done – fitting a model to a single set of data.  

An alternative approach is to create a global model that defines a family of curves, rather than 
just a single curve. Then use a nonlinear regression program that can perform global fitting to 
fit a family of data sets at once. The important point is that when you fit the global model, you 
tell the program to share some parameters between data sets. For each shared parameter, the 
program finds one (global) best-fit value that applies to all the data sets. For each non-shared 
parameter, the program finds a separate (local) best-fit value for each data set. 

Fitting data to global models is extremely useful in many contexts. Later in this book, we’ll 
present many situations where global curve fitting is the best approach to analyzing data. For 
now, we’ll just present two simple examples to illustrate the basic idea of global curve fitting.  

Example 1. Fitting incomplete data sets.  
The graph below shows two dose-response curves with two curve fits. These were fit 
individually, each curve fit to one of the data sets. It also shows, as horizontal lines, the 
95% confidence interval of the EC50. 
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While the curves look nice, the best-fit parameters are quite uncertain. The problem is 
that the control data don’t really define the bottom plateau of the curve, and the treated 
data don’t really define the top plateau of the curve.  

The goal of fitting a curve to dose-response data like this is to find the EC50, the 
concentration (dose) that gives a response half-way between the minimum and maximum 
responses. If your data don’t define the minimum and maximum responses very well, it is 
hard to define “halfway”, so hard to define the EC50. Therefore, when we fit the sample 
data above (fitting each curve individually), the program finds best-fit values for each EC50 
but also presents confidence intervals for each EC50 that extend over more than an order 
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of magnitude. The whole point of the experiment was to determine the two EC50 values, 
and (with this analysis) the results were disappointing. There is an unacceptable amount 
of uncertainty in the value of the best-fit values of the EC50.  

One way to determine the EC50 values with less uncertainty is to redo the experiment, 
collecting data over a wider range of doses. But we don’t have to redo the experiment. We 
can get much better results from the original set of experiments by using global curve 
fitting. When you use global curve fitting, you have to tell the program which parameters 
to share between data sets and which to fit individually. For this example, we’ll instruct 
the program to find one best-fit value of the top plateau that applies to both data sets, one 
best-fit value of the bottom plateau that applies to both data sets, and one best-fit value of 
the slope factor (how steep is the curve) that applies to both data sets. Of course, we won’t 
ask the program to share the EC50 value. We want the program to determine the EC50 
separately for control and treated data.  

Here are the results. 
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The graph of the curves looks only slightly different. But now the program finds the best-
fit parameters with great confidence. Each EC50 value is determined, with 95% confidence, 
within a factor of two (compared to a factor of ten or more when the curves were fit 
individually). We’ve accomplished the goal of the experiment, to determine the two EC50 
values with reasonable certainty.  

The control data define the top of the curve pretty well, but not the bottom. The treated data 
define the bottom of the curve pretty well, but not the top. By fitting both data sets at once, 
using a global model, we are able to determine both EC50 values with reasonable certainty. 

Example 2. The parameters you care about cannot be determined 
from one data set.  
The graph below shows results from a homologous competitive binding experiment. This 
kind of experiment, and this particular example, will be explored in much more detail in 
Chapter 38. 

The idea is pretty simple. You want to know how many of a particular kind of receptor 
your tissue sample has, and how tightly a particular drug (ligand) binds to those 
receptors. You add a single concentration of a radioactively labeled drug to all the tubes, 
and also add various amounts of the same drug that is not radioactively labeled. You 
assume that the two forms of the ligand bind identically to the receptors. As you add more 
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of the unlabeled ligand, it binds to the receptors so less of the radioactive ligand binds. So 
you see downhill binding curves.  

If you do such an experiment with a single concentration of radioactively labeled drug, the 
results are not usually acceptable. You get a nice looking curve, but the confidence 
intervals for both parameters you want to know (how many receptors and how tightly they 
bind) are very wide. You get almost the same results when you have lots of receptors that 
bind your drug weakly or a few receptors that bind your drug tightly. Given the 
unavoidable experimental error, any one experiment simply gives ambiguous results.  

If you use two different concentrations of labeled drug, as we did in our sample 
experiment, the situation is quite different. If you fit each of the two experiments 
individually, the results are unacceptable. The confidence intervals are extremely wide. 
But fit the two curves globally, telling the program to fit one value for receptor number 
and one value for receptor affinity that applies to both data sets, and now the results are 
quite acceptable.  
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Assumptions of global models 
When you fit a global model to a family of data sets, you are asking the program to find 
values of the parameters that minimize the grand sum-of-squares for all data sets.  This 
makes sense only when: 

All data sets are expressed in same units. If different data sets were expressed in different 
units, you could give different data sets different weights just by expressing the values in 
different units. For  example, imagine what happens if you change one data set from 
expressing weight in grams to expressing weight in milligrams. All the values are now 
increased by a factor of one thousand, and the sum-of-squares for that data set is 
increased by a factor of one million (one thousand squared). Compared to other data sets, 
expressed in different units, this data set now has a much greater impact on the fit.  

Tip: If you really want to do global fit to data sets using different units, first 
normalize the data so they are comparable.  

The scatter is the same for each data set.  At each X value, for each data set, the scatter 
should be the same  (unweighted fit) or should vary predictably with Y (and be accounted 
for by weighting). If one data set has very little scatter and another has lots of scatter, 
global fitting would not make sense.  
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How to specify a global model 
The graph below shows an example of fitting a global model to data. We shared the 
parameters specifying the top, bottom, and slope and fit separate values for the LogEC50. 
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With Prism, you enter the data sets in side-by-side columns.  

 

For this example, the built-in dose-response curve (variable slope) model is appropriate. 

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) 

 With Prism, use the Constraints tab of the nonlinear regression dialog to specify which 
parameters to share. For this example, we share Bottom, Top and HillSlope, but not 
LogEC50. If you share any parameter or parameters, Prism uses global curve fitting. 

  

Nonlinear regression fit five best-fit values: Bottom, Top, HillSlope, LogEC50 for control 
and LogEC50 for treated. 

Parameter Best-fit value SE 95% CI 
Bottom 110.0 27.86 38.33 to 181.6 

Top 578.6 34.26 490.6 to 666.7 

HillSlope 0.7264 0.1857 0.2491 to 1.204 

LogEC50 (control) -5.618 0.07584 -5.813 to -5.423 

LogEC50 (treated) -3.883 0.1767 -4.338 to -3.429 
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The sum-of-squares is 5957 with 5 degrees of freedom (ten data points minus five 
parameters).  

If you use a nonlinear regression program other than Prism, you’ll need to read its 
documentation carefully to learn how to set up a global model. Most likely, you’ll need to 
enter the data with a grouping variable: 

log(Dose) Response Group

-7 165 1
-6 284 1
-5 442 1
-4 530 1
-3 573 1
-7 124 2
-6 87 2
-5 195 2
-4 288 2
-3 536 2  

Enter the model, using IF-THEN statements to define a different logEC50 for each group. 
For our example, the first line of the equation could look something like this:  

If (Group = 1)    {LogEC50=LogEC50C} Else    {LogEC50=LogEC50T} 

 

Or this: 

LogEC50 = IF(Group=1, LogEC50C, LogEC50T) 

 

In those equivalent equations, we define the intermediate variable LogEC50 to equal 
either the parameter LogEC50C (control) or logEC50T (treated) depending on the value 
of Group. The rest of the equation (not shown) would then define Y as a function of 
LogEC50. 

Each program has its own way of dealing with IF-THEN relationships, but you probably 
won’t find it hard to adapt the equations shown above.  
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12. Compartmental models and defining a 
model with a differential equation 

What is a compartmental model? What is a differential equation? 
Let’s create a pharmacokinetic model that explains how the concentration of a drug in 
blood plasma declines over time. You inject a bolus of drug, and measure plasma drug 
levels at various times thereafter. The drug is metabolized by a liver enzyme that is far 
from fully saturated. In this situation, the rate of drug metabolism is proportional to the 
concentration of drug in the plasma. This is called first-order kinetics. When the plasma 
concentration is cut in half, so is the rate of drug metabolism.  

This model can be shown as this compartmental diagram: 
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In this model, there is only one compartment labeled "plasma". In fact, this 
compartment may be larger than the plasma volume. It will include all other 
spaces that mix rapidly with the plasma.  The volume of distribution, VD, is the 
volume of this entire compartment. In other words, it is the volume of blood plasma 
(liters) it would take to hold all the drug in the body if it were equally distributed. 
Clearance (in L/hr) is the volume of blood plasma totally cleared of drug per minute. 

Drawing a compartmental diagram helps clarify what is going on. From the 
diagram (some think of it as a map), you can easily create differential equations. 
A differential equation defines how one variable changes as another variable changes.  

In this case, we measure the concentration in the plasma, abbreviated Cplasma . 
Drug is metabolized by a rate equal to the Clearance (liters/hour) times the 
concentration in the plasma (mg/liter). The product of clearance times 
concentration gives the rate of drug metabolism in mg/hr. Divide by the volume 
of the plasma compartment (VD, in liters) to compute the change in the 
concentration in the plasma.  

Written as a differential equation, our model is: 

 plasma
plasma

D

dC Clearance- C
dt V

= ⋅  

Since we measure the concentration in the plasma, we call this Y. So the equation is 
equivalent to this equation and graph.  
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D

dY Clearance- Y
dt V

= ⋅  
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Your goal is to fit a curve to the data to learn the volume of distribution and clearance of 
the drug.  

Integrating a differential equation 
Using calculus, you (or someone you delegate this job to) can integrate the equation to 
form a standard model that defines Y as a function of t: 

D

Clearance t
V

t 0 0 D

-
Y =Y e =Y exp(-Clearance t/V )

⋅

⋅ ⋅ ⋅  

At time zero, the concentration of drug (Y0) equals the dose you injected (D in mg) divided 
by the volume of distribution (V0 in mL). So the equation can be rewritten like this: 

D

C- ×t
V

t
D

DY = e
V

⋅  
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At any time t, the Y value (drug concentration) can be computed from the clearance, the 
volume of distribution and the time t. Set the dose to a constant, and use nonlinear 
regression to fit data to find the best-fit value of clearance and volume of distribution. 

Note: With most nonlinear regression programs (including Prism), you’ll need 
to rewrite the model so the independent variable (time) is X rather than t. 
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The idea of numerical integration 
In the previous example, it was quite simple to integrate the differential equation to 
obtain an equation that defines Y (concentration) as a function of X (time).  This is not 
always possible.  

Here are some data showing the metabolism of phenytoin over time following an 
intravenous injection of 300 mg.  
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Phenytoin saturates a large fraction of the enzyme that metabolizes it. This means that the 
rate of metabolism is not proportional to drug concentration. The graph below compares 
the first-order model discussed in the previous section with the nonlinear (Michaelis-
Menten) model appropriate for phenytoin metabolism. At very low drug concentrations, 
the two models are indistinguishable. But at higher drug concentrations, the two diverge 
considerably.  
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The rate of drug metabolism as a function of drug concentration follows the Michaelis-
Menten relationship according to the equation below. Vmax is the maximum velocity of the 
enzyme (in mg/hr), when extrapolated to very high concentrations of drug that saturate 
the enzyme.  This is not related to VD , the volume of distribution in mL. The use of the 
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variable “V” is a coincidence and Vmax and VD are not even measured in the same units. KM 

is the concentration of phenytoin (in mg/liter) where drug metabolism is half-maximal.  

max

D

V YdY =-
dt V (Km+Y)

⋅
 

This differential equation appears to be only slightly more complicated than the one in the 
previous section. Instead of one parameter for drug clearance, we have two parameters 
(Vmax and Km ) that quantify the enzyme that degrades the drug.  But this differential 
equation is fundamentally different than the previous one. This differential equation 
cannot be integrated to form an equation that defines Y as a function of time, Vmax, VD and 
Km. We think that it is simply impossible to integrate, no matter how adept you are at 
wrangling differential equations. It certainly is difficult.   

Without an equation, how can we fit the model to data to find best-fit values of Vmax, VD 
and Km? Actually, we don’t need an equation. What we need is a computer procedure that 
calculates Y as a function of time, Vmax, VD and Km. We can do this without calculus, by 
doing brute force calculations. The idea is quite simple, and is best understood by an 
example.  

Based on previous literature, here are some initial parameters we can use when fitting the 
curve. We found the parameters in a textbook of pharmacology. The parameters were 
tabulated as per kg, and we multiplied by 65 kg to get the values shown here.  

Parameter Initial value Comment 
VD 42 liter Volume of distribution. Parameter to be fit.  

Vmax 16  mg/hr Maximal elimination rate when enzyme is fully saturated. 
Parameter to be fit. 

Km 5.7 mg/liter Drug concentration that half saturates the 
metabolizing enzyme. Parameter to be fit. 

Dose  300 mg Dose injected intravenously at time zero. Experimental 
constant.  

 

Beginning from these initial values, we want to use nonlinear regression to find best-fit 
values for Vd, Vmax and Km. 

We can calculate the drug concentration (Y value) we expect to see at time=0. At time 
zero, the concentration of drug (Y0) equals the dose you injected (D in mg) divided by the 
volume of distribution (V0 in mL), and so is 7.14 mg/liter. The graph above shows that the 
actual concentration of drug at time zero was a bit higher than that. Not a problem. The 
values shown in the table above are just initial values. We’ll use nonlinear regression to 
get the best-fit values.  

Let’s figure out the drug concentration an instant later. The trick is to pick a time interval 
that is small enough so drug concentration changes just a small amount, so the value Y on 
the right side of the equation can be treated as a constant. To make the calculations easier 
to follow, we’ll start with a time interval of 0.25 hr. (Later we’ll switch to a smaller 
interval.) 
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What is the value of Y at t=0.25 hr? We can rewrite the previous equation to substitute ∆t 
(a value we chose to equal o.25 hr) for dt and and ∆Y for dY (dY is a mathematical ideal; 
∆Y is an actual value).  

max

D

V ×Y∆Y -
∆t V (Km+Y)

≈  

Now rearrange to compute the change in Y. 

max

D

V ×Y∆Y - ×∆t
V (Km+Y)

≈  

We have values for all the variables on the right side of the equation, so we can calculate 
the value of ∆Y, which will be negative (the drug concentration is going down over time). 
For this example, ∆Y equals -0.0530 mg/liter.  Add this negative value to the drug 
concentration at time 0 (7.14 mg/liter), and you’ve computed the concentration at time 1 
minute (7.090 mg/liter). Plug this new value of Y into the right of the equation (the other 
variables don’t change) and calculate a new value of ∆Y for the change from time 0.25 hr 
to 0.50 hr.  This time, ∆Y= -0.0528 mg/liter. Add this negative value to the concentration 
at time 0.25 hr and you’ve computed the concentration at time 0.50 hr, which is 7.090 
mg/liter.  

Repeat this procedure many times (with a program or spreadsheet), and you can graph 
predicted drug concentration (Y) as a function of time (X). This procedure, which doesn’t 
require any calculus, is called numerical integration.  
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The curve doesn’t go through our data. But that’s ok. The curve was generated from some 
published (average) values. Now we want to fit the model to our data to find the kinetic 
parameters in this individual.   

The only real trick to numerical integration is choosing a value for ∆t. The method will be 
inaccurate if ∆t is too large. In fact, we would have gotten slightly different (and more 
accurate) values if we had used a smaller ∆t in our example.  If ∆t is small, the calculations 
will take longer. If ∆t is really tiny, the calculations may lose accuracy. For details about 
choosing ∆t and numerical integration, read Numerical Recipes in C.  

To improve accuracy, we decreased a ∆t to 0.01 hour, and fit the model to the data. Here 
are the best-fit values of the parameters, along with a graph of the resulting curve. 
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Parameter Best-fit value Units 

Vd 38.2  liter 

Vmax 6.663  mg/hr 

Km 4.801  mg/liter 
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If your program lets you enter a model as a differential equation, you’ll also need to define 
the Y value at time zero (for this example, you want to enter an equation that defines Y at 
time zero from the parameters). After that, curve fitting works as usual and there is 
nothing special about interpreting the results. Because numerical integration requires lots 
of calculations, and these need to be repeated over and over as nonlinear regression 
progresses, fitting a model defined by a differential equation takes longer than fitting a 
model defined by an ordinary equation.  

Note: Few nonlinear programs will let you express a model as a differential 
equation. GraphPad Prism 4.0 cannot fit models expressed this way, although 
this is a feature we are likely to add to a future version. 

More complicated compartmental models 
Here is an example of a more complicated compartmental model. It models the plasma 
concentration of estrogen. 
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In addition to the plasma, estrogen also enters another extra-vascular compartment. In 
fact, this is probably the sum of several physiological spaces. But so long as they mix 
rapidly (compared to the time course of the experiment), we can consider it to be one 
compartment. This compartment is distinct from the plasma, because it does not mix 
rapidly with the plasma. The diffusion constant D defines how rapidly the two 
compartments mix. 

Starting from the compartmental diagram, we can construct the differential equations. 
Here is how to think it through: 

• There are two methods that the plasma concentration increases, by infusion and 
by endogenous synthesis. So plasma concentration increases by the sum of S and 
I, both measured in units/hr.  

• Liver metabolism equals the clearance (in liters/hr) divided by the volume of the 
plasma space (VD in liters) and times the concentration of the drug in the 
plasma. 

• Estrogen diffuses away from the plasma space. This flow equals the diffusion 
constant D (liters/hr) divided by the volume of the plasma space (VD in liters) 
and times the concentration in the in plasma space (ConcP). 

• Estrogen also diffuses into the extra-vascular space. This flow equals the 
diffusion constant D (liters/hr) divided by the volume of the extra-vascular 
space (VE in liters) and times the concentration in the in extra-vascular space 
(ConcE). 

• The two flows between the plasma and extra-vascular space need to enter into 
two differential equations, one for the change in plasma concentration, the other 
for the change in the extra-vascular concentration.  

Turn those ideas into a set of differential equations. Each arrow in the compartmental 
diagram pointing in or out of the compartment we model becomes one term in the 
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differential equation. The change in concentration equals the sum of all flows into that 
compartment minus the sum of all flows leaving the compartment.  

plasma Plasma PlasmaE

D E D

PlasmaE E

D E

dConc Clearance Conc D ConcD ConcI S
dt V V V

D ConcdConc D Conc
dt V V

⋅ ⋅⋅
= + − + −

⋅ ⋅
= −

 

Note: Some programs (not from GraphPad)  let you enter the model as a 
compartmental model. You draw boxes and arrows in the program, and it 
generates the differential equations automatically.  

Now you can use the model to simulate data. Or use nonlinear regression (with an 
appropriate program, not from GraphPad) to fit experimental data and find best-fit 
parameters.  
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D. How nonlinear regression works 

13. Modeling experimental error 

Why the distribution of experimental error matters when fitting 
curves 
The goal of regression is to find best-fit values for the parameters of the model (e.g., slope 
and intercept for linear regression, other parameters, such as rate constants, for nonlinear 
regression). More precisely, the goal is the find values for the parameters that are most 
likely to be correct. It turns out that you can’t decide which parameter values are most 
likely to be correct without making an assumption about how the data are scattered 
around the line or curve.  

Note: Statisticians refer to the scatter of points around the line or curve as 
“error”. This is a different use of the word than is used ordinarily. In statistics, 
the word “error” simply refers to deviation from the average. The deviation is 
usually assumed to be due to biological variability or experimental imprecision, 
rather than a mistake (the nontechnical meaning of “error”).  

Origin of the Gaussian distribution 
Most linear and nonlinear regression assumes that the scatter follows a Gaussian (also 
called a “Normal”) distribution. This section explains what the Gaussian distribution is, 
and why it is so central to statistics. 

Imagine a very simple “experiment”. You pipette some water, and weigh it. Your pipette is 
supposed to deliver 10 mL of water, but in fact delivers randomly between 9.5 and 10.5 
mL. If you pipette one thousand times, and create a frequency distribution histogram of 
the results, it will look like something like this. 
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The average weight is 10 grams, the weight of 10 mL of water (at least on Earth). The 
distribution is flat, with random variation. 

Now let’s make the experiment slightly more complicated. We pipette two aliquots of 10 
mL and weigh the result. On average, the weight will now be 20 grams. But the errors will 
cancel out much of the time. Values close to 20 grams will be more likely than values far 
from 20 grams. Here is the result of 1000 such (simulated) experiments. 
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Each pipetting step has a flat random error. Add up the result of two pipetting steps, and 
the distribution is not flat. For example, you’ll get weights near 21 grams only if both 
pipetting steps err substantially in the same direction, and that will happen rarely. In 
contrast, you can get a weight of 20 grams in lots of ways, so this happens more 
commonly. 

Now let’s make the experiment more realistic with ten steps. Here are the results of 15000 
simulated experiments. Each result is the sum of ten steps.  

97 98 99 100 101 102 103
0

500

1000

1500

Weight in grams

N
um

be
r 

of
 e

xp
er

im
en

ts

 

You’ll recognize this distribution. It is the Gaussian bell-shaped distribution, which is 
central to much of statistics. 

If your experimental scatter has numerous sources that are additive and of nearly equal 
weight, you expect the scatter of replicate values to approximate a Gaussian distribution. 
This also means that you’ll expect the deviations of points around the curve to follow a 
Gaussian distribution.  
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The Gaussian distribution is a mathematical ideal, which extends from negative infinity to 
positive infinity. If the weights in the example above really followed a Gaussian 
distribution exactly, there would be some chance (albeit very small) of having a negative 
weight. Since weights can’t be negative, the distribution cannot be exactly Gaussian. But it 
is close enough to Gaussian to make it ok to use statistical methods (like regression) that 
assume a Gaussian distribution. Few biological distributions, if any, completely follow the 
Gaussian distribution, but many are close enough. 

Tip: The Gaussian distribution is also called a Normal distribution. Don’t 
confuse this use of the word “normal” with its other meanings of “ordinary”, 
“common” or “disease free”. 

From Gaussian distributions to minimizing sums-of-squares 
Given the assumption that scatter follows a Gaussian distribution, how do we decide 
which parameter values are most likely to be correct? 

Mathematical statisticians approach this problem using a method called maximum 
likelihood. Start with a data set, a model, and an assumption about how the data are 
scattered around the model. Given a model, a set of parameters, and an assumption about 
scatter, it is possible to calculate the likelihood of generating your data. Some sets of 
parameters are very unlikely to have generated your data, because the curve those 
parameters define is far from your data. Other sets of parameters (those that define a 
curve near your data) are more likely. The maximum likelihood method finds the set of 
parameter values that are most likely to have generated your data. 

The maximum likelihood method can be used with almost any assumption about the 
distribution of the data. However, standard nonlinear (and linear) regression is almost 
always based on the assumption that the scatter follows a Gaussian distribution. Given 
this specific assumption, it can be proven that you can find the most likely values of the 
parameters by minimizing the sum of the squares of the vertical distances (“residuals”) of 
the points from the line or curve. 

Unless you have studied statistics in depth, it isn't obvious how the assumption of a 
Gaussian distribution of residuals (distances of points from curve) leads to the rule that 
you find the most likely parameters by minimizing the sum-of-squares. But the two are 
linked. If you make some other assumption about the scatter of replicates, then you’ll 
need to use a different rule (not least-squares) to find the values of the parameters that 
are most likely to be correct.  

If you want to understand more about maximum likelihood methods, and how the least-
squares rule was derived, read section 15.1 of Numerical Recipes in C, which you can find 
online at www.nr.com.  

Here is an intuitive way to get a sense of why minimizing the sum of the squares of the 
distances makes sense. Two points from a set of data scattered randomly according to a 
Gaussian distribution are far more likely to have two medium size deviations (say 5 units 
each) than to have one small deviation (1 unit) and one large (9 units). A procedure that 
minimized the sum of the absolute value of the distances would have no preference over a 
line (or curve) that was 5 units away from two points and a line (or curve) that was 1 unit 
away from one point and 9 units from another. The sum of the distances (more precisely, 
the sum of the absolute value of the distances) is 10 units in each case. If instead, you 
choose a procedure that minimizes the sum of the squares of the distances, then a fit that 
produces a line 5 units away from two points (sum-of-squares = 50) is a much better fit 
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than one that produces a line 1 unit away from one point and 9 units away from another 
(sum-of-squares = 82). If the scatter is Gaussian (or nearly so), the line determined by 
minimizing the sum-of-squares is most likely to be correct. 

Regression based on nongaussian scatter 
The assumption of a Gaussian distribution is just that, an assumption. It is a useful 
assumption, because many kinds of data are scattered according to a Gaussian 
distribution (at least approximately) and because the mathematical methods based on the 
Gaussian distribution work so well.  

Not all data are scattered according to a Gaussian distribution, however. Some kinds of 
data, for instance, follow a Poisson distribution, and regression methods have been 
developed that assume such a distribution for experimental errors.  

It is also possible to assume a very wide distribution, such as the Lorentzian distribution 
(also called the Cauchy distribution), shown below. This distribution is much wider than a 
Gaussian distribution.  
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If you fit data to a model assuming this distribution, outliers (points far from the curve) 
will have less influence. The Lorentzian distribution is the same as a t distribution with 1 
degree of freedom. The Gaussian distribution is the same as a t distribution with many 
degrees of freedom. By varying the number of degrees of freedom, the t distribution 
gradually changes from having a wide distribution to a compact one.  

GraphPad note: GraphPad Software, in collaboration with AISN Software, is 
working hard to develop a version of Prism that can fit assuming a Lorentzian 
distribution. Curve fitting done this way is much more robust to outliers. For 
details, go to www.graphpad.com and search for “robust”.  
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14. Unequal weighting of data points 

Standard weighting 
As outlined in the previous chapter, regression is most often done by minimizing the sum-
of-squares of the vertical distances of the data from the line or curve. Points further from 
the curve contribute more to the sum-of-squares. Points close to the curve contribute 
little. This makes sense, when you expect experimental scatter to be the same, on average, 
in all parts of the curve.  

The graph below is an example of data collected with twenty replicates at each drug dose. 
The scatter is Gaussian and the standard deviation among the replicates is about the same 
at each dose. With data like these, it makes sense to minimize the sum-of-squares of the 
absolute distances between the points and the curve.  
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Note: This example purposely exaggerates the scatter to make the example 
easier to follow. 

 

Relative weighting (weighting by 1/Y2) 
In many experimental situations, you expect the average distance (or rather the average 
absolute value of the distance) of the points from the curve to be higher when Y is higher. 
The relative distance (distance divided by Y), however, remains about the same all the way 
along the curve.  

Here is another example dose-response curve. At each dose, twenty replicate values are 
plotted. The distribution of replicates is Gaussian, but the standard deviation varies. It is 
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small at the left side (bottom) of the graph and large at the right side (top). While the 
standard deviation of the error is not consistent along the graph, the relative variability is 
consistent. In fact, these data were simulated by selecting random numbers from a 
Gaussian distribution with a standard deviation equal to 20% of the mean value. 
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In this common situation, minimizing the sum-of-squares of the absolute vertical 
distances would be inappropriate. If you did that, points with high Y values would tend to 
have large deviations from the curve and so would have a large impact on the sum-of-
squares value. In contrast, points with smaller Y values would have little influence. This is 
not desirable – you want all the points to have about equal influence on the goodness-of-
fit. To do this, minimize the sum of the square of the relative distances.  

The relative distance of a data point from the curve is given by 

Data Curve

Data

Y -Y
Y

 

If you choose relative weighting, nonlinear regression minimizes the sum of squares of 
relative distances: 
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Relative weighting is often called weighting by 1/Y2. Rearranging the expression shows 
why.  
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Note: Some programs weight by the square of the Y value of the curve (the 
predicted Y value) rather than the Y value of the data points. This distinction 
(whether the denominator is the Y value of the data or curve) rarely will affect 
the results very much. 

Poisson weighting (weighting by 1/Y) 
Weighting by 1/Y is a compromise between minimizing the actual (absolute) distance 
squared and minimizing the relative distance squared. One situation where 1/Y weighting 
is appropriate is when the Y values follow a Poisson distribution. This would be the case 
when Y values are radioactive counts and most of the scatter is due to counting error. 
With the Poisson distribution, the standard deviation among replicate values is 
approximately equal to the square root of that mean. To fit a curve, therefore, you 
minimize the sum of squares of the distance between the data and the curve divided by 
the square root of the value. In other words, nonlinear regression minimizes this 
expression: 
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Rearrangement shows why it is sometimes called weighting by 1/Y. 
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Note: Weighting by 1/Y is one way to cope with data distributed according to a 
Poisson distribution, but a better way is to use a regression method that is 
based upon an assumption of a Poisson regression. Look for a program that can 
perform “Poisson regression”. 

Weighting by observed variability 
Relative and Poisson weighting assume that you know how the scatter varies as the Y 
values vary. Often you don’t know. It sounds appealing, therefore, to base the weighting 
on the observed variation among replicates. If you have collected triplicate values, why 
not just base the weighting on the standard deviation of those values? Give points a high 
weight when the triplicates are tightly clustered with a small SD. Give points a low weight, 
when the triplicates are scattered with a large SD. In other words, minimize this quantity: 

( )
2

2Data Curve
Data Curve2

Y -Y 1= Y -Y
SD SD

 
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∑ ∑  

Tip: We suggest that you rarely, if ever, use this method. Read this section 
carefully before weighting by the inverse of the standard deviation. The method 
sounds more useful than it is. 

This method assumes that the mean of replicates with a large standard deviation is less 
accurate than the mean of replicates with a small standard deviation. This assumption 
sounds sensible, but it is often not true. When you only have a few replicates, the standard 
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deviation will vary considerably just by chance. The figure below makes this point. It 
shows fifteen sets of triplicate values. Each value was chosen from a Gaussian distribution 
with a mean of 50 and a SD of 10. There is no difference between the fifteen data sets 
except for that due to random sampling. Compare the first (A) and last (O) data sets. The 
SD of the first data set is three times that of the last data set. Yet the mean of last data set 
is closer to the true mean (known to be 50 since these data were simulated) than is the 
mean of the first data set.  
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With a small number of replicates, the observed scatter jumps all over the place just by 
chance. The mean of a set of replicates with a small SD is not necessarily more accurate 
than the mean of a set of replicates with a larger SD. The small SD tells you that the 
replicates are clustered near each other, but this may not be close to the true value.  

You want to choose a weighting scheme to account for systematic differences in the 
predicted amount of variability if you were to repeat the experiment many times. You 
should not choose weighting based on variability you happened to observe in one small 
experiment. That won’t be helpful. Therefore it only makes sense to weight by the 
observed SD among replicates when you have lots (dozens) of replicates. 

Error in both X and Y  
Conventional linear and nonlinear regression assume that all the uncertainty is in the Y 
direction and that you know X precisely. A special kind of linear regression, called Model 
II or Deming regression (see page 296) allows for the possibility that there is error in both 
variables. Some methods have also been developed to account for error in both X and Y 
variables of nonlinear models, but these are not commonly used, and are beyond the 
scope of this book. 

Weighting for unequal number of replicates 
In most experiments, you collect replicate Y values at every value of X. How you analyze 
your replicates depends on your experimental design. 

Independent replicates 
In most experiments, it is fair to consider each replicate to be an independent data point. 
Each particular replicate is subject to random factors, which may increase or decrease its 



 

88 D. How nonlinear regression works 

value. Each random factor affects individual replicates, and no random factor affects the 
replicates as a group. In any kind of biochemical experiment, where each value comes 
from a test tube or plate well, the replicates are almost certain to be independent.  

When your replicates are independent, you should treat each replicate as a separate point. 
With some programs, this means you’ll have to repeat your X values, as shown in the table 
shown on the left below. With other programs (such as Prism) you can put your replicates 
side by side, as shown on the table on the right below. 

Dose Response 

1 3.4 

1 2.9 

1 3.1 

2 4.5 

2 5.1 

2 4.7 

3 5.9 

3 6.2 

3 6.3  

Dose Response 

X Y1 Y2 Y3 

1 3.4 2.9 3.1 

2 4.5 5.1 4.7 

3 5.9 6.2 6.3  

 

Every replicate is treated by the nonlinear regression program as a separate data point. If 
there are four replicates at one X value and two at another, the four replicates will 
automatically get twice the weight, since the program considers them to be four separate 
data points. 

An alternative is to average the replicate Y values and treat the mean as a single data 
point. If you have different number of replicates for different values, then you definitely 
should not average the replicates and fit to the means. The results will be wrong. If you do 
have the same number of replicates for every point (e.g., no missing values), fitting to 
means or fitting to individual replicates will give you the same best-fit values of the 
parameters and thus exactly the same best-fit curve.  But the standard errors and 
confidence intervals won’t be the same. Fitting to the means, rather than the replicates, 
can make the standard errors be larger or smaller (the confidence intervals wider or 
narrower), depending on the data set.   

Tip: If your replicates are independent, treat each one as a separate data point. 
Don’t try to fit the averages. 

 

Replicates that are not independent 
In some experimental situations, the replicates are not independent. Random factors can 
affect all the replicates at once. Two examples: 

You performed a binding experiment with a single tube at each concentration, but 
measured the radioactivity in each tube three times. Those three values are not 
independent.  Any experimental error while conducting the experiment would affect all 
the replicates. 
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You performed a dose-response experiment, using a different animal at each dose with 
triplicate measurements. The three measurements are not independent. If one animal 
happens to respond more than the others, that will affect all the replicates. The replicates 
are not independent. 

Treating each replicate as a separate data point would not be appropriate in these 
situations. Most of the random variation is between tubes (first example) or animals 
(second example). Collecting multiple replicates does not give you much additional 
information. Certainly, each replicate does not give independent information about the 
values of the parameters. Here is one way to look at this. Imagine that you have 
performed a dose-response experiment with a separate animal for each dose. You 
measure one animal in duplicate (for one dose) and another animal (another dose) ten 
times. It would be a mistake to enter those as individual values, because that would give 
five times more weight to the second dose compared to the first. The random factors tend 
to affect the animal, not the measurement, so measuring an animal ten times does not 
give you five times more information about the true value than measuring it two times. 

Since each tube (first example, above) or animal (second example) is the experimental 
unit, you should enter each tube or animal once. If you measured several replicates, 
average these and enter the average. Don’t enter individual values. Don’t weight the 
means by sample size. Doing so would inflate the number of degrees of freedom 
inappropriately, and give you SE that are too small and CI that are too narrow. Doing so, 
when you have unequal number of replicates would give artificial, and underserved, 
weight to the tubes or animals with more replicates, so would affect the best-fit curve and 
you would get less than optimal best fit parameter values. 

Giving outliers less weight 
If you are completely sure that all of the variation follows a Gaussian distribution, then 
minimizing the sum-of-squares gives you the best possible curve. But what if one of the 
values is far from the rest? If that deviation was generated because of an experimental 
mistake, it may not be part of the same Gaussian distribution as the rest. If you minimize 
the sum of square distances of points from the curve, an outlier like this can have 
enormous influence on the curve fitting. Remember, the distance of the point from the 
curve is large and you are squaring that. 

One approach to dealing with outliers is to use a curve fitting method that does not 
assume a Gaussian distribution, but rather assumes a wider distribution of residuals. If 
the distribution is wider, large deviations are more common, and they don’t influence the 
curve fitting so much. See page 83. 

Another approach is to use a weighting function to reduce the influence of outlying points. 
One such scheme is called the Tukey Biweight. It works like this: 

1. Determine the distance of each point from the curve (the residuals). Convert to 
absolute values, so only the distance from the curve matters, and it doesn’t matter 
whether a point is above the curve (positive residual) or below the curve (negative 
residual). 

2. Find the median (50th percentile) of the absolute values of the residuals. Call this 
M.  

3. Calculate a cutoff value, C, that equals 6×M. The value 6 is arbitrary, but is how 
Tukey defined this method. 
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4. Give any point whose residual (distance from the curve) exceeds C a weight of zero. 
These points are so far from the curve that they can’t possibly be right. By giving 
them a weight of zero, the points are ignored completely.  

5. Give the other points a weight determined by the equation below, where R is the 
absolute value of the distance of that point from the curve, and C was defined in 
step 4 above. From this equation, you can see why this method is termed a 
bisquare method. 

22RWeight= 1-
C

  
     

 

6. When computing the weighted sum-of-squares, the contribution of each point is 
the distance of the point from the curve (R) squared times the weighting factor 
above. In other words, after ignoring points whose distance from the curve exceeds 
C, this method asks the curve fitting program to minimize:  

22
2 RR 1-

C
  
     

∑  

7. With each iteration of nonlinear regression, recompute the weights. As the curve 
fitting progresses, the curve will change, so the distribution of residuals will change 
as will the assignment of bisquare weights. 

The graph below shows the contribution of a point to this adjusted sum-of-squares as a 
function of its distance from the curve. Half the points, by definition, are closer to the 
curve than the median value. For these points (R<1), the least-squares and Tukey biweight 
methods treat the points about the same. As the points get further from the curve, up to 
R=3 (three times the median distance) their influence still increases with the Tukey 
Biweight method, but not as much as they’d increase with standard least-squares 
regression. Points that are between 3 and 6 times the median distance from the curve still 
contribute to the curve fitting, but their influence decreases as they get further from the 
curve. Points that are more than six times the median distance are ignored completely by 
the bisquare method.   
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GraphPad note: No GraphPad program performs regression with the Tukey 
biweight method. 
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15. How nonlinear regression minimizes the 
sum-of-squares 

Nonlinear regression requires an iterative approach 
Nonlinear regression is more complicated than linear regression. You can’t compute the 
best fit values of the parameters directly from the X and Y values of the data points. 
Instead, nonlinear regression requires an iterative approach. 

You won't be able to understand the mathematical details of nonlinear regression unless 
you first master matrix algebra. But the basic idea is pretty easy to understand. Every 
nonlinear regression method follows these steps: 

1. Start with an initial estimated value for each parameter in the equation.  

2. Generate the curve defined by the initial values.  

3. Calculate the sum-of-squares (the sum of the squares of the vertical distances of 
the points from the curve).  

4. Adjust the parameters to make the curve come closer to the data points. There are 
several algorithms for adjusting the variables, as explained in the next section 

5. Adjust the parameters again so that the curve comes even closer to the points. 
Repeat. 

6. Stop the calculations when the adjustments make virtually no difference in the 
sum-of-squares. 

7. Report the best-fit results. The precise values you obtain will depend in part on the 
initial values chosen in step 1 and the stopping criteria of step 6. This means that 
different programs will not always give exactly the same results. 

Step 4 is the only difficult one. Most nonlinear regression programs use the method of 
Marquardt and Levenberg, which blends two other methods, the method of steepest 
descent and the method of Gauss-Newton. The next section explains how these methods 
work. 

How nonlinear regression method works 

Fitting one parameter 
The example below shows a signal that decreases over time. The results are normalized to 
run from 100% at time zero to 0% at infinite times.  
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We wish to fit this to an exponential decay model, fixing the top to 100 and the bottom 
plateau to 0, leaving only one parameter, the rate constant (k), to fit to this model: 

-k×XY=100 e⋅  

Since we are only finding the best-fit value of one parameter, we can do so in a brute-force 
manner. By looking at the data, and knowing the meaning of the rate constant, we can be 
quite sure the best-fit value is between 0.2 and 0.7. From the goals of the experiment, we 
can say that we only need to know the best-fit value to two decimal places. So there are 
only 50 possible values of k (0.20, 0.21, 0.22, …, 0.69, 0.70). For each of these values, 
construct a curve, and compute the sum-of-squares of the distances of the points from the 
curve. Below is a graph of sum-of-squares as a function of k. Note that this graph was 
constructed specifically for this example. With different data, the graph would look 
different.  
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The sum-of-squares was smallest when k equals 0.39. That is our best-fit value. We're 
done.  

Since we are only fitting one parameter, that brute force method worked fine. But if you fit 
several parameters, the number of possible combinations of values becomes astronomical. 
We need a more efficient way to find the best-fit values.  

Nonlinear regression begins with an initial value of k that you give the program (or the 
program generates from the range of the X values). For this example, the initial value is 
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0.3.  Mathematicians have developed several methods to move from the initial values to 
find the values of the parameters that minimize the sum of squares. 

The method of steepest descent follows a very simple strategy. You start with the  
initial estimate of the  parameters (k in this example). This initial value generates a curve, 
and you can compute the sum-of-squares of the points from this curve. This corresponds 
to a point on the graph shown above. From that point, figure out which way is downhill. Is 
the value of k too high or too low? Our initial value of 0.3 is too low.  So we increase the k 
a small amount. The step size is somewhat arbitrary. We'll take a step of 0.1, to reach the 
value of k=0.4. Generate the curve defined by this value of k, and compute the sum-of-
squares. Indeed it is lower. Repeat many times. Each step will usually reduce the sum-of-
squares. If the sum-of-squares goes up instead, the step must have been so large that you 
went past the bottom and back up the other side. This means your step size is too large, so 
go back and take a smaller step. After repeating these steps many times, gradually 
decreasing the step size, you'll reach the bottom. You’ll know you are on the bottom, 
because every step you take (every small change in the value of k), in either direction, 
leads up hill (increases the sum-of-squares)  

The Gauss-Newton method is a bit harder to understand. As with the method of 
steepest descent, start at the spot defined by the initial estimated values. Then compute 
how much the sum-of-squares changes when you make a small change in the value of k. 
This tells you the steepness of the sum-of-squares curve at the point defined by the initial 
values. If the model really were linear, the sum-of-squares curve would have a regular 
shape. Knowing one point, and the steepness at that point completely defines that curve, 
so defines its bottom. With a linear equation, you go from initial estimate values to best-fit 
values in one step using the Gauss-Newton method. With nonlinear equations, the sum-
of-squares curve  has an irregular shape so the Gauss-Newton method won't find the best-
fit value in one step. But in most cases, the spot that the Gauss-Newton method predicts is 
the bottom of the surface is closer to the bottom. Starting from that spot, figure out the 
steepness again, and use the Gauss-Newton method to predict where the bottom of the 
valley is. Change the value of k again. After repeating many iterations, you will reach the 
bottom.  

This method of steepest descent tends to work well for early iterations, but works slowly 
when it gets close to the best-fit values. In contrast, the Gauss-Newton method tends to 
work badly in early iterations, but works very well in later iterations (since the bottom of 
the sum-of-squares curve tends to approximate the standard shape, even for nonlinear 
models). The two methods are blended in the method of Marquardt (also called the 
Levenberg-Marquardt method). It uses the method of steepest descent in early 
iterations and then gradually switches to the Gauss-Newton approach. Most 
commercially-available computer programs use the Marquardt method for performing 
nonlinear regression. 

Any of these methods finds that the best-fit value of k, is 0.3874 min-1). Here is the best-
fit curve.  
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Two parameters 
Here are some data to be fit to a typical binding curve (rectangular hyperbola). 
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You want to fit a model defining equilibrium binding. This equation has two parameters, 
Bmax and Kd. 

max

d

B XY=
K +X

⋅
 

How can you find the values of Bmax and Kd that fit the data best? You can generate an 
infinite number of curves by varying Bmax and Kd.  Each pair of Bmax and Kd values 
generates a curve, and you can compute the sum-of-squares to assess how well that curve 
fits the data. The following graph illustrates the situation. 
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The X and Y axes correspond to two parameters to be fit by nonlinear regression (Bmax and 
Kd in this example). Every pair of values for Kd and Bmax define a curve, and the Z-axis 
plots the sum-of-squares of the vertical distances of the data points from that curve. Note 
that this graph was created specifically for the data set shown previously.  The data are not 
graphed. Instead the graph shows how those particular data fit curves defined by various 
values of Bmax and Kd. 

The goal of nonlinear regression is to find the values of Bmax and Kd that make the sum-of-
squares as small as possible. In other words, the goal is to find the point on that surface 
that is lowest (has the smallest sum-of-squares). More simply, the goal is to find the 
bottom of the valley. The three methods described in the previous section all can be used, 
and find the bottom of the surface. Rather than adjust one parameter during each 
iteration, both are adjusted at once, working our way down the surface to find its low 
point. 

More than two parameters 
It was pretty easy to visualize the optimization of one parameter on a two-dimensional 
graph. And it wasn't too hard to visualize optimization of two parameters on a three 
dimensional graph. Once you have three or more parameters, it is not possible to visualize 
the search for optimum parameter values graphically.  But the sum-of-squares  graphs 
shown in the previous two sections were just shown to explain the idea behind the 
method.  The method actually works via matrix algebra, and works the same for any 
number of parameters.  Nonlinear regression can fit any number of parameters. 

The Simplex method 
While the Marquardt method is used most often, some programs use an alternative 
method called the Simplex method. While the Marquardt method starts with one set of 
initial estimated values (one for each parameter), the simplex method requires K+1 sets of 
initial values, where K is the number of parameters you are fitting. The example shown 
above fits two parameters, so the Simplex method requires three sets of initial values (one 
more than the number of parameters). These three sets of initial values become three 
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points on the 3D surface shown in the figure above. For each set of initial values, the 
Simplex method generates the curve and calculates the sum-of-squares. One set of initial 
values has the highest sum-of-squares (the worst fit). The Simplex method discards that 
set of values and finds a new set that fits better (using a complicated set of rules). This 
process is repeated until the sets of parameters become indistinguishable. With two 
parameters (as in our example), this can be visualized as a triangular amoeba crawling 
down the surface, gradually becoming smaller, until the points of the triangle are almost 
superimposed. The advantage of the simplex method is that it can sometimes find a good 
solution in difficult situations where the other methods give up with an error message. 
The disadvantage, and it is a major one, is that the Simplex method does not compute a 
standard error or confidence interval for the parameters. You get best-fit values, but you 
don’t know how precise they are. 

Note: While the Simplex method does not automatically create confidence 
intervals, it is possible to create confidence intervals using Monte Carlo 
simulations (Chapter 17) or via method comparison (see Chapter 18).  

Independent scatter 
Nonlinear regression, as usually implemented, assumes not only that the scatter is 
Gaussian, but also that each data point has independent scatter. We’ll discuss the 
meaning of independence in terms of replicates on page 87. If X is time, it is also 
important that adjacent data points do not influence each other.  

In the diagram below, the horizontal line is the ideal curve, which happens to be 
horizontal for this simplified example. The data point (circle) on the left is the 
measurement at time 1. By chance, experimental error made that value fall below the ideal 
curve. If the measurements are entirely independent, as is assumed by linear and 
nonlinear regression, then the value at time 2 should not be affected by the value at time 1. 
This means that: 

• C is the most likely value. 

• D and B are equally likely. 

• A is quite unlikely. 
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In some experimental systems, there is a carryover from one time point to the next. In 
these systems, the most likely value at time 2 is B, with A and C equally likely, and D very 
unlikely. If your data are like this, standard linear and nonlinear regression are not 
appropriate. Extensions to nonlinear regression are being developed to handle this 
situation (J Celantano, personal communication). 



 

 16. Asymptotic standard errors and confidence intervals 97 

 

E. Confidence intervals of the parameters 

16. Asymptotic standard errors and confidence 
intervals  

Interpreting standard errors and confidence intervals 
In most situations, the whole point of regression is to find the best-fit values of the 
parameters. Your goal is to understand your system, or perhaps to look at how a 
parameter changes with a treatment. If this is your goal, then you will certainly care about 
how precisely you know the best-fit values of the parameters. It isn’t enough to know, for 
example, that the best fit value of a rate constant is 0.10 min-1. Your conclusion will be 
very crisp if the program tells you that you can be 95% sure the true rate constant lies 
between 0.09 and 0.11 min-1. On the other hand, you’ll know the results are pretty sloppy 
if the program tells you that you can be 95% sure the true rate constant lies between 0.0 
and 0.5 min-1. This tells you very little except that you need to redesign your experiment. 
Your entire interpretation of the results, and your decision on what to do in future 
experiments, depends on knowing the confidence intervals (or standard errors) of the 
parameters.   

You can only interpret nonlinear regression results if the assumptions of nonlinear 
regression are true or at least not badly violated (see page 30). If you accept these 
assumptions, the 95% CI is supposed to be an interval that has a 95% chance of containing 
the true value of the parameter. More precisely, if you perform nonlinear regression many 
times (on different data sets) you expect the confidence interval to include the true value 
95% of the time, but to exclude the true value the other 5% of the time (but you won't 
know when this happens).  

The standard errors reported by most nonlinear regression programs (including Prism) 
are “approximate” or “asymptotic”.  Accordingly, the confidence intervals computed using 
these errors should also be considered approximate.  

Does it matter that the confidence intervals are only approximately correct? That depends 
on how you want to use those intervals. In most cases, you’ll use the confidence intervals 
to get a sense of whether your results are any good. If the confidence intervals are narrow, 
you know the parameters precisely. If the confidence intervals are very wide, you know 
that you have not determined the parameters very precisely. In that case, you either need 
to collect more data (perhaps over a wider range of X) or run the nonlinear regression 
again fixing one or more parameters to constant values. 

If you use the confidence intervals in this qualitative way, you won’t really care if the 
intervals are exactly correct or just an approximation.  You can accept the values reported 
by your nonlinear regression program and skip the next two chapters. 

In a few cases, you may really want to know the value of a parameter with exactly 95% 
confidence. Or you may want to use the standard error of a parameter in further statistical 
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calculations. In these cases, you should read the next two chapters to learn more about 
why the standard errors and confidence intervals are only approximately correct, and 
about alternative methods to compute them.  

How asymptotic standard errors are computed 
Calculating asymptotic standard errors is not easy. If your program doesn’t report 
standard errors, you should get a different program rather than trying to compute them 
by hand. But it is easy to understand what factors affect the calculation: 

• The scatter of data around the curve, quantified by the sum-of-squares. 
Everything else being equal, you’ll get smaller standard errors if your data are 
less scattered. 

• The number of data points. Everything else being equal, you’ll get smaller 
standard errors if you have more data. 

• The X values you chose for your experiment. The standard errors are affected not 
only by the number of data points, but also by which X values you choose. Some 
parameters are defined mostly by the first few points (lowest X values), others 
are defined mostly by the last few points (highest X values), and others are 
defined equally by all the data. 

• Whether or not you chose to fix parameters to constant values. When you fit a 
curve, you need to decide which parameters (if any) to fix to constant values. In 
most cases, fixing one parameter to a constant value will reduce the standard 
error for the remaining parameters. 

• Whether you chose a global model. If the model is global (you share one or more 
parameters between several data sets) then the number of data points and sum-
of-squares is for the entire set of data sets, not just one, so the standard errors 
will be smaller. 

To understand the method a nonlinear regression program uses to compute the standard 
errors (and thus the confidence intervals) of the parameters, you need to master the 
matrix algebra and calculus that make nonlinear regression work.  That is beyond the 
mathematical depth of this book, but here is a taste of how it works. Each standard error 
is computed from three terms:  

• The first term is the hardest to calculate. At each value of X, compute how much 
the predicted value of Y changes if you change the value of each parameter a 
little bit from its best fit value (compute dY/dA, where A is a parameter and Y is 
computed from your model holding each parameter fixed to its best-fit value). 
Combine all these together into a matrix and do some heavy-duty matrix 
manipulations to obtain a value that depends on the model, the parameters, the 
number of data points, and the values of X. Note that this value is not influenced 
at all by the scatter of your data.  

• The sum-of-squares of the vertical distances of the data points from the curves.  
This quantifies how scattered the data are. 

• The number of degrees of freedom, computed as the number of data points 
minus the number of parameters.  
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The value of the first term is different for each parameter. The other two terms are the 
same for each parameter. 

Note: The calculations depend only work if nonlinear regression has converged 
on a sensible fit. If the regression converged on a false minimum, then the sum-
of-squares as well as the parameter values will be wrong, so the reported 
standard error and confidence intervals won’t be helpful. 

An example 
This example shows the decrease in the plasma concentration of a drug as a function of 
time.  
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We fit the data to this model: 

-k×t
t 0

-k×X
0 0

Drug =Drug ×e

Y=Y ×e =Y ×exp(-k X)×
 

At time zero, drug concentration equals Y0 and it then decays, following an exponential 
decay (see page 60) to a plateau of zero. We don’t fit the bottom plateau – we know it has 
to plateau at zero eventually. We do fit the concentration at time zero even though we 
have a data point at time zero. That point is subject to experimental error, so we want to 
fit the value at time zero from the overall shape of the curve. 

Nonlinear regression presents the best-fit value for each parameter, along with a standard 
error and 95% confidence interval.  

Parameter Best-fit value Standard Error 95% CI 
Y0 1136 94.50 904.8 to 1367 

k 0.02626 0.003842 0.01686 to 0.03567 

 

The standard errors assess the precision of the best-fit values and are used to compute the 
confidence intervals. We find that confidence intervals are much easier to interpret, and 
recommend that you ignore the standard error values and focus instead on the confidence 
intervals.  
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We are 95% sure that the true value for the starting drug concentration (Y0) is between 
905 and 1367, and that the true value for the rate constant is between 0.017 and 0.036 
min-1. It can be hard to interpret rate constants unless you work with them a lot. We 
prefer to think about the half-life, the time it takes for the concentration to get cut in half. 
The half life equals 0.693/k, so the 95% confidence interval for the half-life ranges from 
19.4 to 41.1 minutes. More simply, the true half-life is pretty certain to be between 20 and 
40, a factor of two. 

How you interpret these intervals depends on the context of the experiment. We know 
with 95% confidence that the half-life ranges over a factor of about two. In some contexts, 
this will be very satisfactory. In other contexts, that is way too much uncertainty, and 
means the experiment is worthless. It all depends on why you did the experiment. 

Because asymptotic confidence intervals are always symmetrical, 
it matters how you express your model 
The asymptotic method described above determines a single SE value for each parameter. 
It then multiplies that SE by a value determined from the t distribution, with a value close 
to 2.0 in most cases. It then adds and subtracts that value from the best-fit value to obtain 
the 95% confidence interval. Since it is calculated this way, the confidence interval is 
symmetrical around the best-fit value. For details on computing the confidence interval 
see page 103. 

This symmetry means that expressing a parameter differently can result in a different 
confidence interval. The next two chapters discuss alternative methods to obtain 
confidence intervals where this is not true.  

The example presented earlier defined Y at any time via an exponential equation that 
included the rate constant k. This rate constant is expressed in units of inverse time, 
minutes-1. The example used nonlinear regression to find the best-fit value of this rate 
constant along with its 95% confidence interval. 

The equation can be presented in an alternative form, where the exponential decay is 
defined by a time constant, tau. This time constant is expressed in units of time, minutes.  

t/τ
t 0

X
0 0

Drug =Drug ×e

Y=Y ×e =Y ×exp(X/ )τ τ/
 

The two models are equivalent. Some fields of science tend to use rate constants and 
others tend to use time constants. 

If we fit the example data with a model expressed with a time constant, the best-fit value 
of Y0 is still 1136, and the SE and 95% CI are the same. Changing from rate constant to 
time constant does not change the best-fit value at time zero. 

The best-fit value of the time constant is 38.07 minutes, with a SE of 5.569 and a 95% 
confidence interval ranging from 24.45 to 51.70.  

A rate constant is the reciprocal of the time constant. So to compare the best-fit time 
constant with the best-fit value of the rate constant determined earlier, we take the 
reciprocal of the best-fit time constant, which is 0.026267. That value is identical to the 
best-fit rate constant. No surprise here. Expressing the parameter in a different way won’t 
change which curve fits the data the best. The best-fit value of the parameter is equivalent 
no matter how you express the model. 
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Taking the reciprocal of each end of the confidence interval of the time constant, we get a 
confidence interval of the rate constant ranging from 0.0193 to 0.0409. As you can see 
more easily on the graph below, the two confidence intervals are not the same. Our 
decision to express the model using a rate constant or a time constant affected the 
confidence interval.  

0.00 0.01 0.02 0.03 0.04 0.05

Fit rate constant, with 95%CI.

Fit time constant, with 95%CI.
(converted to rate constant scale)

Rate constant
 

The graph above showed the results as rate constants. The graph below shows the 
confidence intervals as time constants. If you fit the time constant, the confidence interval 
(expressed as a time constant) is symmetrical. If you fit the rate constant, and then 
transform the results to display as time constants, the 95% confidence interval is not 
symmetrical.  

0 10 20 30 40 50 60 70

Fit time constant, with 95%CI.

Fit rate constant, with 95%CI.
(converted to time constant
scale)

Time constant
 

 

It is a bit disconcerting that our choice of how to express the parameter also determines, 
to some extent, the confidence interval. This is a fundamental problem with asymptotic 
confidence intervals. But in this example, note that the difference between the two 
confidence intervals is not huge, and won’t greatly change how you interpret the results.  

Christopoulos (Trends Pharmacol. Sci, 19:351-357, 1998) has used simulations to compare 
various forms of commonly used pharmacological model parameters to figure out which 
form gave more valid confidence intervals.  He found that certain commonly-used 
parameters, such as drug affinity (e.g., Kd, Kb, Ki, etc) or drug potency (e.g., EC50), are only 
associated with valid asymptotic confidence intervals if non-linear regression is 
performed using models where these parameters are expressed as logarithms (e.g., 
LogEC50). So, with respect to the reliability of the error associated with model parameters, 
it really does matter how you express your parameters. 
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Problems with asymptotic standard errors and confidence 
intervals 
Asymptotic confidence intervals are only approximately correct. In addition to the 
problem discussed in the previous section (the intervals are always symmetrical), there 
are two other issues.  

• They are based on a mathematical simplification. When applied to nonlinear 
equations, the method is an approximation. If you have plenty of data that 
clearly define the curve without a huge amount of scatter, the approximation is a 
good one. The confidence intervals give you a good sense of how precisely your 
data define the parameters. With marginal data, the approximation doesn’t 
always work so well. 

• By looking at the standard error and confidence interval for each parameter, you 
won’t learn about the relationships between parameters. The calculations don’t 
completely take into account the degree to which the parameters are 
intertwined. As you’ll see in the next two chapters, best-fit parameters are often 
not independent.  

Despite these problems, the asymptotic standard error and confidence intervals reported 
by most nonlinear regression programs have proven to be very useful in giving you a good 
sense of how precisely you know the parameters. 

The next two chapters explain alternative methods to compute confidence intervals, and 
Chapter 19 compares the methods. 

What if your program reports “standard deviations” instead of 
“standard errors”? 
Some programs report a standard deviation for each parameter rather than a standard 
error. In this context (uncertainty of best-fit values determined by regression), there is no 
distinction between the standard error and standard deviation.  

The term standard error can be used to quantify how precisely you know a computed 
value. For example, the standard error of the mean tells you how uncertain that mean is. 
Its value depends on the number of data points and their scatter (as quantified by the 
standard deviation). The standard error of a mean is your best estimate for the value you 
would obtain if you repeated the experiment many times, obtaining a different mean for 
each experiment, and then compute the standard deviation of those means. So the 
standard error of a mean can also be called the standard deviation of the mean (but it is 
very different from the standard deviation of the data).  

Similarly the standard error of a slope is an assessment of how precisely you have 
determined that slope. It is your best estimate for the value you would obtain if you 
repeated the experiment many times, obtained a different slope for each experiment, and 
then computed the standard deviation of those slopes. You could also call that value the 
standard deviation of the slope.  

It is more conventional to refer to the standard error of a parameter rather than the 
standard deviation of a parameter. 
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How to compute confidence intervals from standard errors  
If your program doesn’t report the 95% confidence intervals of the parameters, it is easy 
to compute them by hand. The confidence interval of each parameter is computed from 
the best-fit value and the SE of those best-fit values using this equation: 

* *BestFit - t ×SE  to  BestFit + t ×SE  

If you didn’t constrain the parameter, the confidence interval is always centered at the 
best fit value and extends the same distance above and below it. This distance equals the 
standard error of the parameter (discussed in the previous section) times the constant t*. 
This value comes from the t distribution, and depends on the amount of confidence you 
want (usually 95%, but you could choose some other value) and the number of degrees of 
freedom (df). For nonlinear regression, df equals the number of data points minus the 
number of parameters fit by nonlinear regression.  

You can find the value of t* in tables in most statistics books. If you have plenty of degrees 
of freedom (more than a dozen or so) t* will have a value near 2.0. You can find the value 
of t* for 95% confidence intervals using this Excel formula (substitute 0.01 for 0.05 to get 
the value of t* to compute 99% confidence intervals).  

=TINV(0.05,df) 

 

Our example had 8 data points and 2 parameters, and so has 6 degrees of freedom. The 
value of t* (for 95% confidence) is 2.4469. If you had more data (more degrees of 
freedom) this value would be lower. As degrees of freedom increase, t* (for 95% 
confidence) approaches 1.96. 
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17. Generating confidence intervals by Monte 
Carlo simulations  

An overview of confidence intervals via Monte Carlo simulations 
As discussed in the previous chapter, the asymptotic method built-in to most nonlinear 
regression programs is only an approximate method to determine the confidence interval 
of a best-fit parameter. This chapter presents one alternative method, and the next 
chapter presents still another alternative method. 

The idea here is to simulate a bunch of data sets, each with different random scatter. Then 
fit each simulated data set to determine the best-fit values of the parameters. Finally, we’ll 
use the distribution of best-fit parameters among the simulated data sets to create 
confidence intervals.  

This approach for determining confidence intervals is called Monte Carlo simulations.  

Monte Carlo confidence intervals  

General idea 
From the curve fitting results in the previous chapter, we know the best-fit values of Y0 
and k. The curve fitting program also reports Sy.x, which is the best-fit estimate of the 
standard deviation of the residuals. Its value is computed from the sum-of-squares, the 
number of data points and number of parameters (see page 33). It quantifies how much 
the data are scattered around the curve.  

Follow these steps to determine the confidence intervals by Monte Carlo simulation: 

1. Generate an ideal data set. Use the same X values as used in the actual data. 
Generate the Y values using the same model you used to fit the experimental data 
(an exponential decay model in this case). Use the best-fit values from nonlinear 
regression of the experimental data, as the ideal parameters (k=0.02626 and 
Y0=1136 for this example) to generate the ideal data.  

2. Add random scatter. To each ideal point, add random scatter drawn from a 
Gaussian distribution with a mean of zero and a SD equal to the value of Sy.x 
reported by nonlinear regression of our experimental data. For this example, we 
want to choose random numbers with a standard deviation of 105.3 (the reported 
Sy.x from the fit of our experimental data).   

3. Fit the simulated data with nonlinear regression, and record the best-fit value of 
each parameter. Here are the first two such simulated data sets, along with the best 
fit curves. 
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4. Repeat steps 2 and 3 many (say 1000) times. Each time, compute new random 
numbers so each of the simulated experiments has different data. The idea here is 
that these simulated data sets are similar to what you would have observed if you 
repeated the experiment many times. 

5. Find the 2.5 and 97.5 percentile values for each parameter. The range between 
these values is the confidence interval. 

Confidence interval of the rate constant 
Here is a graph of the frequency distribution for the 1000 rate constants determined from 
1000 randomly generated data sets. 
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We chose to simulate 1000 experiments. If we had simulated more experiments, the 
frequency distribution might have been smoother. To obtain the 95% confidence interval, 
we sort the 1000 best-fit values, and remove the 25 (2.5%) at each end. The range of the 
rest is the 95% confidence interval for the rate constant, which extends from .01970 to 
.03448.  

We repeated the simulations with 10,000 (rather than 1000) simulated data sets, and he 
95% confidence interval was about the same. It went from 0.01948 to 0.03520.  

Note that this method of obtaining the confidence interval creates intervals that are not 
necessarily symmetrical around the best-fit value.  These intervals also don’t depend on 
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how we express the model. We could have fit each of the simulated data sets to a model 
expressed in terms of time constant instead of rate constant. Each simulated data set 
would have a best-fit value of the time constant that is the reciprocal of the best-fit value 
of the rate constant. Rank the one thousand best-fit values of the time constant, remove 
the 25 highest and lowest values, and you’ll get the confidence interval of the time 
constant. This is completely equivalent to taking the inverse of each end of the confidence 
interval of the rate constant.  

Our decision to express the model in terms of rate constant or time constant affected only 
how the confidence intervals are presented. With Monte Carlo simulations (unlike the 
asymptotic method built-in to most nonlinear regression programs), you’ll get equivalent 
intervals no matter how you choose to express the parameter. 

Confidence interval of Y0 
Here is a graph of the frequency distribution for the 1000 values of Y0 determined from 
1000 randomly generated data sets. 
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To obtain the 95% confidence interval, we sort the 1000 best-fit values, and remove the 25 
at each end. The range of the rest is the 95% confidence interval, which extends from 964 
to 1317.  

When we repeated the simulations with 10,000 (rather than 1000) simulated data sets, 
the 95% confidence interval extends from 956 to 1328 (about the same).  

Monte Carlo simulations shows how the two parameters are related 
So far, we have determined a confidence interval for each parameter separately. But the 
two parameters are related. Here is a graph of our one thousand simulated experiments, 
showing the best-fit value of rate constant and Y0. Each dot is the result of analyzing one 
simulated data set, plotting the best-fit value of the rate constant on the X axis and the 
best-fit value of Y0 on the Y axis.  
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The relation between parameters makes sense. If the true Y0 is larger, that means there is 
more drug in the plasma at time zero. Therefore, the rate constant is likely to be larger 
(faster drug elimination). If the true Y0 is smaller (less drug), there is less drug present so 
the rate constant is likely to be lower (slower elimination).  

Perspective on Monte Carlo methods 
If you are encountering Monte Carlo methods for the first time, you may think that it is 
essentially magic. You start with one data set, simulate lots of “data sets” that aren’t really 
data, and then use the analyses of those simulated data sets to learn about the uncertainty 
in the parameters you estimated from the actual data.  

This method has a solid mathematical foundation (plenty of theorems have been proven) 
and has been shown to be useful in practice. Although this method seems strange when 
you first hear about it, it really does work.  

How to perform Monte Carlo simulations with Prism 
It isn’t hard to do the Monte Carlo simulations with Prism. Use the “Simulate data” 
analysis to generate a simulated data set. You’ll need to choose the X values, the model, 
the parameters, and the SD of random scatter. For parameters, enter the best-fit values 
from fitting your data. For SD of the random scatter, enter the Sy.x reported by nonlinear 
regression. Choose Gaussian error.  

This “analysis” will create a results table with the simulated data. From that table, click 
Analyze, choose nonlinear regression, and pick the model and choices just like you 
analyzed the original data.  

To simulate 1000 data sets, you need to run a script (a choice on the File menu). Here is 
the Prism script we used for the first example: 
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shortlog 
setpath "c:\temp" 
Openoutput "Monte Carlo CI.txt" Clear 
wtext "Top" ; 
wtext "K"  
Foreach 1000 
  GoTo R 1 
  regenerate 
  GoTo R 2 
  Wcell 3,1; 
  wcell 4,1 
Next 

  

The first line says not to create a detailed log. The next two lines define the folder and file 
that will contain the results. The next two lines write a header on top of the file. Then the 
loop starts, to create 1000 data sets. Of course, you can increase that number to get more 
precise confidence intervals. For each loop, the script goes to the first results page (the 
simulation) and regenerates it (new random numbers). Then it goes to the second results 
page (the nonlinear regression results) and records the values in the first column, third 
and fourth row (values of K and Y0 for our example; you may need to adjust the row 
numbers).  

Tip: Read about Prism scripts in the last chapter of the Prism 4 User’s Guide. 

After the script is finished (a few minutes), import the resulting thousand row text file into 
Excel. To determine the 2.5 and 95.7 percentiles from a list of values in column B, use 
these Excel equations.  

=Percentile(B:B, 0.025) 
=Percentile(B:B, 0.975) 

Variations of the Monte Carlo method 
The method presented in this chapter is not the only way to do Monte Carlo simulations to 
generate confidence intervals of best-fit parameters. Here are some choices you have 
when programming a Monte Carlo simulation. 

• Add random error to what? With each simulation, you can add random error to 
the actual experimental data, or you can add random data to ideal data predicted 
from the model. 

• How do you generate the random error? In our discussion, we generated the 
random error from a Gaussian distribution. This makes a lot of sense, but 
requires assuming that the scatter of data around the curve does indeed follow a 
Gaussian distribution. One alternative is to bootstrap the errors. Create a list of 
residuals – the vertical distances of the data from the best-fit curve. Now for 
each simulation, for each data point, randomly choose one of those residuals. 
You don’t generate new random error. Instead you randomly reapply the actual 
residuals observed in the experiment.  

• How do you generate the confidence interval? We used the 2.5 and 97.5 
percentiles. Other methods are possible.  
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18. Generating confidence intervals via model 
comparison 

Overview on using model comparison to generate confidence 
intervals 
In this chapter, we’ll develop a third method to obtain the confidence interval of a best-fit 
parameter (to complement the asymptotic and Monte Carlo methods described in the 
previous two chapters).  

It is based on the method to be discussed below in Chapter 22. That chapter explains how 
to compare two related fits to a set of data. This method generates an F ratio, from which 
you can determine a P value. If the P value is less than 0.05, we say that the fit of the two 
models differs significantly. 

Conceptually, it isn’t hard to use that method to develop confidence intervals for the best-
fit parameters. If we change the value of the parameters from their best-fit values, we 
know the fit will get worse. But how much worse? We’ll compare this new fit with the best-
fit curve determined by nonlinear regression. If the P value is greater than 0.05, than this 
new fit is not significantly worse, so this set of parameter values must be within our 
confidence interval. If the P value is less than 0.05, then the new parameter values lead to 
a curve that fits the data significantly worse than the best-fit values, so these parameters 
are outside the confidence interval.  

A simple example with one parameter 
Later in this chapter we’ll return to the example used in the previous two chapters. But 
first, let’s go back to a simpler example  (see page 91) where there is only one parameter to 
fit.  

We measured a signal over time, and normalized the results to run from 100% at time 
zero to 0 at infinite times. We fit this to an exponential decay model, fixing the top to 100 
and the bottom plateau to 0, leaving only one parameter, the rate constant, to fit. The 
best-fit value of k is 0.3874 min-1. How precisely do we know this value of k? Let’s see how 
the sum-of-squares varies as we change the value of k. 
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The graph above plots sum-of-squares (a measure of how well the curve fits the data) as 
we vary the value of the rate constant k.  The best-fit value of k, 0.3874 min-1) is the value 
where the sum-of-squares is lowest.  

The method comparison method for generating a confidence interval is based on the 
graph above.  Chapter 22 shows how to compare two curves and calculate F using this 
equation.  

null alt alt

null alt alt

(SS -SS )/SS        
(DF -DF )/DF

F =  

In this context, substitute SSbest-fit for SSalt, This is the sum-of-squares of the curve 
determined by nonlinear regression. Also substitute SSall-fixed for SSnull.  This is the sum-of-
squares when we fix all the parameters (in this example, there is only one parameter) to a 
fixed value we choose. Also substitute N-P for DFalt and N for DFnull, where N is the 
number of data points and P is the number of parameters (don’t mix this up with the P 
value). Now the equation looks like this: 

all-fixed

best-fitall-fixed best-fit best-fit

SS 1
SS(SS -SS )/SS =         

P/(N-P) P/(N-P)
F

 
− 

 =  

This equation is usually used to compare two fits -- to compute F from which we obtain a 
P value. Here, we are want to work backwards to get a confidence interval. We are striving 
for a 95% confidence interval, so we want the P value to equal 0.05. To get this P value, we 
know (can look up) the value of F we need. So F is a constant we set, not a variable we 
compute. Similarly SSbest-fit is always the same, as determined by our data and model. We 
got its value by using nonlinear regression. We also know the values of N (number of data 
points) and P (number of parameters). What we need to do is find values of the rate 
constant that create a curve where the sum-of-squares equals SSall-fixed. So let’s rewrite the 
equation, putting SSall-fixed on the left. 

all-fixed best-fit
PSS =SS F +1

N-P
 
 
 

 

Now we know the values of all the variables on the right. 
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Variable Comment Value 
SSbest-fit Sum-of-squares when nonlinear regression fits the 

curve, adjusting both parameters. 
SS=228.97 

P Number of parameters. We are fitting the rate 
constant (k) and the value of Y at time zero (Y0) so 
P=2. Don’t confuse this use of the variable P with a 
P value. 

P=1 

N Number of data points. We had eight X values and 
only collected one Y value at each X, so N=8.  

N=12 

F The critical value of the F distribution for a P value 
of 0.05 (for 95% confidence) with P df in the 
numerator (1 in our example) and N-P (12-1=11 in 
our example) degrees of freedom in the 
denominator. You can look this up in a statistics 
table, use the free calculator at 
www.graphpad.com, or use this Excel formula: 
=FINV(0.05,1,11) 

F= 4.8483 

SSall-fixed Computed from the other parameters in the 
equation. This is our target value for SS. We will 
vary the rate constant to achieve a sum-of-squares 
equal to this target. 

SS=329.89 

 

What this means is that if we change the value of k a small amount, so that the resulting 
curve has a sum-of-squares less than 329.89, the fit will not be significantly different than 
the fit determined by nonlinear regression. These values of k define the 95% confidence 
interval. If k is outside this range, then the resulting curve will have a sum-of-squares 
greater than 329.89 and so fit the data significantly worse.  

So what range of values for k satisfies this criterion? As you can see from the graph below, 
a range of values of k from about 0.35 to 0.43 give sum-of-square values less than 329.9 
so therefore generate curves that are not significantly different (at the 5% significance 
level) than the best fit curve.  
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To compute the confidence intervals more exactly, we can alter K over a finer range of 
values. Or, as explained below on page 116, we can use Excel’s solver to find the two values 
of k that lead to a sum-of-squares of 329.89. The confidence interval determined this way 
ranges from 0.3525 to 0.4266. Any value of k outside that range would result in a curve 
whose fit is significantly worse than the best-fit curve. Note that this confidence interval is 
not symmetrical around the best-fit value. 

Confidence interval for the sample data with two parameters 
The rest of this chapter shows how to apply this method to the example data used in the 
previous two chapters. Since the two parameters are related, you’ll get the most 
information by finding a confidence region – a set of values for the two parameters. We’ll 
go through the calculations in the next two sections. But first, the answer.  The graph 
below plots various possible values of the rate constant on the X axis vs. possible values of 
Y0 on the Y axis. The two parameters are correlated. If the value of k is high, then the 
value of Y0 is also very likely to be high. If the value of k is low, then the value of Y0 is also 
very likely to be low.  

The plus in the middle denotes the best-fit value of k and Y0 determined by nonlinear 
regression. The egg-shaped contour shows values of k and Y0 that generate curves that are 
just barely significantly different than the best-fit curve. So any values of k and Y0 that lie 
within the contour (the gray area) lead to curves that are not significantly different (at the 
5% significance level) than the best-fit curve. Therefore, this contour defines the 
confidence interval.  

 

The next section explains how this graph was constructed. 

Using model comparison to generate a confidence contour for the 
example data 
The method to be discussed below in Chapter 22 lets you compare two fits (to one set of 
data) by looking at the difference between sum-of-squares. This method computes an F 
ratio, which leads to a P value. 
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We will repeatedly compare the sum-of-squares from curves defined by two sets of 
parameters.  

One curve is always defined by the best-fit results obtained by nonlinear regression. Call 
the number of parameters you fit to be P. Call the sum-of-squares from this fit to be SSbest-

fit. 

The other curve will change as we repeatedly apply the method. To create this curve, we 
will fix all of the parameters to constant values. You’ll see soon how we pick these values. 
Since we set all the parameter to fixed (constant) values, we don’t ask the program to fit 
anything. Instead, we only ask a program to compute the sum-of-squares. Call this sum-
of-squares SSall-fixed. 

Compare the fits using an equation explained earlier in this chapter. 

all-fixed best-fit
PSS =SS F +1

N-P
 
 
 

 

For this example, here are the values. 

Variable Comment Value 
SSbest-fit Sum-of-squares when nonlinear regression fits the 

curve, adjusting both parameters. 
SS= 66489.16 

P Number of parameters. We are fitting the rate 
constant (k) and the value of Y at time zero (Y0) so 
P=2. Don’t confuse this use of the variable P with a 
P value. 

P=2 

N Number of data points. We had eight X values and 
only collected one Y value at each X, so N=8.  

N=8 

F The critical value of the F distribution for a P value 
of 0.05 (for 95% confidence) with P df in the 
numerator (2 in our example) and N-P (8-2=6 in 
our example) degrees of freedom in the 
denominator. You can look this up in a statistics 
table, use the free calculator at 
www.graphpad.com, or use this Excel formula: 
=FINV(0.05,2,6) 

F= 5.1432 

SSall-fixed Computed from the other parameters in the 
equation. This is our target value for SS. We will 
vary parameters to achieve a sum-of-squares equal 
to this target. 

SS=180479.3 

 

We want to vary one parameter, holding the rest constant, increasing SS until it gets to 
180479.3. When it reaches that value, we know that F will equal 5.1432, so the P value will 
equal 0.05. This target value for SSall-fixed was computed from the equation above.  

Let’s start by holding Y0 constant at its best-fit value of 1136, and gradually decrease k. As 
you reduce the value of k from the best-fit value, the curve will get further from the data 
points, so the sum-of-squares will go up. Adjust the value of k until the sum-of-squares 
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equals 180479.3. This happens when k= 0.01820. We plot on the graph below the point 
k=0.01820, Y0=1136. 

Now let’s increase the value of k from its best-fit value until the sum-of-squares again hits 
that target value. This happens when k= 0.04002. Add to the point k=0.04002, Y0=1136 
to the graph we are building (below). 

You might think we have determined the confidence interval of k as ranging from 0.01820 
to 0.04002. But this isn’t really the confidence interval we care about. It is the confidence 
interval of k, assuming that Y0 equals exactly 1136 (its best-fit value). But Y0 is itself 
subject to variation.  What you want to know is the lowest and highest values of k that 
generate the target value of SS at any value of Y0.  

Now let’s fix the rate constant at its best-fit value, and increase and decrease Y0 until the 
sum-of-squares is 180479.3. That happens when Y0 equals 886.5 and 1385.5. We’ll add 
two more points to the graph, at k=0.02626, Y0=886.5 and k=0.02626, Y0=1385.5. The 
graph below now shows four pairs of values of k and Y0 where the sum-of-squares is 
180479.3., along with lines showing the best-fit values of Y0 and k.  
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Let’s continue this process. We hold one parameter constant (to various values) and find 
the two values of the other parameter than make the sum-of-squares equal 180479.3. 
Then hold the first parameter constant to a different value, and again find two values of 
the other parameter that makes the sum-of-squares meet the target value. It doesn’t really 
matter if you hold k constant and vary Y0 or hold Y0 constant and vary k. The graph below 
was made using a combination of the two methods. Repeat with many sets of values, and 
here is the result. (The next section explains how we used Excel to facilitate these 
calculations.) 
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The plus in the middle of the graph represents the best-fit values of k and Y0.  Each point 
represents a pair of values for k and Y0 that define a curve that is far enough from our 
sample data so the sum-of-squares equals 180479.3. If you compare the fit of any curve 
defined by the parameter values graphed here with the best-fit nonlinear regression curve, 
the F ratio equals 5.143 so the P value equals 0.05. Even though the shape (in this 
example) looks more like an egg than an ellipse, it is often called a confidence ellipse.  A 
better term is confidence contour. 

Any pair of values of k and Y0 that are outside the contour define a curve that is further 
from the points, and generate a higher sum-of-squares. Therefore the value of F is larger 
than 5.143 and so the P value is less than 0.05. These values of k and Y0 define curves that 
fit the data significantly worse than the best-fit curve. Any pair of k and Y0 that are inside 
the contour define a curve that is further from the points than the best-fit curve. But if we 
compare the two curves, the F ratio will be less than 5.143 so the P value is greater than 
0.05. The curves generated by parameter values inside the egg do not fit the data 
significantly worse than the best-fit values. Therefore we are 95% sure that the true value 
of k and Y0 lies inside the confidence contour.  

Converting the confidence contour into confidence intervals for 
the parameters 
To find the 95% confidence interval for k, we find the lowest and highest values of k on the 
contour, as shown in the figure below. The 95% CI of the rate constant, determined this 
way ranges from 0.0159 to 0.0420. 
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To find the 95% confidence interval for Y0, we find the lowest and highest values of Y0 on 
the contour, as shown below. The 95% confidence interval for Y0 ranges from 844.00 to 
1442.75. 
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How to use Excel’s solver to adjust the value of a parameter to 
get the desired sum-of-squares 
The description above left out an important step. How exactly do we adjust the value of a 
parameter to get the desired value of the sum-of-squares? This procedure could be 
included in computer programs, but it is not part of commonly used nonlinear regression 
programs (it is not part of Prism 4).  

We used Excel’s solver. The solver comes with Excel, but is not installed by default. You 
may need to install again from a CD and choose to install the Solver. Then you need to go 
to the Add-in manager and check the option to enable the solver.  

Here is a screen shot of our Excel worksheet. 

 

The data were entered in columns A and B from row 5 down, and were never changed. 
Values of Y0 and k were entered in rows 1 and 2 of column D. We set one of these, and ask 
the Solver to find a value for the other, as you’ll see. Column C shows the predicted value 
of Y, determined from our model and from the values of Y0 and K shown at the top of the 
worksheet. Each cell had a formula, so its value automatically changed when the value of k 
or Y0 was changed. Column D shows the square of the difference between column B (the Y 
value of the data) and column C (the Y value of the curve). Cell D14 shows the sum-of-
squares. When we change Y0 or k, the values in columns C and D automatically update, 
and so does the sum-of-squares.  

Launch the Solver from Excel’s tools menu. If you don’t see a Solver command, make sure 
you have installed the Solver and selected it in the Add-in dialog. Here is the Solver 
dialog: 
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Here we ask it to adjust the value of cell $D$1 (the value of Y0) in order to get the value of 
cell $D$14 (the sum-of-squares) to equal 180479.3 (the target we computed above). There 
will be two values of Y0 that work, so we give the Solver the constraint that Y0 (cell D1) 
must be greater than 1200. Click Solve. Excel tells you that the Solver found a solution.  

 

Click OK, and Prism changes the value of Y0 to 1216.7, which leads to a sum-of-squares (as 
requested) of 180479.3.  

 

Now we have determined one set of values for Y0 and k (1216.7 and 0.0200) that defines 
one point on our graph.  

Repeat this process for many values of k, and then repeat again with the same values of k 
but with the opposite constraint (Y0<1200) and you’ll create enough points to define the 
egg shown earlier.  

Instead of constraining the value of Y0, you can simply change the starting value (the 
value you enter into cell D1). There are two solutions to the problem, and the Solver will 
almost always find the solution that is closest to the starting value. So run the Solver 
twice, once starting with a high value of Y0 and once starting with a low value of Y0. 

More than two parameters 
If you are fitting more than two parameters, it becomes much harder to apply this 
method. And it even becomes hard to figure out how to display the results. But the idea is 
still the same. You want to find all sets of parameters that define curves whose sum-of-
squares is just enough worse than the sum-of-squares of the best-fit curve so that an F test 
gives a P value of 0.05.  
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19. Comparing the three methods for creating 
confidence intervals 

Comparing the three methods for our first example 
The last three chapters presented three distinct methods for obtaining confidence 
intervals from our sample data.  

The three methods gave similar, but not identical, results as shown in this graph. 
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The simple method always gives a confidence interval that is symmetrical, and tends to be 
a bit optimistic (too narrow). Monte Carlo simulations also tend to be a bit optimistic – 
the interval is too narrow. The model comparison method (via F test) is probably the most 
accurate method, but is also most cumbersome. 

Here is the comparison, showing the time constant rather than the rate constant. 
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Here is the comparison of the three different methods to compute the confidence intervals 
of Y0. 
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Here we superimpose the egg shape determined by model comparison (circles) with the 
results determined by Monte Carlo simulations (plusses). The two have a very similar 
shape, but the Monte Carlo simulations are a bit more compact. 

0.01 0.02 0.03 0.04 0.05

750

850

950

1050

1150

1250

1350

1450

Rate constant

Y0

 

A second example. Enzyme kinetics. 
This example shows enzyme activity as a function of substrate concentration. There are 
only seven data points, and the experiment does not use high enough substrate 
concentrations to properly define the maximum velocity. 
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We fit the data to this model: 
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Asymptotic (approximate) standard errors and confidence intervals 
The best-fit parameter values, with their standard errors and confidence intervals are 
shown in the table below. The sum-of-squares is 42.3, and Sy.x is 2.909.  

Parameter Best-fit value Standard Error 95% CI 
Vmax 42.40 10.81 14.61 to 70.19 

KM 4.687 2.374 -1.42 to 10.79 

 

The confidence interval for Vmax is pretty wide, telling you what you already knew -- that 
this experiment wasn’t designed very well so doesn’t define Vmax very well. The asymptotic 
confidence interval is symmetrical around the best-fit value, as it must be (given how it is 
computed). But the lower limit doesn’t make much sense. It is too low -- lower than half of 
the Y values in the data.  

The KM is the concentration of substrate that leads to half-maximal enzyme velocity. The 
confidence interval for KM extends down to negative values. Since this is nonsense, we’ll 
truncate it to 0.0 to 10.79. This means that the KM could be anywhere in the range of 
concentrations we used, which means this experiment gave us no real information on the 
value of KM. 

Monte Carlo confidence intervals 
Using the Monte Carlo method, the 95% confidence interval for Vmax ranged from 25.78 to 
92.88. The 95% confidence interval for Km ranged from 1.376 to 16.13. 

The two parameters are extremely related, as this graph shows. Each point represents the 
best-fit value of Vmax (X axis) and KM (Y axis) for one simulated data set. The left panel 
shows the results of all thousand simulations. The right panel drops the results of a few 
dozen simulations to emphasize the bulk of the results. 
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Confidence intervals via model comparison 
Again, we’ll compare the best-fit curve generated by nonlinear regression with the fit of a 
curve where both parameters are fixed to values we select. Again, we’ll use the equation 
below to figure out the sum-of-squares needed to make a fit be different enough that its F 
value is high enough to yield a P value of exactly 0.05.  

all-fixed best-fit
PSS =SS F +1

N-P
 
 
 

 

Variable Comment Value 
SSbest-fit Sum-of-squares from nonlinear 

regression. 
SS= 42.303 

P Number of parameters.  P=2 

N Number of data points.  N=7 

F The critical value of the F distribution 
for a P value of 0.05 (for 95% 
confidence) with P df in the 
numerator (2 in our example) and N-P 
(7-2=5 in our example) degrees of 
freedom in the denominator.  

F= 5.7861 

SSall-fixed Computed from the other parameters 
in the equation. This is our target 
value for SS.  

SS=142.211 

 

We set KM to various values, and used Excel’s Solver (see page 116) to find two values of 
Vmax (for each KM) that lead to the target sum-of-squares. The graph below shows the best 
fit values of Vmax and KM as the horizontal and vertical line. Each point on the graph 
represents a pair of values for Vmax and KM that cause the sum-of-squares to equal the 
taraget value and so define the 95% confidence interval.   
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For this example, the interval is not a closed loop. There is no upper limit for KM or Vmax. 
For any KM you propose, there are a range of values for Vmax that lead to curves that are 
not significantly different from the best-fit curve.  
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As the graph below shows, this is because with large values of Km and Vmax, the data are all 
in the early portion of the curve that is essentially a straight line. This portion of the curve 
is almost the same with any large values for the parameters. The fit of any of these curves 
is not significantly worse than the best-fit curve. That means that the data simply don’t 
define (with 95% certainty) an upper limit for Km and Vmax. 
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This graph superimposes the results of Monte Carlo simulations (circles) with the results 
of the F ratio comparison method (pluses). The two give very similar results. 
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Comparing the confidence interval of the three methods  
This graph compares the three methods used to determine the 95% confidence interval for 
Vmax. Note that the third method (compare fits with F ratio) has no upper limit.  
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This graph compares the three methods used to determine the 95% confidence interval of 
the KM. Again, note that the third method (model comparison with F ratio) has no upper 
limit. 
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In this example, our data simply don’t define the curve. The most accurate method, 
comparison with F ratio, simply can’t find an upper limit for either parameter.  

For this example, the standard method built-in to nonlinear regression programs gives 
you a confidence interval that is somewhat misleading. But an alert scientist would notice 
two things: 

• The lower confidence limit for Vmax is obviously too low, since it is lower than 
half the data points. Since the confidence intervals must by symmetrical, if one 
limit is too low, the other limit must not be high enough.  

• The confidence interval for KM includes all the substrate concentrations used in 
the experiment (the confidence interval goes up to 12, but the highest 
concentration used in the experiment is 8).  

Even though we can’t interpret the asymptotic confidence intervals literally, they tell us 
what we need to know – that our data don’t define Km or Vmax very well. 

A third example 
Here is a third example. This is a dose response curve, and not too much scatter. 
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The results were normalized to run from 0 to 100. We fit a sigmoidal dose-response curve 
to find the best-fit values of the logEC50 (the concentration that gives a 50% response; the 
middle of the curve) and the Hill Slope (a measure of how steep the curve is). We fixed the 
bottom plateau to 0.0 and the top to 100.0, so only fit two parameters (the logEC50 and 
the Hill Slope). The triplicate values were treated as separate data points, so there a total 
of 39 points, so 37 degrees of freedom (39 data points minus two parameters to fit). 

Note: We normalized the data to control values so the data run from 0 to 100. 
But there is random variation, so some data points have normalized values less 
than zero and others have normalized values that greater than one hundred. We 
left those in to avoid biasing the analyses.  

Asymptotic standard errors and confidence intervals 
Here are the standard errors and confidence intervals, as computed by the standard 
method built-in to all nonlinear regression programs. The sum-of-squares is 1644.2 and 
the Sy.x is 6.6661. 

 

 

Monte Carlo simulations 
The results of Monte Carlo simulations are graphed below. The two parameters are not 
related. The 95% confidence interval for the logEC50 ranges from -6.687 to -6.484. The 
95% confidence interval for the Hill Slope ranges from 0.6077 to 0.8231. These confidence 
intervals are very close to those determined by the simple method built in to nonlinear 
regression programs. 

Parameter Best-fit value Standard Error 95% CI 
LogEC50 -6.590 0.05264 -6.697 to -6.484 

Hill Slope 0.6996 0.05237 0.5934 to 0.8057 
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Method comparison via F test 
Here are the values we used to find confidence interval via model comparison. 

all-fixed best-fit
PSS =SS F +1

N-P
 
 
 

 

Variable Comment Value 
SSbest-fit Sum-of-squares from nonlinear regression. SS= 1644.2 

P Number of parameters.  P=2 

N Number of data points.  N=39 

F The critical value of the F distribution for a P 
value of 0.05 (for 95% confidence) with P df in 
the numerator (2 in our example) and N-P 
(39-2=37)  df in the denominator.  

F= 3.252 

SSall-fixed Computed from the other parameters in the 
equation. This is our target value for SS.  

SS=1933.2 

 

Here are the results. Each point represents a pair of values for logEC50 and Slope that 
generate a curve whose sum-of-squares is just enough different from the best-fit curve to 
give a F ratio of 3.252 and thus a P value of 0.05. Any points inside the ellipse define a 
curve that is not significantly different from the best-fit curve. Any points outside the 
ellipse define a curve that is significantly different from the best fit curve. The ellipse, 
therefore, defines our 95% confidence interval.  
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The 95% confidence intervals are taken from the highest and lowest value of each 
parameter on the ellipse. The 95% confidence interval for the logEC50 ranges from -6.72 
to -6.45. The 95% confidence interval for the Hill Slope ranges from 0.59 to 0.85. These 
confidence intervals are very close to those determined by the simple method built in to 
nonlinear regression programs. 

Comparing the three methods 
The graph below compares the confidence intervals for each parameter as generated by 
the three methods. The three methods are essentially the same for all practical purposes. 
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The graph below compares the Monte Carlo method with the method that compares fits 
with the F ratio. The circles show the border of the 95% confidence region as defined by 
the model comparison method. The pluses show the individual results of Monte Carlo 
simulations. If the methods were equivalent, you’d expect 95% of the simulated fits to lie 
within the ellipse defined by the method comp arson method, and that is about what you 
see. 
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Conclusions  
When you evaluate the results of nonlinear regression, you don’t only care about the best-
fit values of the parameters. You also want to know how precisely you have determined 
them. The easiest way to do so is to look at the asymptotic confidence intervals reported 
by your nonlinear regression program. 

Ideally you have collected plenty of data points without too much scatter and have spaced 
these sensibly over appropriate range of X. If so, the asymptotic confidence intervals will 
be quite useful. As we saw in the third example above, all three methods for computing 
confidence intervals give almost identical results in cases like this.  

In a less ideal situation (you have collected few data points, they have a lot of 
experimental scatter, and you have chosen the X values poorly), the reported confidence 
interval will be much wider. In these cases, the asymptotic interval reported by nonlinear 
regression may be too narrow, too optimistic. The uncertainty may even be worse than 
what the program reports. But the wide confidence intervals tell you what you need to 
know – that you haven’t determined the parameters very well and should either collect 
more data or run nonlinear regression constraining a parameter to a constant value.  

It would be a mistake to assume that the “95% confidence intervals” reported by nonlinear 
regression have exactly a 95% chance of enclosing the true parameter values. The chance 
that the true value of the parameter is within the reported confidence interval may not be 
exactly 95%. Even so, the asymptotic confidence intervals will give you a good sense of 
how precisely you have determined the value of the parameter.  

When you need more accurate confidence intervals, use Monte Carlo simulations or 
compute confidence intervals by model comparison.  
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20. Using simulations to understand confidence 
intervals and plan experiments 

Chapter 17 explained how to use Monte Carlo simulations to create confidence intervals. 
You start with best-fit results from fitting one particular data set, and use the simulations 
to create confidence intervals for that data set.  

Monte Carlo simulations can also be used more generally to help you decide how to design 
experiments and to help you figure out how to express the model.  

Example 1. Should we express the middle of a dose-response 
curve as EC50 or log(EC50)? 
The simulated data sets below each had ten data points, equally spaced on a log scale from 
1 nM to 10 µM. The true curve had a bottom plateau at 0.0, a top plateau at 100, and an 
EC50 of 1 µM.  (The EC50 is the concentration required to get a response half-way between 
the minimum and maximum.) Random noise was added to each point, using a Gaussian 
distribution with a mean of 0 and a SD of 15, which simulates data in a system with lots of 
scatter. Three typical data sets are superimposed in the graph below. 
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We simulated five thousand data sets and fit each one twice. First we fit to a dose-
response curve written either in terms of EC50 and then to a dose-response curve written 
in terms of the log(EC50). The distribution of these 5000 EC50 and log(EC50) values are 
shown below along with a superimposed Gaussian distributions. 
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Clearly, the distribution of log(EC50) values is much closer to Gaussian. The normality test 
confirms this impression. The distribution of log(EC50) passes the normality test. The 
distribution of EC50 values fails the normality test with P<0.0001. 

If a parameter follows a Gaussian distribution, the asymptotic confidence interval should 
be fairly accurate. To confirm this, we recorded the asymptotic confidence intervals for 
EC50 and LogEC50 for each of the simulated data sets.  

When the data were fit to a dose-response equation written in terms of log(EC50), 94.20% 
of the "95%" confidence intervals of log(EC50) contained the true value. In contrast, when 
we fit the model written in terms of EC50, only 91.20% of the 5000 "95%" confidence 
intervals contained the true value. While that isn’t terribly far from 95%, a bigger problem 
is that  78% of these confidence intervals began with a negative number. Of course 
negative concentrations are impossible, so we would call the lower limit zero in these 
cases. This means that in majority of the simulated data sets, the 95% confidence interval 
of the EC50 gave us no information at all about the lower limit of the EC50.  

Note: When you are fitting real data, you’ll never know if the confidence 
interval contains the true parameter value or not. You only know the value 
determined from your data. But in the discussion above, we were analyzing 
simulated data sets, so knew exactly what the true value of the parameter was 
so were able to tabulate how often the confidence interval included the true 
parameter value. 

These simulations show a clear advantage to expressing the dose-response equation in 
terms of log(EC50), at least for data similar to our simulations where the concentrations 
were equally spaced on a logarithmic axis  This makes sense. Since the concentrations of 
drug are equally spaced on a log scale, it makes sense that the uncertainty of the log(EC50) 
will be symmetrical, but the uncertainty of the EC50 will not be. If the true uncertainty is 
not symmetrical, then the asymptotic confidence intervals will not be very useful. 

Example simulation 2. Exponential decay. 
Many biological and chemical events follow an exponential decay model. We'll compare 
three ways to express this model. In all cases, one of the parameters is the starting point, 
which we will call Y0 . The second parameter quantifies how rapidly the curve decays. We 
will compare three ways to express this value, as a rate constant in units of inverse time, 
as a time constant in units of time, or as a log(rate constant). The three equations are:  
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Is it better to express the exponential decay equation in terms of rate constant, time 
constant, or log(rate constant)? If we want to rely on the asymptotic confidence intervals 
provided by nonlinear regression programs, we want to write the model so the parameter 
distribution is close to Gaussian. 

Which distribution is closer to Gaussian? 
To find out which of the three equations uses a parameter that is closer to Gaussian, we'll 
simulate data.  

First, we need to choose some parameters. We chose a curve that starts at Y=100 and 
decays exponentially towards 0 with a rate constant (koff) of 0.3 min-1 and a half-life of a 
bit more than 2 minutes (ln(2)/koff). Our simulations generated 10 data points equally 
spaced between 0 and 20 minutes, adding Gaussian random error with a standard 
deviation of 10.The graph below shows three sample simulations.  
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We simulated 5000 sets of data, and fit each data set three times, using the three different 
expressions of the exponential decay model. The distribution of the rate constant, time 
constant, and log(rate constant) are shown in the following figures, which also 
superimpose ideal Gaussian distributions. 
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At first glance, all three distributions look roughly Gaussian. Looking more carefully, you 
can see that the distribution of time constants is skewed to the right. Careful scrutiny 
reveals that the rate constant distribution is also a bit skewed. These impressions can be 
confirmed by a normality test. The results are shown in the following table. 
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Model Rate constant Time constant Log(Rate constant) 

KS 0.06359 0.07169 0.01339 

P value P<0.0001 P<0.0001 P > 0.10 
 

The KS value is the largest discrepancy between the actual cumulative distribution and an 
ideal cumulative Gaussian distribution (expressed as a fraction). None of the distributions 
are far from Gaussian. The distribution of time constants is the furthest from Gaussian; 
the distribution of log(rate constant) is closest. The P value answers the following 
question: If the true distribution is Gaussian, what is the chance of obtaining a KS value as 
large as, or larger than, we observed. The distribution of both rate constants and time 
constants deviated significantly from the Gaussian ideal, while the distribution of log(rate 
constants) is indistinguishable from Gaussian. 

Because we simulated so many data sets, the KS test has the power to detect even modest 
deviations from a Gaussian distribution. For this example, the distribution of log(rate 
constant) comes the closest to a Gaussian distribution, but the other two are not very far 
off.   

How accurate are the confidence intervals of time constants and rate 
constants? 
Using simulated data, we can ask how often the asymptotic 95% confidence interval 
contains the true value. Since these are simulated data sets, we know the true value (not 
true when you analyze experimental data). So for each fit of each of the 5000 simulated 
data sets, we can ask whether the 95% confidence interval includes the true value.  The 
results are: 

Model % of "95% CIs" containing true value 

Rate constant 93.72% 

Time constant 94.44% 

Log(rate constant) 94.94% 

 

No matter how we expressed the model, the confidence intervals contained the true value 
almost 95% of the time. The difference between 95% confidence and 93% confidence is 
unlikely to alter your interpretation of experimental results.  

These simulations showed us that writing the model in terms of the logarithm of rate 
constant will give us a parameter that is closest to a Gaussian distribution and thus gives a 
asymptotic 95% confidence interval that is closest to correct. But the simulations also 
showed that the other two forms of the model (time constant and rate constant) work 
quite well. 

How to generate a parameter distribution with Prism 
Prism provides an “analysis” that simulates data. You need to choose the range and 
spacing of the X values, enter or choose an equation, enter values for the parameter, and 
choose the kind of random scatter (Gaussian with SD=10 in this example).  



 

132 E. Confidence intervals of the parameters 

To get a sense of how the random numbers work, go to the graph, drop the Change menu 
and choose Simulate again. Repeat a few times to see how the data changes.  

The next step is to analyze the simulated data to determine the best-fit values. From the 
results page, click Analyze, choose Nonlinear regression, and choose the equation.  

Create a script to instruct Prism to generate and analyze 5000 sets of data, and record the 
best-fit values. To learn details about scripting, read the chapter on scripts in the Prism 
User's Guide. Using Notepad or some other text editor, create a file with the following 
script. Enter the lines shown in the left column. The right column explains what each 
command does, and should not be typed. Give the file a name with the extension pzc.  

Script line Explanation 
Shortlog Don't add a line to the log for each iteration. 

Setpath c:\sims Use this folder.  

Open disskin.pzm Open a Prism file. 

OpenOutput kinfit.txt Create a text file to hold the best-fit values. 

ForEach 5000 Loop 5000 times. 

Goto R 1 Go to the first results page. 

Regenerate Create new random numbers. 

Goto R 2 Go to the second results page. 

WCell 4,1 Write the value in the fourth row of the first 
column into the output file. This is the best-fit 
value of the rate constant. 

Next Loop again. 

 

Run this script from Prism, by choosing the Run Script command from the File menu. 
Selecting the script you just created, and click Run to execute it. Depending on the speed 
of your computer, this task should take a few minutes to execute. 

Import the resulting file (kinfit.txt for this example) into a fresh Prism table, and analyze 
to create a frequency distribution and/or column statistics. 

The example above created a list of parameter values, which could be imported into Prism 
for further analyses. In some cases, you want to record the list of 95% confidence intervals 
that Prism reports. But then you’ll encounter a problem. In the nonlinear regression 
results, Prism reports the confidence interval of each parameter. There is no way to 
instruct Prism to report the two individual values separately, rather than as one text 
string. You can’t import these back into Prism as two separate values. But you can get 
Excel to do it.  

Assume that you simulated data with a time constant of 3.0 minutes. You run a script that 
saves the confidence interval of the time constant for each simulated data set. Import this 
list into column A of  Excel, where each confidence interval becomes a single string stored 
in a single Excel cell. For example, cell A2 might contain the text "1.86 to 4.14". We’ll use 
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the Excel formulae shown below to extract the lower and upper confidence limit from the 
text and then determine whether this interval contains the true parameter value (3.0 for 
this example).   

Cell Comment Put in Excel  
A2 Confidence interval 1.86 3 to 4.137 

B2 Lower confidence 
limit 

=Value(LEFT(A2,FIND(" to",A2,1))) 

C2 Upper confidence 
limit 

=Value(RIGHT(A2,LEN(A2) - (FIND(" to",A2) +3))) 

D2 Does interval start 
below the true 
value? 

=(B2<3.0) 

E2 Does the interval 
end above the true 
value? 

=(C2>3.0) 

F2 Does the interval 
contain the true 
value? 

=IF(AND(D2,E2),1,0) 

 

Cell A2 is the confidence interval as imported from the file created by the Prism script. 
Cell A3 will have the next interval, and A4 the next, and so on. Cell B2 extracts the lower 
confidence limit from the left part of the interval and C2 extracts the upper limit. D2 is 
True if the lower confidence limit (B2) is less than the true parameter value (3.0) and is 
otherwise false. E2 is True if the upper confidence limit (C2) is greater than the true 
parameter value (3.0). Cell F2 combines those two Booleans. If both are true, F2 has a 
value of 1.0. This happens when the interval begins below the true value and ends above 
it. In other words, F2 will equal 1.0 when the confidence interval contains the true value, 
and otherwise equal 0.  

Copy these formula down the table, then add up column F. The sum is the number of the 
intervals (each computed from a separate simulated data set) that contain the true value. 
Divide by the total simulated data sets to compute the fraction of the intervals that 
contain the true value.  
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F. Comparing models 

21. Approach to comparing models 

Why compare models? 
When fitting biological data with regression, your main objective is often to discriminate 
between different models. Perhaps you wish to test whether your data are more consistent 
with one possible mechanism relative to another. 

You have only a limited number of data points, and these include experimental scatter. 
Given those limitations, there is no way to know for sure which model is best. All you can 
do is address the question statistically and get answers in terms of probabilities. This 
chapter explains how. 

Before you use a statistical approach to comparing models 

Sometimes the more complicated model just doesn’t fit 
Sometimes you may not even get the opportunity to compare a simple model to a more 
complicated model because the nonlinear regression program cannot fit the more 
complicated model. You may receive an error message such as “cannot converge”, 
“floating point error”, “can’t invert matrix”, or “division by zero”. In general, the exact 
wording of the error message is not helpful, but the presence of an error message tells you 
that the program is not able to fit that model.  

If you get an error message, don’t assume there is something wrong with the program or 
that you have made incorrect choices. Rather, follow these steps: 

1. Check to make sure the model is sensible. Would it make more sense to fix one 
of the parameters to a constant value (for example, fixing the bottom plateau to 
zero)? Would it make more sense to constrain a parameter to a range of values 
(for example, constrain a fraction to be between zero and one)? 

2. Check that the initial values create a curve that goes near your data points.  

3. Try other initial values in hopes that the program can converge on a solution. 

4. If all your attempts end in an error message, then you’ve learned something 
important – that it is not possible to fit this model to your data. Your data 
simply don’t define the chosen model. 

5. If you really want to pursue the idea that the more complicated model is correct, 
consider repeating the experiment with more data points and perhaps a wider 
range of X values. 
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Don’t compare models statistically if one model fits with nonsensical 
best-fit parameter values 
Before relying upon statistical comparisons between models, use common sense. Reject 
any model if the best-fit values make no sense. For example, reject a model if the best-fit 
value of a rate constant is negative (which is impossible). Also reject a fit if the confidence 
intervals of the best-fit values are very wide. You don’t need any statistical test to tell you 
that you shouldn’t accept such a model. It might be possible to salvage the situation by 
telling the nonlinear regression program to constrain the value to be within a certain 
range. 

Tip: Only use statistical calculations to compare the fits of two models if the 
results of both fits are sensible and the more complicated model fits better. 

If both models fit the data with sensible best-fit values, your next step is to compare 
goodness-of-fit as quantified by the sum-of-squares (or weighted sum-of-squares). If the 
simpler model fits better (has lower sum-of-squares) than the more complicated model, 
then you are done. This model is both simpler and fits the data better. What more could 
you want? Accept this model with no statistical calculations. This will happen rarely, 
however, as the curve generated by the more complicated equation (the one with more 
parameters) will nearly always have a lower sum-of-squares, simply because it has more 
inflection points (it “wiggles” more). In most cases, therefore, you will need to use a more 
powerful method to discriminate one model from the other. You need to use a method 
that looks at the tradeoff between lower sum-of-squares and more parameters.   

The model with the lower sum-of-squares may not be preferred 
Nonlinear regression quantifies goodness-of-fit as the sum of squares of the vertical 
distances of the data points from the curve. You might assume, therefore, that when 
comparing two models, you always choose the one that fits your data with the smallest 
sum-of-squares. In fact, it is not that simple to compare one model to another. 

The problem is that a more complicated model (more parameters) gives the curve more 
flexibility than the curve defined by the simpler model (fewer parameters). This means 
that the curve defined by more parameters can “wiggle” more and thus fit the data better. 
For instance, a two-site binding model almost always fits competitive binding data better 
than a one-site binding model. A three-site model fits the data even better, and a four-site 
model better still! 

To compare models, therefore, you can’t just ask which model generates a curve that fits 
your data with the smallest sum-of-squares. You need to use a statistical approach. 

Statistical approaches to comparing models 

Choose an approach to compare nested models 
When you compare models, most often the two models are related. The term “related” has 
a specific meaning when applied to models. Two models are said to be related when one is 
a simpler case of the other. For example, a one-site competitive binding model is a simple 
case of a two-site competitive binding model. Similarly, a kinetic model with one 
component or phase is a simple case of the same model with multiple components or 
phases. When one model is a simpler case of the other, mathematicians say that the 
models are nested.  
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If your models are related (nested), you can use two distinct approaches to comparing 
models. 

• The first method is based on statistical hypothesis testing and ANOVA (analysis 
of variance). It is based on analyzing the difference between the sum-of-squares 
of the two models. This is why it is sometimes called the extra sum-of-squares 
test. These ANOVA calculations compute an F ratio and a P value. If the P value 
is low, you conclude there are sufficient data to convince you to reject the 
simpler model (the null hypothesis) in favor of the alternative hypothesis that 
the more complicated model is correct. This F test approach is explained in the 
Chapter 22 (the next chapter).  

• The second method for comparing models is not based on hypothesis testing at 
all, but rather on information theory. This method calculates Akaike’s 
Information Criterion (AIC) which answers the questions you care about: 
“Which model is more likely to have generated the data?”, and “How much more 
likely?”.  This approach is discussed in Chapter 23. 

Don’t use the F test if your models are not nested 
The F test (extra sum-of-squares) should only be used to compare nested models. If your 
models are not nested, use the AIC approach. 

Compare the fit of two models to the same data set.  
The methods used to compare models only work when both models are fit to exactly the 
same data. Some examples of comparisons that cannot be made using methods designed 
to compare models are listed below. 

• It is not appropriate to use model comparison methods to compare two ways of 
expressing the data (say Y values expressed as logarithms vs. plain numbers). 
The Y values must be the same in both fits. 

• It is not appropriate to use model comparison methods to compare fits that 
using different weighting methods. The weights must be the same in both fits. 

• It is not appropriate to use model comparison methods to compare a fit to a full 
data set vs. the fit to just part of the data set (say leaving off the early time 
points). The data must be the same in both fits. 

• It is not appropriate to use model comparison methods to compare a fit to a data 
set with the fit to the same data set minus an outlying value.  

When you compare two models, both models must fit the same data using the same 
weighting scheme.  

Using global fitting to turn questions about comparing curves into 
questions about comparing models 
So far, we have only discussed comparing the fit of two models to one data set. 

Often you wish to ask a different question. You want to compare two different curves. In 
some situations you want to ask whether a particular parameter (say the logEC50) differs 
between two data sets. In other situations, you may want to ask a more general question – 
are two curves distinguishable at all? 
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It turns out that you can answer these questions using the same methods used to compare 
models. The trick is to turn a question about comparing curves into a question about 
comparing models. This is done via global or shared fitting. The details are explained in 
Chapter 27, so we’ll just give an overview here. 

Assume you measure a decaying signal over time to determine a rate constant. You want 
to know if the rate constant differs significantly between two treatments. How can you 
turn this question into a question about comparing two models? The first model is that 
the two curves are distinct, so you fit two separate curves and define the overall sum-of-
squares as the total of the sum-of-squares for each separate curve. The second model uses 
global fitting. You fit all the data at once, finding one shared value of the rate constant. 
Now that we have turned the question about comparing curves into a question about 
comparing models, we can use methods developed to compare models. The next two 
chapters explain these methods.  
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22. Comparing models using the extra sum-of-
squares F test 

Introducing the extra sum-of-squares F test 
When you compare two nested models, the model with more parameters will almost 
always fit the data better (have a lower sum-of-squares) than the model with fewer 
parameters.  It is not enough to compare sum-of-squares. We need to use a statistical 
approach to decide which model to accept. 

As its name suggests, the extra sum-of-squares F test is based on the difference between 
the sum-of-squares of the two models. It also takes into account the number of data points  
and the number of parameters of each model. It uses this information to compute a F 
ratio, from which it calculates a P value. The P value answers this question: If the simpler 
model (the one with fewer parameters) were really correct, what is the chance that you’d 
happen to obtain data where the difference between sum-of-squares is as large (or larger) 
than obtained in this experiment. ?  

If the P value is small,  there are two possibilities: 

• The more complicated model is correct. 

• The simpler model is correct, but random scatter led the more complicated 
model to fit better. The P value tells you how frequently you’d expect this to 
happen. 

So which model is correct?  Statistics can’t answer that question.  

Which model fits better? The more complicated model does, but you’d expect this by 
chance, so that is the wrong question to ask.  

Which model should we accept? This is answered by statistical hypothesis testing. First 
set a significance level (also called alpha), which is usually set to 0.05. If the P value is less 
than this significance level, conclude that the alternative model fits the data significantly 
better than the null hypothesis model. Otherwise, conclude that there is no compelling 
evidence supporting the alternative model, so accept the simpler (null) model.  

Note that the F test isn’t really helping you decide which model is correct. What it does is 
help you decide whether you have sufficient evidence to reject the simpler, null 
hypothesis, model.  

The F test is for comparing nested models only 
The F test is only valid for comparing nested models. It cannot be used for non-nested 
models. In this latter circumstance, you will need to use an alternative method based on 
information theory rather than hypothesis testing. This is explained in the following 
chapter. 
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GraphPad note: Prism does not enforce this restriction. It lets you compare any 
two models with the F test. The results will only be meaningful, however, if one 
model is a simple case of the other. 

How the extra sum-of-squares F test works 

One-way ANOVA as a comparison of models 
Using the F test to compare fits to nonlinear models is an adaptation of analysis of 
variance (ANOVA). We’ll first review one-way ANOVA, and then show how it can be 
viewed as a comparison of two models. We’ll then extend this to comparing the fits of two 
models. 

One-way ANOVA quantifies how sure you can be that the groups (treatments) really have 
different means. In these sample data below, a response was measured from six subjects 
in each of three groups.  
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Conventional ANOVA table 
ANOVA helps you decide whether the differences between groups could be due to chance. 
It does this by partitioning the variability into variation between groups and variation 
within groups.  

Here is a conventional ANOVA table. Depending on the program that you use, some of the 
terms may be different, for example, “error” instead of “residual”, and “groups” instead of 
“columns”. 

Source of variation SS df MS 
  Treatment (between columns) 13.61 2 6.804 

  Residual (within columns) 27.23 15 1.815 

  Total 40.84 17  

 

The first row quantifies how far the three (in this case) group means are from each other. 
The second row quantifies how much variability there is within the groups. The third row 
(total) quantifies the total variability among all the values (ignoring group altogether).  
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The first column is the sum-of-squares. The second column is degrees of freedom (df), 
which accounts for number of values and number of groups. The final column divides the 
sum-of-squares by the df to create something called mean-square. These mean-square 
values are comparable. The ratio of mean squares treatment divided by the mean square 
residual is called the F ratio. For this example, F= 3.75. If all the variability were random 
(the treatments were really all the same), you’d expect F to be near 1.0. Our F was much 
higher. This could be caused by a real difference among column means, or it could be a 
coincidence. A P value helps you consider these possibilities. For this example, the P value 
is 0.0479. This means that if the three treatments were really identical, there is a 4.79% 
chance of happening to find as much variability among group means as we observed here. 

An alternative ANOVA table emphasizing model comparison 
Below is an alternative view of the same table, which emphasizes that ANOVA compares 
two models. 

Model SS df 
  Null hypothesis 40.84 17 

  Alternative hypothesis 27.23 15 

Difference 13.61 2 

Relative difference 0.50 0.13 

Ratio (F) 3.75 

 

The ANOVA compares two models, or hypotheses: 

• The null hypothesis is that all the data are sampled from populations with the 
same mean, so the differences we observe between the sample means are due to 
chance. We just happened to sample larger values from one group and smaller 
from another. The fit of the data to this model is determined by summing the 
square of the difference between each value and the grand mean. The result is 
40.84. There are 18 values altogether, and we use the grand mean in the 
calculations, so there are 17 degrees of freedom. 

• The alternative hypothesis is that the groups really do have distinct means, that 
the variability among group means is not due to chance. The fit of the data to 
this model is quantified by summing the square of the difference between each 
value and its own group (column) mean. The result is 27.23. Each of the three 
groups has six values, but we use the group mean of each in the calculations. So 
there are 15 degrees of freedom (18 values minus 3 group mean, or equivalently, 
three groups with 5 degrees of freedom each).  

The third row compares the models by computing the difference between the two models. 
You always expect the alternative model to fit the data better (have a smaller sum-of-
squares). The group means are computed from the data, so of course the values are closer, 
on average, to the group means than to the grand mean. The question is how much better 
the alternative model works, and how likely is that difference to be due to chance.  

To make sense of these values, we need to express the difference as a ratio (so it doesn’t 
matter what units we used) and to account for degrees of freedom. This is done by 
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expressing the difference in sum-of-squares and df as a percent of the value for the 
alternative hypothesis. The difference in sum-of-squares is 50.0% of the sum-of-squares 
for the alternative hypothesis. The difference in degrees of freedom is 13.3% of the degrees 
of freedom for the alternative hypothesis.  

We won’t attempt to present a mathematical proof here, but statisticians have shown that 
if the null hypothesis were true, you’d expect the relative difference in sum-of-squares to 
be approximately equal to the relative difference in degrees of freedom. The ratio of the 
two percentages is called the F ratio, 3.75 for this example. 

If the null hypothesis were true – that really all three samples are drawn from populations 
with the same mean, and all differences are due to chance – then we expect the F ratio to 
be near 1. Statisticians know the distribution of the F ratio under the null hypothesis, so 
we can find out how unlikely it would be to have an F ratio greater than or equal to 3.75. 
The answer depends on both degrees of freedom values (for the alternative hypothesis and 
for the difference). For this example, the answer – the P value – is 0.0479. This means 
that if the three treatments were really identical, there is a 4.79% chance of happening to 
find as much variability among group means as we observed here. 

Why rearrange the ANOVA table? 
The alternative presentation of the ANOVA table in the previous section emphasizes that 
ANOVA compares two models. We find this an easier way to understand ANOVA results 
than the conventional presentation. But both approaches show the same results – they 
just arrange the values differently. 

We present this alternative approach to one-way ANOVA here simply as a way to 
introduce the use of an F test to compare models. 

The F test to compare models 
The following table generalizes the concepts presented in the preceding section. 

Model SS df 
  Null hypothesis SSnull DFnull 

  Alternative hypothesis SSalt DFalt 

Difference SSnull - SSalt DFnull - DFalt 

Relative difference (SSnull - SSalt)/ SSalt (DFnull - DFalt) / DFalt 

   
Ratio (F) 

null alt alt

null alt alt

(SS -SS )/SS        
(DF -DF )/DF

 

 

The idea is simple. You fit your data to two models, and quantify goodness-of-fit as the 
sum of squares of deviations of the data points from the model. You quantify the 
complexity of the models with the degrees of freedom (df), which equal the number of 
data points minus the number of parameters fit by regression. 

If the simpler model (the null hypothesis) is correct, you expect the relative increase in the 
sum of squares to be approximately equal the relative increase in degrees of freedom. If 
the more complicated (alternative) model is correct, then you expect the relative increase 
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in sum-of-squares (going from complicated to simple model) to be greater than the 
relative increase in degrees of freedom: 

The F ratio equals the relative difference in sum-of-squares divided by the relative 
difference in degrees of freedom. 

null alt alt

null alt alt

(SS -SS )/SS
F=         

(DF -DF )/DF  

That equation is more commonly shown in this equivalent form: 

null alt null alt

alt alt

(SS -SS )/(DF -DF )
F=       

SS /DF  

or 

(SS1-SS2)/(DF1-DF2)F=   
SS2/DF2

 

where the numbers 1 and 2 refer to the null (simpler) and alternative (more complex) 
models, respectively. F ratios are always associated with a certain number of degrees of 
freedom for the numerator and a certain number of degrees of freedom for the 
denominator. This F ratio has DF1-DF2 degrees of freedom for the numerator, and DF2 
degrees of freedom for the denominator. 

How to determine a P value from F 
The F distribution is known, so a P value can be calculated from the F ratio and the two df 
values.  

Tip: When you use a program or table to find a P value that corresponds with 
the F ratio, take extra care to be sure that you don’t mix up the two df values. 
You’ll get the wrong P value if you accidentally reverse the two df values. 

GraphPad offers a free web calculator to calculate P from F (go to www.graphpad.com, 
then to QuickCalcs). You can also use this Microsoft Excel function: 

 =FDIST(F,dfn, dfd) 
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23. Comparing models using Akaike’s 
Information Criterion (AIC) 

The previous chapter explained how to compare nested models using an F test and choose 
a model using statistical hypothesis testing. This chapter presents an alternative approach 
that can be applied to both nested and non-nested models, and which does not rely on P 
values or the concept of statistical significance. 

Introducing Akaike’s Information Criterion (AIC) 
Akaike developed an alternative method for comparing models, based on information 
theory. The method is called Akaike’s Information Criterion, abbreviated AIC. 

The logic is not one of hypothesis testing, so you don't state a null hypothesis, don’t 
compute a P value, and don’t need to decide on a threshold P value that you deem 
statistically significant. Rather the method lets you determine which model is more likely 
to be correct and quantify how much more likely. 

Unlike the F test, which can only be used to compare nested models, Akaike’s method can 
be used to compare either nested or nonnested models. 

The theoretical basis of Akaike's method is difficult to follow. It combines maximum 
likelihood theory, information theory, and the concept of the entropy of information 
(really!). If you wish to learn more, read Model Selection and Multimodel Inference -- A 
practical Information-theoretic approach by KP Burnham and DR Anderson, second 
edition, published by Springer in 2002.  It presents the principles of model selection in a 
way that can be understood by scientists. While it has some mathematical proofs, these 
are segregated in special chapters and you can follow most of the book without much 
mathematical background. 

How AIC compares models 
While the theoretical basis of Akaike's method is difficult to follow, it is easy to do the 
computations and make sense of the results. 

The fit of any model to a data set can be summarized by an information criterion 
developed by Akaike.  

If you accept the usual assumptions of nonlinear regression (that the scatter of points 
around the curve follows a Gaussian distribution), the AIC is defined by the equation 
below, where N is the number of data points, K is the number of parameters fit by the 
regression plus one (because regression is “estimating” the sum-of-squares as well as the 
values of the parameters), and SS is the sum of the square of the vertical distances of the 
points from the curve. 

SSAIC=N ln +2K
N

 ⋅  
 
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When you see a new equation, it is often helpful to think about units. N and K are unitless, 
but SS is in the square of the units you choose to express your data in. This means that 
you can’t really interpret a single AIC value. An AIC value can be positive or negative, and 
the sign of the AIC doesn’t really tell you anything (it can be changed by using different 
units to express your data). The value of the AIC is in comparing models, so it is only the 
difference between AIC values that you care about. 

Define A to be a simpler model and B to be a more complicated model (with more 
parameters). The difference in AIC is defined by: 

( )

B A

B A
B A

B
B A

A

∆AIC=AIC -AIC

SS SS=N ln -ln +2(K -K )
N N

SS=N ln +2 K -K
SS

    
        
 

⋅ ⋅ 
 

 

The units of the data no longer matter, because the units cancel when you compute the 
ratio of the sum-of-squares.  

The equation now makes intuitive sense. Like the F test, it balances the change in 
goodness-of-fit as assessed by sum-of-squares with the change in the number of 
parameters to be fit. Since model A is the simpler model, it will almost always fit worse, so 
SSA will be greater than SSB. Since the logarithm of a fraction is always negative, the first 
term will be negative. Model B has more parameters, so KB is larger than KA, making the 
last term positive. If the net result is negative, that means that the difference in sum-of-
squares is more than expected based on the difference in number of parameters, so you 
conclude Model B (the more complicated model) is more likely. If the difference in AIC is 
positive, then the change in sum-of-squares is not as large as expected from the change in 
number of parameters, so the data are more likely to have come from Model A (the 
simpler model).  

The equation above helps you get a sense of how AIC works – balancing change in 
goodness-of-fit vs. the difference in number of parameters. But you don’t have to use that 
equation. Just look at the individual AIC values, and choose the model with the smallest 
AIC value. That model is most likely to be correct.  

A second-order (corrected) AIC 
When N is small compared to K, mathematicians have shown that AIC is too small. The 
corrected AIC value, called AICC is more accurate. AICC is calculated with the equation 
below (where N is number of data points, and K is the number of parameters plus 1): 

C
2K(K+1)AIC =AIC+

N-K-1
 

If your samples are large, with at least a few dozen times more data points than 
parameters, this correction will be trivial. N will be much larger than K, so the numerator 
is small compared to the denominator, so the correction is tiny. With smaller samples, the 
correction will matter and help you choose the best model. 

Note: The AICc can only be computed when the number of data points is at least 
two greater than the number of parameters.  
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We recommend that you always use the AICc rather than the AIC. With small sample sizes 
commonly encountered in biological data analysis, the AICc is more accurate. With large 
sample sizes, the two values are very similar.  

The change in AICc tells you the likelihood that a model is correct  
The model with the lower AICc score is the model more likely to be correct. But how much 
more likely? 

If the AICc scores are very close, there isn't much evidence to choose one model over the 
other. If the AICc scores are far apart, then the evidence is overwhelming. The probability 
that you have chosen the correct model is computed by the following equation, where ∆ is 
the difference between AICc scores. 

-0.5

-0.5

eprobability=
1+e

∆

∆  

Note: The probabilities are based on the difference between AICc scores. The 
probabilities are the same if the AICc scores are 620000 and 620010 as they are 
if the AICc scores are 1 and 11. Only the absolute difference matters, not the 
relative difference. 

This graph shows the relationship between the difference in AIC (or AICc) scores, and the 
probability that each model is true.  
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Note: These probabilities are also called Akaike’s weights. 

If the two AICc values are the same, then the difference is zero and each model is equally 
likely to be correct. The graph shows that there is a 50% chance that model A is correct, 
and a 50% chance that model B is correct. If the difference is 2.0, with model A having the 
lower score, there is a 73% probability that model A is correct, and a 27% chance that 
model B is correct. Another way to look at this is that model A is 73/27 or 2.7 times more 
likely to be correct than model B. If the difference between AICc scores is 6.0, then model 
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A has a 95% chance of being correct so is 20 (95/5) times more likely to be correct than 
model B. 

Note: Akaike’s weights compute the relative probability of two models. It can be 
extended to compute the relative probabilities of a family of three or more 
models. But it is always possible that another model is even more likely. The 
AICc method only compares the models you choose, and can’t tell you if a 
different model is more likely still. 

The relative likelihood or evidence ratio 
When comparing two models, you can divide the probability that one model is correct by 
the probability the other model is correct to obtain the evidence ratio, which is defined by 
this equation. 

c-0.5 AIC

Probability that model 1 is correct 1Evidence Ratio=
Probability that model 2 is correct e ⋅∆=
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Note: The evidence ratio is based on the absolute difference between AICc 
scores, not the relative difference. You’ll get the same evidence ratio with AICc 
scores of 4567 and 4577 and AICc scores of 1 and 11. In both cases, the 
difference is 10.  

For example, if the AICc scores differ by 5.0, then the evidence ratio equals 12.18. The 
model with the lower AICc score is a bit more than twelve times more likely to be correct 
than the other model. Most people don’t consider this to be completely persuasive. If the 
difference in AICc scores equals 10, then the evidence ratio is 148, so the evidence is 
overwhelmingly in favor of the model with the lower AICc. 
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Don’t over interpret the evidence ratio. The ratio tells you the relative likelihood, given 
your experimental design, of the two models being correct. If you have few data points, 
the simpler model might fit best with a very high evidence ratio. This tells you that you 
can be quite sure that the simple model is adequate to explain your data. With so few 
points, you don’t have any real evidence that the more complicated model is right. This 
doesn’t mean that a more complicated model might not explain your system better. If you 
had lots of data, you might find that a more complicated model is more likely to be 
correct.  

Terminology to avoid when using AICc 
The AIC is derived from information theory, which is different from than statistical 
hypothesis testing. You can use the AICc method to determine the relative likelihood of 
two (or more) models. You can’t use AICc to decide whether the data fit “significantly” 
better to one model so you should “reject” the other. Therefore you should never use the 
terms “significant” or “reject” when presenting the conclusions of model comparison by 
AICc. These terms have very definite meanings in statistics that only applies when you 
compute a P value and use the construct of statistical hypothesis testing. Those terms 
carry too much baggage, so should only be used in the context of statistical hypothesis 
testing. 

How to compare models with AICC by hand 
Even if your nonlinear regression program does not compare models with the Akaike’s 
Information Criteria, you can do so fairly simply. These steps review the equations 
presented in this chapter, so you can compute AICc by hand. 

1. Fit the first model using nonlinear regression. 

2. Look at the results of nonlinear regression and write down the sum-of-squares; 
call this value SS. If you used any weighting factors, then record the weighted 
sum-of-squares. 

3. Define N to be the number of data points. Be sure to account for replicates 
properly. If you have 13 X values with duplicate determinations of Y, and you 
asked the program to treat each replicate as a separate value, then N is 26. 

4. Define K to be the number of parameters fit by nonlinear regression plus 1. Don’t 
count parameters that are constrained to constant values. If in doubt, count the 
number of distinct SE values reported by nonlinear regression, then add 1 to get 
the value of K. (Why add one? Because nonlinear regression is also “estimating” 
the value of the sum-of-squares.) 

5. Compute AICC: 

c
SS 2K(K+1)AIC =N ln +2K+
N N-K-1

 ⋅  
 

 

6. Repeat steps 1-5 with the other model. 

7. The model with the lower AICc score is more likely to be correct. 

8. Calculate the evidence ratio from the difference in AICc scores:  
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c-0.5 AIC
1Evidence Ratio=

e ⋅∆  

One-way ANOVA by AICc 
The previous chapter showed how to turn one-way ANOVA into a model comparison 
problem, and did the comparison by the extra sum-of-squares F test. Here are the same 
data, comparing models by AICc.  

Model SS N Pars AICc Probability Evidence 
Ratio 

Null Hypothesis 40.84 18 1 19.55 37.53% 
Alternative hyp. 27.23 18 3 18.53 62.47% 

1.66 

 

The alternative hypothesis (that the group means are not all identical) has the lower AICc. 
Thus, it is more likely to be correct than the null hypothesis that all the data come from 
populations with the same mean. But the evidence ratio is only 1.66. So the alternative 
hypothesis is more likely to be correct than the null hypothesis, but only 1.66 times more 
likely. With so few data and so much scatter, you really don’t have enough evidence to 
decide between the two models. 



 

 24. How should you compare models -- AICc or F test? 149 

24. How should you compare models -- AICc or 
F test? 

A review of the approaches to comparing models 
Chapter 21 discussed the general approach to use when comparing models. Most 
important: 

Before comparing models statistically, use common sense. Only use statistical 
comparisons to compare two models that make scientific sense, and where each 
parameter has a sensible best-fit value and a reasonably narrow confidence interval. Many 
scientists rush to look at statistical comparisons of models too soon. Take the time to ask 
whether each fit is sensible, and only rely on statistical comparisons when both models fit 
the data well.   

If you wish to compare two models that are not related (“nested”) then your only choice is 
to compare the fits with the AICc method. The F test should not be used to compare 
nonnested models. Since you’ll rarely find it helpful to compare fits of biological models 
that are not nested, you’ll almost always compare nested models.  

If the two models are related, and both fit the data with sensible parameter values, you 
can choose between the F test and AIC method. The rest of this chapter explains the 
advantages and disadvantages of the two approaches. 

Pros and cons of using the F test to compare models 
The F test is based on traditional statistical hypothesis testing. 

The null hypothesis is that the simpler model (the one with fewer parameters) is correct. 
The improvement of the more complicated model is quantified as the difference in sum-
of-squares. You expect some improvement just by chance, and the amount you expect by 
chance is determined by the number of degrees of freedom in each model. The F test 
compares the difference in sum-of-squares with the difference you’d expect by chance. 
The result is expressed as the F ratio, from which a P value is calculated. 

The P value answers this question: If the null hypothesis is really correct, in what fraction 
of experiments (the size of yours) will the difference in sum-of-squares be as large as you 
observed or larger? If the P value is small, you’ll conclude that the simple model (the null 
hypothesis) is wrong, and accept the more complicated model. Usually the threshold P 
value is set at its traditional value of 0.05. If the P value is less than 0.05, then you reject 
the simpler (null) model and conclude that the more complicated model fits significantly 
better.  

Reminder: The F test should only be used to compare two related (“nested”) 
models. If the two models are not nested, use the AICc method to compare 
them. 



 

150 F. Comparing models 

The main advantage of the F test is familiarity. It uses the statistical hypothesis testing 
paradigm that will be familiar to the people who read your papers or attend your 
presentations. Many will even be familiar with the use of the F test to compare models. 

The F test also has some disadvantages: 

• You have to set an arbitrary value of alpha, the threshold P value below which 
you deem the more complicated model to be “significantly” better so “reject” the 
simpler model. Traditionally, this value of alpha is set to 0.05, but this is 
arbitrary. 

• The value of alpha is generally set to the same value regardless of sample size. 
This means that even if you did an experiment with many thousands of data 
points, there is a 5% chance of rejecting the simpler model even when it is 
correct. If you think about it, this doesn’t make much sense. As you collect more 
and more data, you should be increasingly sure about which model is correct. It 
doesn’t really make sense to always allow a 5% chance of rejecting the simple 
model falsely.  

• The F test cannot be readily extended to compare three or more models. The 
problem is one of interpreting multiple P values.  

Pros and cons of using AICc to compare models 
The AICc method is based on information theory, and does not use the traditional 
“hypothesis testing” statistical paradigm. Therefore it does not generate a P value, and 
does not reach conclusions about “statistical significance” and does not “reject” any 
model. 

The AICc model determines how well the data supports each model. The model with the 
lowest AICc score is most likely to be correct. The difference in AICc score tells you how 
much more likely. Two models can be compared with a likelihood ratio, which tells you 
how many times more likely one model is compared to the other. 

The main advantage of the AIC approach is that it doesn’t tell you just which model is 
more likely, it tells you how much more likely. This makes it much easier to interpret your 
results. If one model is hundreds or thousands of times more likely than another, you can 
make a firm conclusion. If one model is only a few times more likely than the other, you 
can only make a very tentative conclusion.  

Another feature of the AIC approach (which we consider to be an advantage) is that the 
method doesn’t make any decisions for you. It tells you which model is more likely to be 
correct, and how much more likely. It is up to you to make a decision about whether to 
conclude that one model is clearly correct, or to conclude that the results are ambiguous 
and the experiment needs to be repeated. You can simply accept the more likely model. 
You can accept the simpler model unless the more complicated model is much more 
likely. Or you can conclude that the data are ambiguous and make no decision about 
which model is best until you collect more data. This seems like a much more sensible 
approach to us than the rigid approach of statistical hypothesis testing. 

A final advantage of the AICc approach is that it is easily extended to compare more than 
two models. Since you don’t set arbitrary values of alpha and declare “statistical 
significance”, you don’t get trapped in the logical quandaries that accompany multiple 
statistical comparisons. 
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The only real disadvantage of the AICc approach is that it is unfamiliar to many scientists. 
If you use this approach, you may have to explain the method as well as your data. 

Which method should you use? 
When comparing models, by far the most important step comes before using either the F 
test or the AICc method. You should look at the graph of the fits, and at the curve fitting 
results. You should reject a model if one of the fits has best-fit values that make no 
scientific sense, if the confidence intervals for the parameters are extremely wide, or if a 
two phase (or two component) model fits with one phase having a tiny magnitude. Only 
when both fits are sensible should you go on to compare the models statistically. 

If you compare nonnested models, then the F test is not appropriate. Use the AICc 
approach. 

If you compare three or more models, then the whole approach of significance testing gets 
tricky. Use the AICc approach. 

In most cases, you’ll compare two nested models, so there is no clear advantage of one 
approach over the other. We prefer the AICc method for the reasons listed in the previous 
section, mostly because AICc quantifies the strength of the evidence much better than 
does a P value.  However this is not a strong preference, and the F test method works well 
and has the advantage of familiarity. 

Tip: Pick a method and stick with it. It is not appropriate to compare with both 
methods and pick the results that you like the best. 
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25. Examples of comparing the fit of two models 
to one data set 

Example 1. Two-site competitive binding model clearly better. 

The data 
The F test can compare two nested models. In this example, we compare a one-site to a 
two-site competitive binding model. 
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Do both fits make sense? 
The graph above shows the results of fitting both a one-site (dashed curve) and two-site 
(solid curve) competitive binding curve to some data. Here are the tabular results. 

One site competition
Best-fit values
     BOTTOM
     TOP
     LOGEC50
     EC50
Std. Error
     BOTTOM
     TOP
     LOGEC50
95% Confidence Intervals
     BOTTOM
     TOP
     LOGEC50
     EC50
Goodness of Fit
     Degrees of Freedom
     R²
     Absolute Sum of Squares
     Sy.x

257.9
2873
-6.471
3.3814e-007

67.27
66.12
0.07250

102.8 to 413.0
2721 to 3026
-6.638 to -6.304
2.3009e-007 to 4.9693e-007

8
0.9910
116882
120.9

Two site competition
Best-fit values
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
     EC50_1
     EC50_2
Std. Error
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
95% Confidence Intervals
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
     EC50_1
     EC50_2
Goodness of Fit
     Degrees of Freedom
     R²
     Absolute Sum of Squares
     Sy.x
Constraints
     FRACTION1

188.8700
3030.036
0.3130884
-7.520541
-6.121639
3.016191e-008
7.557197e-007

27.88553
39.85059
0.05738087
0.1907365
0.07960846

120.6341 to 257.1059
2932.522 to 3127.551
0.1726775 to 0.4534995
-7.987273 to -7.053809
-6.316442 to -5.926837
1.029738e-008 to 8.834680e-008
4.825679e-007 to 1.183484e-006

6
0.9991944
10475.93
41.78503

0 < FRACTION1 < 1.000000
 



 

 25. Examples of comparing the fit of two models to one data set 153 

Look at the graph of the one site fit model (dashed curve). It seems to deviate 
systematically from the data points, but not so badly that we will reject the model 
completely. The graph of the two-site fit looks better. Do the best-fit values of the two-site 
model make sense?  The best-fit two-site curve has a high affinity site with a logEC50 of -
7.5 comprising 31% of the sites, and a low affinity site with a logEC50 of -6.1. These results 
are certainly scientifically plausible. Next we look at the confidence intervals, which are 
reasonably narrow (given so few data points). Because the results are sensible, it makes 
sense to compare the sum-of-squares statistically. 

Compare with the F test 
The F test compares the goodness-of-fit of the two models (assessed by the sum-of-
squares, SS) adjusting for difference in the number of degrees of freedom (df).  

Here are the results. 

Model SS df 
  Null hypothesis (1 site) 116882 8 

  Alternative hypothesis (2 sites) 10476 6 

Difference 106406 2 

Fractional difference 10.16 0.333 

Ratio (F) 30.48 

 

The two sum-of-squares values come from the nonlinear regression results. 

The degrees of freedom equal the number of data points (11 in this example) minus the 
number of parameters fit by the program (three parameters for the one-site model, five 
for the two-site model).  

Going from the two-site model to the one site model, the degrees of freedom increased 
33.3%. If the one-site model were correct, you'd expect the sum-of-squares to also 
increase about 33.3% just by chance. In fact, the fit to the one-site model had a sum-of-
squares 1016% higher than the fit to the two-site model. The relative increase in sum-of-
squares was 30.5 times higher than the relative increase in degrees of freedom, so the F 
ratio is 30.5 with 2 (numerator) and 6 (denominator) degrees of freedom. 

The P value is 0.0007. The P value is a probability, and it is easy to interpret. Start by 
assuming that the null hypothesis, the simpler one-site model, is really correct. Now 
perform the experiment many times with the same number of data points, the same X 
values, and the same amount of scatter (on average). Fit each experiment to both one- and 
two-site models. The two-site model will almost always fit the data better than the one-
site model. But how much better? The P value is the fraction of those hypothetical 
experiments that you’d expect to find as a large a difference between the sum-of-squares 
of the two-site model and one-site model as you actually observed.  

You can’t know for sure which model is more appropriate for your data. All you can say is 
that if the simpler (one-site) model were correct, it would be a very rare coincidence – one 
that happens 0.07% of the time, or one time in 1428 experiments – to find data that fit the 
two-site model so well. Since that P value is lower than the traditional (but arbitrary) 
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threshold of 0.05, we’ll conclude that the two-site model fits the data significantly better 
than the one-site model.  

Compare with AICc 
Let’s compare the models using AICc. The sum-of-squares values come from the curve fit. 
There are 12 data points. The one-site model fits 3 parameters; the two-site model fits 5. 
Put these values into the equations presented in the previous chapter to calculate the AICc 
for each model.  

Model SS N Pars AICc Probability Evidence Ratio 
One site 116882 11 3 116.65 1.63% 

Two site 10476 11 5 108.45 98.37% 
60.33 

 

The two-site model has the lower AICc so is more likely to be correct. In fact it is 98.37% 
certain to be correct, which means it is 60.33 times more likely to be correct than the one-
site model. 

Example 2: Two-site binding model doesn’t fit better. 
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When you look at the graph of the results in this example (above), the two curves are 
almost identical. You may even have difficulty seeing that the graph includes two curves.  

Here are the tabular results of the two-site fit.  
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Best-fit values
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
     EC50_1
     EC50_2
Std. Error
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
95% Confidence Intervals
     BOTTOM
     TOP
     FRACTION1
     LOGEC50_1
     LOGEC50_2
     EC50_1
     EC50_2
Goodness of Fit
     Degrees of Freedom
     R²
     Absolute Sum of Squares
     Sy.x

299.0
2986
0.1271
-7.147
-6.145
7.1281e-008
7.1579e-007

28.97
33.22
0.1658
0.7740
0.1125

239.6 to 358.3
2918 to 3054
0.0 to 0.4667
-8.732 to -5.562
-6.376 to -5.915
1.8530e-009 to 2.7420e-006
4.2118e-007 to 1.2165e-006

28
0.9961
150257
73.26

 

The two EC50 values are about a log apart. But the best-fit value for the fraction of high 
affinity sites is only 13%, with a 95% confidence interval extending from 0 to 47%.  

With such a wide confidence interval for the fraction of high affinity sites, and with the 
two-site curve being barely distinguishable from the one-site curve, you should be dubious 
about the validity of the two-site fit. But those results are not nonsense, so we’ll push 
ahead and do the formal comparison with both the F test and the AICc method. 

Here are the results of the comparison using the extra sum-of-squares F test. 

Model SS df 
  Null hypothesis (1 site) 174334 30 

  Alternative hypothesis (2 sites) 150257 28 

Difference 24077 2 

Fractional difference 0.1602 0.0714 

Ratio (F) 2.24 

 

The P value is 0.1248. If the one-site model was correct, and you performed many 
experiments like this one, you’d find that data fit a two-site model this much better than a 
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one-site model in about 12% of the experiments (about 1 in 8). Since the P value is higher 
than the traditional threshold of 0.05, we conclude that we do not reject the null 
hypothesis. The data do not fit a two-site model significantly better than they fit a one-site 
model. 

Here are the AICc calculations. 

Model SS N Pars AICc Probability Evidence Ratio 

One site 174334 33 3 290.88 61.03 % 

Two site 150257 33 5 289.98 38.97 % 
1.57 

 

The one-site model is more likely to be correct. But the evidence ratio is only 1.57. With 
such a small evidence ratio, you can’t be very sure that the one-site model is right. The 
data are simply ambiguous.  

Example 3. Can’t get a two-site binding model to fit at all. 
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Here the data fit the one-site model just fine, resulting in the curve shown in the graph.  

When we attempted to fit the data to a two-site model, the nonlinear regression program 
said “cannot converge”. We tried several sets of initial values for the parameters, but kept 
seeing that error message. The two-site model that we used was constrained such that the 
parameter Fraction, which determines the fraction of the high affinity site, must have a 
value between 0.0 and 1.0. When we lifted the constraint, the program was able to fit the 
model, but with a best-fit value of fraction equal to -0.3. This makes no sense, so that fit is 
nonsense. 

Since we can’t fit the data to a sensible two-site model, we accept the one-site model. The 
problems of fitting to a two-site model are not due to program bugs or invalid choices. 
Rather, the data simply don’t fit the two-site model, so it should be rejected. The problems 
we had fitting the model provided useful information – that the data do not support the 
two-site model. 



 

 26. Testing whether a parameter differs from a hypothetical value 157 

26. Testing whether a parameter differs from a 
hypothetical value 

The approaches for comparing models described in the previous chapters can also be used 
to perform statistical testing on individual model parameters.  The key is to re-cast the 
problem as a choice between two models, one where the parameter of interest is 
estimated, and another where the same model is re-fitted to the data with the parameter 
of interest constrained to a specified value.  This concept is illustrated with an example 
below. 

Example. Is the Hill slope factor statistically different from 1.0? 
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Dose-response curves are defined by four parameters – the top plateau, the bottom 
plateau, the EC50 (the dose of drug that cause a response midway between top and bottom 
plateaus) and the slope factor, or Hill slope (which defines how steep the curve is). When 
the response is closely coupled to occupancy of a receptor, you may expect the slope factor 
to equal 1.0.  

In this example, we ask whether the Hill slope is significantly different from 1.0. 

Compare models with the F test 
The null hypothesis is that the standard Hill Slope of 1.0 is correct. To fit the model 
corresponding to the null hypothesis (simpler model), you constrain the slope to equal 
1.0; you are thus fitting a three-parameter Hill equation (Top, Bottom, and LogEC50 being 
estimated). The alternative hypothesis is that the Hill slope has some other value. To fit 
this model, fit the variable slope sigmoidal dose-response curve equation (also called a 
four-parameter Hill equation). The program will find best-fit values of Top, Bottom, 
LogEC50 and HillSlope. For these data, the best-fit Hills slope is 0.7535. Is the difference 
between the fitted Hill slope value of 0.7535 and the hypothetical value of 1.0 more than 
we’d expect by chance? 

Use the F test to find out. 
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Model SS df 
  Null hypothesis (Hill=1.0) 3504 23 

  Alternative hypothesis (Hill 
unconstrained) 

3080 22 

Difference 76 1 

Fractional difference 13.77% 4.55% 

Ratio (F) 3.03 

 

The data fit better (had a lower sum-of-squares) when the Hill slope was unconstrained. 
The program had one more way to adjust the curve to fit the data, so of course the sum-of-
squares is better. In this example, the relative difference is 13.77%. The corresponding 
difference in df is 4.55%. 

The sum-of-squares increased relatively more than the degrees of freedom. The ratio of 
the two relative differences (13.77%/4.55%) is the F ratio, which equals 3.03. Allowing the 
program to find the best-fit value of the Hill slope led to a better fit than fixing it to the 
standard value of 1.0. The improvement in goodness-of-fit was better than expected by 
chance, but only three times as good. 

The P value is 0.0958. The P value tells us that we’d see this much improvement in sum-
of-squares, or more, 9% of the time by chance alone if the true Hill slope really was 1.0. 
Since this is larger than the conventional cut-off of 5%, we conclude that fitting the Hill 
slope does not lead to a significantly better fit than fixing the Hill slope to the 
conventional value of 1.0. Our data do not provide us with convincing evidence to reject 
the null hypothesis that the Hill slope equals 1.0.  

Compare models with AICc 
We can also compare the models with AICc. 

Model SS N Pars AICc Probability Evidence 
Ratio 

Hill fixed to 1.0 3504 26 3 137.4 46.7% 

Hill unconstrained 3080 26 4 137.1 53.3% 
1.11 

 

The more complicated model (Hill slope fit to the data) has the lower AICc score, so is 
more likely to be correct. But the difference in AICc is small, so the evidence ratio is only 
1.11. With such a low ratio, you really can’t be at all sure which model will turn out to be 
correct (if you repeated the experiment many times). All you can say is that the model 
with the slope free to vary is slightly more likely to be correct.   

The AICc method does not follow the paradigm of statistical hypothesis testing. It is not 
designed to make a decision for you. Rather it tells you which model is more likely to be 
correct, and how much more likely. For this example, the model with the variable Hill 
slope is more likely, but not much more likely. The best conclusion from these results is 
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that the data simply don’t define the Hill slope well enough to know whether it is 
indistinguishable from 1.0.  

Compare with t test 
There is an alternative approach that is sometimes used to test whether a parameter value 
differs significantly from a hypothetical value. You can test this using a one-sample t test. 

The best-fit value of the HillSlope is 0.7535 with a standard error of 0.1356 (reported by 
the nonlinear regression program). Calculate t using this equation. 

 
Best-fit value-Hypothetical value 0.7535 1.00

1.816
SE 0.1356

t
−

= = =  

Determine a two-tailed P value for t=1.691 and 22 degrees of freedom (26 data points 
minus 4 parameters). Use a statistics table, the GraphPad QuickCalc web calculator, or 
this Excel equation. 

=TDIST(1.6816,22,2) 

 

The P value is 0.1068. Since this is higher than the traditional cut-off of 0.05, you 
conclude that the Hill Slope does not differ significantly from its standard value of 1.0.  

This t test is only valid if two dubious assumptions are true: 

• The distribution of the Hill Slope is Gaussian. In other words, if you collected (or 
simulated) many data sets and fit each one, you are assuming that the 
distribution of Hill Slopes would follow a Gaussian distribution. If it doesn’t, 
then the t test won’t be reliable and the P value won’t be exactly right.  

• The standard error of the Hill Slope reported by the nonlinear regression 
program is correct. In fact, nonlinear regression programs report approximate 
or asymptotic standard errors. In most cases, they are quite accurate. In some 
cases they are not. 

Because these two assumptions may not be entirely appropriate, the P value obtained 
from the t test is not exactly the same as the P value obtained from the F test. The F test 
assumes that the scatter of the data points around the curve follows a Gaussian 
distribution. The t test only sees the Hill Slope and its standard error, so assumes that the 
Hill slope would follow a Gaussian distribution (if the experiment were repeated many 
times). This is a more dubious assumption. 

We suggest that you avoid using the t test to compare parameter values. Instead use the F 
test (or AIC) to compare a model where the parameter’s value is fixed to a model where 
the parameter’s value is fit. 
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G. How does a treatment change the curve? 

27. Using global fitting to test a treatment effect 
in one experiment 

The logic underlying model comparisons described in the previous two chapters can also 
be extended to instances where you might want to compare one or more parameters of the 
same model applied to different data sets.  Some examples are shown below. 

Does a treatment change the EC50? 
Below is a graph of a dose-response curve in control and treated conditions. We want to 
know if the treatment changes the EC50. Are the two best-fit logEC50 values statistically 
different? 
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One hypothesis is that both data sets have the same EC50. We fit that model by doing a 
global fit of both data sets. We fit two dose-response curves, while sharing the best-fit 
value of the logEC50. Fitting this model requires a program that can do global fits with 
shared parameters.  

Here is the graph showing the curves with distinct top and bottom plateaus, distinct Hill 
slopes, but a single (shared) logEC50. 
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The alternative hypothesis is that the EC50 values are distinct. We fit that model by fitting 
entirely separate dose-response curves to each data set. The two dotted lines show the two 
EC50 values, which are quite close together. 
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Compare with F test 
Here is the comparison via F test. 

 

Model SS df 
  Null hypothesis (shared logEC50) 2,097,294 45 

  Alternative hypothesis (separate logEC50s) 2,077,538 44 

Difference 19,756 1 

Relative difference 0.951% 2.273% 

Ratio (F) 0.42 
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The relative change in SS is smaller than the relative change in df, so the P value must be 
high. In fact, it is 0.52. If you performed many experiments where the treatment really did 
not change the EC50, you’d find that the model with separate distinct logEC50 values fit the 
data this much better (by chance) in 52% of the experiments. We conclude that there is no 
significant difference between logEC50 values. 

Compare with AICc 
Here is the comparison via AICc. 

Model SS N K AICc Probability Ratio 

Shared logEC50 2,097,294 52 7 570.80 77.25% 

Separate logEC50s 2,077,538 52 8 573.25 22.75% 
3.40 

 

The model with a shared logEC50 has a lower AICc, so is more likely to be correct. But the 
shared model is only 3.40 times more likely to be correct than a model with separate 
logEC50 values for each curve. Both models are supported by the data. The data are simply 
ambiguous.  

Compare with t test 
If your nonlinear regression program cannot fit models with shared parameters, you won’t 
be able to use either the F test or the AICc approaches discussed above. Here is an 
alternative approach that you can use. First let’s tabulate the best-fit value and SE from 
each data set when the data sets were fit separately. 

 

Data set Best-fit logEC50 SE df 

Control -6.373 0.07034 22 

Treated -6.295 0.09266 22 

 

You can compare the two best-fit values for the logEC50 using a t test. It works much like 
the unpaired t test for comparing means. The t ratio is calculated as: 

treated

50control 50treated

2 2
control

logEC -logEC 0.078t= = =0.670.1163SE +SE
 

You can find the associated P value using Excel. There are 44 degrees of freedom, and we 
want a two-tailed P value. 

=TDIST(0.67,44,2) 
 

The P value is 0.51. The null hypothesis is that the two logEC50s are really the same, and 
any discrepancy is due to random variation. If this null hypothesis were true, there is a 
51% chance (the P value) of obtaining as large (or larger) a difference as you observed. 
Since this P value is so high, you conclude that there is no evidence to persuade you that 
the two logEC50 values are different. The preferred model is one with a shared logEC50.  
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This t test is only accurate if you assume that the value of the parameter follows a 
Gaussian distribution (if you were to collect or simulate many data sets, and look at the 
distribution of best-fit values). You must also assume that the standard errors of the best-
fit values are accurate. Since these two assumptions can be dubious in some situations, we 
suggest you avoid using the t test approach to compare data sets.  

Does a treatment change the dose-response curve? 
Below is a graph of the same dose-response curves used in the previous example. We want 
to know if the treatment does anything. Are the two curves statistically different? 
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In the previous example, we addressed this problem by focusing on a particular parameter 
of interest that we expected to be changed by the treatment (logEC50). 

If you aren’t looking for a change in a particular parameter, you can recast the question to 
globally compare two different data sets to the same model. We’ll compare the curves by 
comparing two versions of the same model, the four-parameter Hill equation (often called 
four-parameter logistic equation).  

The null hypothesis (first, simpler, model), is that one curve fits all the data points (both 
data sets) and the difference we see is purely due to chance. In essence, we ignore which 
points are controls and which are treated, and fit a single curve to all the data and obtain 
one estimate for each of the four parameters in the model (Top, Bottom, logEC50 and 
HillSlope).  

The easiest way to fit the null hypothesis is to constrain the four parameters so the values 
are shared between the two data sets.  

GraphPad note: This is easy with Prism. Go to the constraints tab of the 
nonlinear regression dialog, and choose to make all four parameters shared. 

If your computer program does not allow you to share parameters, you can still fit the 
model. Enter all the values into one large data set, and then fit a single curve to that 
combined data set. Each experiment was performed with 13 doses and duplicate 
determination, so had 26 values. The combined data set, therefore, had twice that or 52 
values.  
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The alternative model is that the curves are distinct. We fit each data set separately to 
obtain two distinct curves with four parameters for each data set. 

To fit the alternative hypothesis, we separately fit the control data and treated data. The 
sums-of-squares are 608,538 and 1,469,000, respectively. Add those two together to get 
the sum-of-squares for the alternative hypothesis (which is 2,077,538). Each experiment 
was performed with 13 doses and duplicate determination, so had 26 values. Since 
nonlinear regression fit four parameters to each data set, each curve had 26-4, or 22 
degrees of freedom. Since the two fits are separate, the overall alternative model has 
22+22=44 degrees of freedom. 
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Comparing with an F test 
The models are nested, so it is appropriate to use the F test. Here are the results: 
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Model SS df 
Null hypothesis (one curve for all data sets)  

2,602,000 
 48 

Alternative hypothesis (separate curves)  2,077,538  44 

Difference 524,4462  4 

Relative difference 25.24% 9.09% 

Ratio (F) 2.77 

 

The relative difference in SS was larger than the relative difference in df, so the F ratio is 
greater than 1.0. For this example, F=2.77, with 4 and 44 degrees of freedom. The 
corresponding P value is 0.0386. 

The P value is easy to interpret. If the treatment were entirely ineffective so the two dose-
response curves are really identical, such a large a difference in the sum-of-squares (or 
larger) would occur in only 3.86% of the experiments. Since this is less than the 
traditional threshold of 5%, we reject the null hypothesis and conclude that the separate 
(not shared) fits are significantly better. The effect of the treatment on the dose-response 
relationship was statistically significant. 

Reality check: Look at the curves, which are very similar. In most experimental contexts, 
you wouldn’t care about such a small difference even if you are sure that it is real and not 
due to chance. Yes, the P value is small, so the difference is unlikely to be due to chance. 
But there is more to science than comparing P values with arbitrary thresholds to decide 
whether something is “significant”. A  

Comparing with AICc 
Here are the same data, compared with AICc. 

Model SS N K AICc Probability Ratio 

One shared curve 2602000 52 4 573.97 41.05% 

Separate curves 2077538 52 8 573.25 58.95% 
1.44 

 

The model with separate curves for each data set has the smaller AICc value, so is 
preferred. It is 1.44 times more likely to be correct than the simpler model with one 
shared curve for both data sets. Because the evidence ratio is so low, we aren’t very sure 
about the conclusion. If we repeated the experiment, it wouldn’t be surprising to find that 
the model with the shared curve was more likely.  

Given the number of data points and the scatter, our data are simply ambiguous. The 
model with separate curves is more likely to be correct, so we’ll choose that model. But the 
evidence is not strong, so the conclusion is very weak. 
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28. Using two-way ANOVA to compare curves 

Situations where curve fitting isn’t helpful 
The graph below shows a typical situation. You’ve measured a response at four time 
points, and compare control and treated conditions. 
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You could fit to a simple model, say fit a straight line, but the response may not be linear 
with time. You’d need some theory to help pick a model, but may not have any theoretical 
reasons to pick a model. Even if you can pick a sensible model, you may have too few data 
points for nonlinear regression to work. 

In this situation, many biologists analyze the data with two-way analysis of variance 
(ANOVA) as explained below. 

Introduction to two-way ANOVA 
Two-way ANOVA, also called two-factor ANOVA, determines how a response is affected 
by two distinct factors. For example, you might measure a response to three different 
drugs in both men and women. In this situation, two-way ANOVA partitions the overall 
variability of the data into four parts: 

• Due to differences between men and women. 

• Due to differences among the three drugs. 

• Due to interaction. This is variation due to inconsistent differences between men 
and women with different drugs. 
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• Due to random variability. 

ANOVA compares the first three sources of variation with the amount of variation due to 
random variability, and uses that to determine a P value. Thus it reports three different P 
values testing three different null hypotheses. 

The first null hypothesis is that there is no systematic difference between the different 
levels of the first factor. In this example, the null hypothesis is that there is no difference 
between the average result with men and woman, and any difference you see is due to 
chance. If this P value is low, you conclude that there is a significant difference.  

The second null hypothesis is that there is no systematic difference between the levels of 
the second factor. In our example, the null hypothesis is that the average result is the 
same with all three drugs, and that any difference you see is due to chance. If this P value 
is small, you conclude that there is a significant variation among drugs. 

The third null hypothesis is that the two factors don’t interact. In our example, this 
hypothesis is that any difference between mean and women are the same for all three 
drugs. Or equivalently, any difference among the drugs is the same for men and for 
women. If this P value is small, you reject this null hypothesis of no interaction. 

How ANOVA can compare “curves” 
ANOVA analyzes data where the outcome (dependent variable) is a continuous variable 
such as enzyme activity, weight, or concentration. Each of the two factors is usually 
categorical, for example: male or female; drug A, B or C; or wild type or mutant. ANOVA 
is not usually used to assess the effects of a continuous variable, such as time or dose.  
Such data are usually analyzed by regression. 

But in some situations, such as the one shown at the beginning of the chapter, you only 
have collected data at a few time points or a few concentrations of a drug, and you really 
can’t use any curve fitting procedure. An alternative is to use ANOVA, and treat the time 
points (or dosages) as if they were a categorical variable.  

Two-way ANOVA partitions the overall variability of the data shown at the beginning of 
the chapter into four parts: 

• Due to differences between control and treated. 

• Due to differences among time points. Note that ANOVA treats different time 
points just like it would treat different drugs or different genotypes – there is no 
concept of trend. 

• Due to interaction. This is variation due to inconsistent differences between 
controls and treated at different time points. 

• Due to random variability. 

Here are the ANOVA results, showing how the variability is partitioned, along with the 
three P values. 
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Source of Variation % of total variation P value 
  Treatment 1.16 0.0572 

  Time 87.28 P<0.0001 

  Interaction 7.12 0.0013 

  Random 4.43  

 

The first P value is just above the traditional significance threshold of 5%. So the effect of 
the treatment does not appear to be statistically significant overall. The second P value is 
tiny, so we reject the null hypothesis that time doesn’t matter. No surprise there. The third 
P value is also small. This tells us that there is a statistically significant interaction 
between treatment and time – the effect of the treatment is not consistent at all time 
points. Since this interaction is statistically significant, it makes sense to look further. This 
is done by performing Bonferroni post tests at each time point, as explained in the next 
section. 

For completeness, here is the entire ANOVA table:  

Source of Variation DF SS MS F 

  Interaction 3 716.5 238.8 8.568 

  Treatment 1 117.0 117.0 4.199 

  Time 3 8782 2927 105.0 

  Residual 16 446.0 27.88  

 

Post tests following two-way ANOVA 
The Bonferroni post tests at each time point determine whether the difference between 
control and treated is statistically significant at each time point, and generate a 95% 
confidence interval for the difference between means at each time point. Here are the 
results: 

Time Difference 95% CI of diff. P value 

1 4.667 -7.460 to 16.79 P>0.05 

2 16.67 4.540 to 28.79 P<0.01 

3 9.33 -2.793 to 21.46 P>0.05 

4 -13.00 -25.13 to -0.8733 P<0.05 

 

The significance levels in the last column correct for multiple comparisons.  The response 
is significantly higher at time point 2, significantly lower at time point 4, and not 
significantly different at the other two time points.  

If your program doesn’t perform the post test automatically (Prism does), it is quite easy 
to calculate them by hand. The method we summarize below is detailed in pages 741-744 
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and 771 in J Neter, W Wasserman, and MH Kutner, Applied Linear Statistical Models, 3rd 
edition, Irwin, 1990.  

For each time point or dose, calculate: 

1 2

residual
1 2

mean -mean
t=

1 1MS +
N N

 
 
 

 

The numerator is the difference between the mean response in the two data sets (usually 
control and treated) at a particular dose or time point. The denominator combines the 
number of replicates in the two groups at that dose with the mean square of the residuals 
(sometimes called the mean square of the error), which is a pooled measure of variability 
at all doses. Your ANOVA program will report this value, which it might call MSerror. 

Statistical significance is determined by comparing the t ratio with a critical value from t 
distribution, which we call t*. Its value depends on the number of df shown in the ANOVA 
table for MSresidual, and on the number of comparisons you are making. You can get the 
critical t value from Excel using the formula below, where DF is the number of degrees of 
freedom for the residual or error (as reported by the ANOVA program), Ncomparisons is 
the number of comparisons you are making (usually equal to the number of time points or 
doses in the analysis), and 0.05 is the significance level (traditionally set to 0.05, but you 
could pick another value). 

=TINV(0.05/Ncomparisons,DF) 

 

For example data, there are four comparisons and 16 degrees of freedom (from the 
ANOVA table for residual or error). Using Excel, t* equals 2.813 

If a t ratio is higher than the threshold value computed by the Excel equation above, then 
the difference is statistically significant. If a t ratio is less than the threshold, then that 
difference is not statistically significant.  

The equation for finding the critical value of t includes the Bonferroni correction by 
dividing the significance level (the P value that you consider to be significant, usually 
0.05) by the number of comparisons. This correction ensures that the 5% probability 
applies to the entire family of comparisons, and not separately to each individual 
comparison. 

Confidence intervals are computed using this equation: 

[ ] [ ]

*
residual

1 2

2 1 2 1

1 1Span=t × MS +   
N N

95% CI: (mean -mean )-Span   to  (mean -mean )+Span

 
 
   

The critical value of t is abbreviated t* in that equation (not a standard abbreviation). Its 
value does not depend on your data, only on your experimental design. It depends on the 
number of degrees of freedom and the number of rows (number of comparisons) and can 
be calculated using the Excel equation presented above.  

Post tests following repeated-measures two-way ANOVA use exactly the same equation if 
the repeated measures are by row. If the repeated measures are by column, use MSsubject 
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rather than MSresidual in both equations above, and use the degrees of freedom for subjects 
(matching) rather than the residual degrees of freedom. 

The problem with using two-way ANOVA to compare curves 
It isn’t easy to make sense of the post tests from our sample data. What does it mean that 
you get significant differences at time points 2 and 4, but not at time points 1 and 3? This 
is an intrinsic problem of this kind of analysis. Focusing on differences at particular time 
points (or doses) does not really address the scientific question you care about. It would 
be better to compare rate constants, plateaus, area-under-the-curve, or some other 
integrated measure of the effect of the treatment. Asking about differences at individual 
time points is not always helpful, and can lead to confusing results. 

The fundamental problem is that the ANOVA calculations treat different time points (or 
different doses) just like they treat different species, different genotypes, or different 
countries. ANOVA treats different time points, to use statistical lingo, as different levels of 
a factor. The fact that the time points have an order is totally ignored. In fact, we’d get 
exactly the same two-way ANOVA results if we randomly scrambled the time points. The 
figure below rearranges the time points, yet the ANOVA results are identical. 
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Two-way ANOVA can be a useful way to compare curves in some situations. But it rarely 
answers the questions you asked when you designed the experiment. Use this technique 
with caution. 

Tip: Beware of using two-way ANOVA to analyze data where one of the factors 
is time or dose. The ANOVA calculations ignore the concept of a trend. In other 
words, the ANOVA calculations ignore the entire point of the experiment. 
Whenever possible, use curve fitting rather than ANOVA. 
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29. Using a paired t test to test for a treatment 
effect in a series of matched experiments  

The advantage of pooling data from several experiments 
Chapter 25 explained how to compare two curves obtained in one experiment. But, if you 
really want to know how a treatment changes the parameters of a curve, you’ll want to 
repeat the experiment several times. This chapter explains how to pool the results from 
several experiments. 

The first step is to focus on what you really want to know. In most cases, you’ll care most 
about a best-fit parameter from curve fitting. For example, with dose-response curves, you 
will want to test whether the logEC50 is altered significantly by a treatment. With kinetic 
curves, you’ll ask about changes in the rate constant.  

In some cases, you may wish to quantify the result in some other way rather than the best-
fit value of a parameter determined by curve fitting. You may wish to tabulate the 
maximum response, the minimum response, or the time to maximum. Or you may 
tabulate the area under the curve as an overall measure of cumulative response. Since 
these values are not determined by nonlinear regression, you won’t be able to use the 
methods based on global fitting described in the next chapter. However, you may still use 
the methods based on the t test. 

An example. Does a treatment change logEC50? Pooling data from 
three experiments. 
Here is an example. We performed a dose-response experiment three times, each time 
before and after a treatment. To keep things simple (but not too unrealistic), all data were 
normalized from 0 to 100, and we assumed that the slope would be standard (Hill Slope 
=1). So we ask the program to fit only one parameter for each curve, the logEC50.  

Here are the data: 

 

And here is a graph of the data with a curves fit individually (six separate curve fits).  
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Using the technique of Chapter 27, we can compare controls vs. treated in each 
experiment individually. For the first two experiments, this comparison yielded a P value 
of less than 0.0001. For the third experiment, the P value is 0.0135. So in each experiment 
individually, it is clear that the treatment significantly altered the logEC50.  

Comparing via paired t test 
The simplest approach to pooling the data is to perform a paired t test on the parameter of 
interest.  

Note: As you’ll see in the next chapter, this approach is not the most powerful 
way to analyze the data. 

Before choosing any statistical test, you should always review its assumptions. The paired 
t test assumes that your experiment was designed with the pairing in mind, that the pairs 
are independent, and that the distribution of differences between pairs (if you repeated 
the experiment many times) is Gaussian. These assumptions all seem reasonable for our 
data. 

The figure below shows how the logEC50 values of our example are compared by paired t 
test.  
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For this approach, only a single number was recorded for each experiment– the logEC50. 
The paired results are shown in the left panel above, as a before-after graph. The paired t 
test works to simplify the data even more by subtracting the control logEC50 from the 
treated logEC50. These differences are plotted in the right panel above. The paired t test is 
computed entirely from these three values. Divide the mean of these differences by the 
standard error of the mean to compute the t ratio. To compute a P value, you have to 
know the number of degrees of freedom. In a paired t test, the number of degrees of 
freedom equals the number of pairs minus 1. So in this experiment, there are two degrees 
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of freedom. From the t ratio and the number of df, you can find the P value using a 
statistical table or this Excel formula (the third parameter is 2 because you want a two-
tailed P value): 

=TDIST(3.776,2,2) 

 

The result, the P value, is 0.0635. To interpret any P value, you need to state the null 
hypothesis. Here, the null hypothesis is that the treatment has no effect so the mean 
difference is really zero. In other words, the null hypothesis is that individual animals are 
equally likely to have increases or decreases in the logEC50.  If the null hypothesis were 
true, the chance of observing a mean difference as large or larger than we observed is just 
over 6%.  

The P value of 0.06 is slightly higher than the traditional threshold of 0.05. Using the 
traditional significance level, we would say that the difference observed in this set of 
experiments is not statistically significant. We do not have sufficient evidence to reject the 
null hypothesis. 

The mean difference between control and treated logEC50 is 0.3767.The 95% confidence 
interval for that difference extends from -0.05252 to 0.8059. These numbers are for the 
difference between the logEC50 of control and the logEC50 in the treated group. The 
difference between two logarithms is the same as the logarithm of the ratio. So that value 
(0.3767) is also the log of the ratio of the treated EC50 divided by the control EC50. Take 
the antilog, to convert to the ratio. The antilog (100.3767) is 2.381. So the treatment 
increases the EC50 by a factor of 2.4. Take the antilog of both ends of the confidence 
interval of the difference in logEC50 to express the confidence interval as a ratio. The 95% 
confidence interval for the ratio ranges from 0.8861 to 6.396. The 95% confidence interval 
includes 1 (no change), which is consistent with a P value greater than 0.05. 

Why the paired t test results don’t agree with the individual 
comparisons 
When we analyzed each experiment independently, we found that the effect of the 
treatment in each of the three experiments was statistically significant. In two of the 
experiments, the P value was less than 0.0001. In the remaining experiment it was 0.017. 

Now we pooled the three experiments using a paired t test, and the P value is 0.06. This 
doesn’t make sense. The data in each experiment was sufficient to convince us that the 
treatment worked. Put all three experiments together and now the data are not so 
convincing. What’s wrong? 

The problem is that the paired t test only takes into account best-fit values in each 
experiment. The paired t test doesn’t extend the method used to compare one pair of 
curves. Rather it throws away most of the information, and only looks at the best-fit value 
from each curve. The next chapter explains how to account for all the information in the 
series of experiments. 



 

174 G. How does a treatment change the curve? 

30. Using global fitting to test for a treatment 
effect in a series of matched experiments  

Why global fitting? 
The previous chapter used a paired t test to pool the results of three experiments. But the 
results were not satisfying. When we compared treated with control for each experiment 
individually, comparing, each P value was less than 0.05. With each individual 
experiment, the evidence is convincing. The effect of the treatment was statistically 
significant in each of the three experiments. But when we pooled all three experiments 
and analyzed with a paired t test, the result was not statistically significant. 

The problem is that the paired t test analyzes only the best-fit values, in our example the 
logEC50. It doesn’t take into account the other information in the experiment.  

What we want is a method that extends the comparison we use to compare control and 
treated groups in a single experiment to compare a family of experiments. Global curve 
fitting lets us do this.  

Setting up the global model 
Here is one way to write a global model that fits all the data and provides a best-fit value 
for the average treatment effect. 

<A>logEC50=logEC50A 
<B>Effect1 = MeanEffect + Rand1 
<B>logEC50=logEC50A + Effect1 
 
<C>logEC50=logEC50C 
<D>Effect2 = MeanEffect + Rand2 
<D>logEC50=logEC50C + Effect2 
 
<E>logEC50=logEC50E 
<F>Effect3 = MeanEffect - Rand1 – Rand2 
<F>logEC50=logEC50E + Effect3 
 
Y=100/(1+10^(LogEC50-X)) 

 

The last line in the model defines a sigmoidal dose response curve that begins at 0, ends at 
100, and has a standard Hill slope of 1.0. Therefore the equation defines Y as a function of 
X and only one parameter, the log(EC50). However, we need to find a different logEC50 for 
each data set. The rest of the model (the first nine lines) defines the logEC50 separately for 
each of the six data sets.  

The first line is preceded by “<A>” which (in GraphPad Prism) means it applies only to 
data set A. It defines the log(EC50) for that data set to be a parameter named logEC50A. 
(Because “logEC50” is used first on the left side of an equals sign, it is an intermediate 
variable, and is not a parameter that Prism fits. Because “logEC50A” is used on the right 
side of the equals sign, it is a parameter that Prism will fit.) 
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The second line defines the Effect (difference between logEC50 values) for the first 
experiment. It equals the mean treatment effect plus a random effect for that experiment, 
so we define the effect to equal MeanEffect + Rand1.  

The third line defines the log(EC50) of data set B to equal the log(EC50)  of data set A plus 
the effect of the first experiment. 

The next three lines define the second experiment (data sets C and D). This has a new 
control value (logEC50C) and a different random effect (Rand2). 

The final three lines define the third experiment (data sets E and F). Again there is a new 
control value (logEC50E). The effect is defined a bit differently for this experiment, since 
it is the last. The effect is defined as the mean effect minus the random effects for the first 
two experiments. Now if you average the effects for all three experiments, the random 
effects cancel out and the average effect really is the same as the parameter we call 
MeanEffect.  

( )MeanEffect+Rand1 +(MeanEffect+Rand2)+(MeanEffect-Rand1-Rand2)
Average=

3
=MeanEffect

 

If we wrote the model with three different random effects, the model would be ambiguous. 
It only requires three parameters (the mean effect, and two random effects) to completely 
define the three treatment effects. 

The full model still has six parameters, as it must. Each experiment has only one 
parameter, the logEC50, and there are six experiments. This model is written so there are 
three logEC50 values for the controls, one parameter for the mean effect of the treatment, 
and two parameters that quantify how each experiment deviates from the average. 

Fitting the model to our sample data 
To fit this model, we use global curve fitting, sharing the values of all six parameters. This 
means we’ll fit one value for logEC50A that applies to data sets A (before) and B (after), 
one value of  logEC50C value that applies to data sets C (before) and D (after), one value 
of logEC50E value that applies to data sets E (before) and F (after), one MeanEffect value 
that applies to all three pairs of experiments, one value of Rand1 that applies to 
experiments 1 and 3, and one value of Rand2 that applies to experiments 2 and 3. 

Here are graphs of the resulting fits: 
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The sum-of-squares equals 7886 with 150 degrees of freedom. Why 150? There are 
thirteen concentrations, with Y values determined in duplicate, so there are 26 data points 
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per curve. There are six curves, so there are 156 data points altogether. From that subtract 
the number of parameters we are fitting (6), resulting in 150 degrees of freedom. 

The graphs are identical to fitting the data sets individually as shown in the previous 
Chapter. This is what we expect since each of the three control curves has its own logEC50, 
and each of the three experiments has its own effect (difference between control and 
treated).  Rearranging the model to report the parameters arranged differently does not 
change the appearance of the curves, the sum-of-squares, or the number of degrees of 
freedom.  

Here are the results in tabular form: 

Parameter Best-fit value SE 95% CI 
LOGEC50A -6.205 0.05852 -6.320 to -6.090 

LOGEC50C -6.154 0.05852 -6.269 to -6.039 

LOGEC50E -5.881 0.05852 -5.996 to -5.767 

RAND1 -0.01904 0.06758 -0.1515 to 0.1134 

RAND2 0.1812 0.06758 0.04879 to 0.3137 

MEANEFFECT 0.3771 0.04778 0.2835 to 0.4708 

 

Interpreting the results 
The best-fit value of MeanEffect is 0.3771. This is the same value calculated in the last 
chapter when each curve was fit individually. But now we get a 95% confidence interval 
based on all the data in the experiment. We are 95% sure the treatment effect is between 
.2835 to 0.4708. Because we are now fitting all the data, this confidence interval is tighter 
(narrower) than the one we computed in the last chapter, which was based solely on the 
three separate treatment effects.  

The MeanEffect is the difference between the log(EC50) values. While that can be hard to 
interpret, it is easy to convert to a form that is easier to understand. The difference 
between two logs is exactly the same as the logarithm of the ratio. So the MeanEffect is the 
logarithm of the ratio of the two EC50 values. The antilog of the MeanEffect, which is 2.38, 
is the mean ratio of the EC50 for the treated divided by the EC50 of control. In other words, 
these data show that the treatment increased the EC50 by about a factor of two and a half. 
Now, take the antilog of both ends of the confidence interval of MeanEffect to obtain the 
confidence interval of the fold change in EC50, which ranges from 1.921 to 2.957.   

To summarize: We observed that the EC50 increased by a factor of about two and a half, 
and are 95% sure that change is somewhere between approximately a doubling and 
tripling.  

Why are three standard errors of the logEC50 values all the same? 

Note: This topic is here just to satisfy your curiosity. If you aren't curious, skip 
it! 
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Turn your attention to the standard errors of the best-fit parameters. Note that the 
standard errors of all three logEC50 values are identical.  If you display the results to more 
decimal places, you’ll find they are not exactly identical. But they are very close, and this is 
surprising.  

Why? To understand, let’s review how the standard errors of best-fit parameters are 
computed. The computation is complicated and involves inverting a matrix, but depends 
on three terms: 

• The sum-of-squares of the vertical distances of the data points from the curves.  
In a global fit, it is the global (total) sum-of-squares that enters the computation. 
With six curves computed at once, this term is the sum of the sum-of-squares for 
each curve. There is only one sum-of-square value for all the confidence 
intervals. 

• The number of degrees of freedom, computed as the number of data points 
minus the number of parameters. In a global fit, it uses the total number of data 
points and the total number of parameters. Therefore, there is only on df value 
for all the confidence intervals. 

• A term that comes from the variance-covariance matrix. Its value is determined 
by computing how the Y value predicted by the model changes when you change 
the value of each parameter a little bit. More specifically, it sums the partial 
derivative of Y as a function of each parameter, holding the parameters equal to 
their best-fit value, at all values of X. The result depends on the model, the 
parameter, the number of data points, and the values of X. In our example, the 
three control curves all have the same number of data points, with the same X 
values. These X values are spaced so each data set covers the bottom plateau, the 
middle, and the top of the curve. So this term is almost the same for all three 
curves.  

The first two terms must be identical for all confidence intervals computed from a global 
fit. The third term will vary between parameters, but will be almost identical between 
experiments for a particular parameter (so long as the range of X values covers all 
important parts of the curve for all treatments). So it makes sense mathematically that the 
three standard errors for logEC50 values would be nearly identical. 

Does it make sense intuitively? Yes. Each experiment has the same number of data points. 
In each experiment, we have enough X values to define the top, middle, and bottom of the 
curve. And it is reasonable to assume that the average amount of random scatter is 
identical in all three experiments. Therefore, it makes sense that the logEC50 is 
determined with equal precision in each experiment. The global curve fitting program 
effectively averaged together the scatter for all three curves, to give one uncertainty value 
that applies to all three logEC50 values. 

Was the treatment effective? Fitting the null hypothesis model. 
Was the treatment effective? Are we convinced that the treatment is real? One way to 
address this question is to look at the 95% confidence interval for the mean effect. This 
did not include zero (no effect) so we are at least 95% sure the treatment did something. 
Looking at confidence intervals is a very good way to look at treatment effects, and one 
could argue the best way. But it is more traditional to compute P values, so we'll do so 
here. 
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To compute a P value (or use information theory and find the AICc), we need to compare 
two models. One model is that the control and treated logEC50 values are different – the 
treatment worked. This model was explained in the previous section. The other model, the 
null hypothesis, is that the treatment didn’t work so the treated logEC50 values, on 
average, are identical to the control values.  

We can fit the null hypothesis model using the same model as before, but constraining the 
MeanEffect parameter to be constant value of zero. Here are the graphs of the 
experiments fit this way.  

Experiment 1

-9 -8 -7 -6 -5 -4 -3

0

50

100

Control
Treated

log(Dose)

Re
sp

on
se

Experiment 2

-9 -8 -7 -6 -5 -4 -3

0

50

100

Control
Treated

log(Dose)

Re
sp

on
se

Experiment 3

-9 -8 -7 -6 -5 -4 -3

0

50

100

Control
Treated

log(Dose)

Re
sp

on
se

 

In the first experiment, the control and treated curves are almost identical, but they are 
not identical in experiments 2 and 3. Our null hypothesis is not that control and treated 
are identical in each experiment. Rather the null hypothesis is that on average the control 
and treated EC50 values are identical.  

The curves don't follow the data very well. That is because we have constrained the mean 
effect to equal zero.  

Here are the results reported by nonlinear regression. 

Parameter Best-fit value SE 95% CI 
LOGEC50A -6.007 0.06361 -6.131 to -5.882 

LOGEC50C -5.975 0.06361 -6.100 to -5.851 

LOGEC50E -5.682 0.06362 -5.806 to -5.557 

RAND1 -0.02808 0.08047 -0.1858 to 0.1296 

RAND2 0.2034 0.08047 0.04572 to 0.3612 

MEANEFFECT 0.000 (constant)  

 

To check that these results are consistent with the null hypothesis, let's compute the 
treatment effect in each experiment. In experiment 1, the model defines the treatment 
effect to equal the mean effect (which we now fix to zero) plus Rand1. So the treatment 
effect (difference between control and treated EC50s) is -0.02808. For experiment 2, the 
model defines the treatment effect to equal the mean effect plus Rand 2, which is 0.2034. 
For experiment 3, the model defines the treatment effect to equal the mean effect minus 
the sum of Rand1 and Rand2, which is -0.17532. So the average effect of the treatment in 
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all three experiments is (-0.02808 +0.2034 -0.17532)/3, which equals zero as it must 
under the null hypothesis. 

Again, the standard errors are all the same. We fit all three experiments in one global fit. 
Since we are fitting the same model to experiments with the same number of data points 
and same X values, all the SE values are the same.  

The total sum-of-squares equals 11257 with 151 degrees of freedom. Why 151? There are 
thirteen concentrations, with Y values determined in duplicate, so there are 26 data points 
per curve. There are six curves, so there are 156 data points altogether. From that subtract 
the number of parameters we are fitting (5), resulting in 151 degrees of freedom.  

Comparing models with an F test 
We used global fitting to fit the data to two models. One assumes the treatment worked. 
The other (the null hypothesis) constrained the mean treatment to equal zero.  

Here are the calculations of an F test to compare the two models. 

Model SS df 
  Null hypothesis (treatment effects are 
zero) 

11257 151 

  Alternative hypothesis (treatment not 
zero) 

7886 150 

Difference 3371 1 

Relative difference 0.4275 0.67 

Ratio (F) 64.12 

 

With such a high F ratio, the P value is tiny, way less than 0.0001. If the null hypothesis 
were true (that all treatment effects were really zero), there is only a slim chance (way less 
than 0.01%) of seeing such large treatment effects in a series of three experiments of this 
size. In other words, it is exceedingly unlikely that the difference we observed between 
control and treated dose-response curves is due to chance. 

We conclude that the treatment effects are statistically significant, extremely so.  

Comparing models with AICc 
Alternatively, here are the results analyzed by AICc.  

Model SS N K AICc Probability Ratio 

Treatment has no effect 11257 156 5 680.07 <0.01% 

Treatment is effective 7886 156 6 626.74 >99.99% 
3.8x1011 

 

The AICc for the second model (treatment does have an effect) is much lower, so this 
model is much more likely to be true. In fact, given our data and these two alternatives, 
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the second model is many billions times more likely to be correct. We have substantial 
evidence that the treatment altered the logEC50 in our series of three experiments.  

Reality check 
The result of this set of experiments convinces us that the treatment effect is not zero. 
Rather, we are fairly sure the treatment effect is somewhere between a doubling and 
tripling of the EC50. Statistically, we are convinced this is distinct from zero. We are quite 
sure the treatment did something -- the difference we observed is extremely unlikely to be 
due to random chance. In other words, we can say the results are statistically significant.  

You should always interpret results in the context of the experiment. Do you care about a 
doubling or tripling of an EC50? In some contexts, this would be considered a small, trivial 
effect not worth pursuing. Those judgments cannot be made by statistical calculations. It 
depends on why you did the experiment.  Statistical calculations can tell us that the effect 
is very unlikely to be due to chance. This does not mean it is large enough to be 
scientifically interesting or worth reporting. 
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31. Using an unpaired t test to test for a 
treatment effect in a series of unmatched 
experiments 

An example 
We measured enzyme velocity as a function of substrate concentration, in the presence 
and absence of a treatment. We had three control animals, and three treated. We obtained 
tissue from each, and measured enzyme activity at various concentrations of substrate. All 
six curves were obtained at one time, with no pairing or matching between particular 
control and treated animals.  
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Fitting the curves individually yields these results.  

 A:Control B:Control C:Control D:Treated E:Treated F:Treated 
VMAX 2190 2132 2428 2897 2449 2689 

KM 14.10 22.42 17.04 20.73 16.64 21.96 

Using the unpaired t test to compare best-fit values of Vmax 
Conceptually the easiest way to analyze the data is to use an unpaired t test. The graph 
below shows the six Vmax values, along with the results of the unpaired t test.  
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The P value is just above the traditional threshold of 0.05, so the difference is said to not 
be statistically significant. If the treatment did nothing to the Vmax of the enzyme, and you 
repeated this kind of experiment many times (each time with the same doses, the same 
average amount of scatter, and with three animals in each group), you’d find this large 
difference (or larger) in a bit more than 5% of the experiments.  

The confidence interval for the mean difference between control and treated Vmax ranges 
from a decrease of 10 to an increase of 867. This confidence interval spans zero, as it must 
to be consistent with a P value greater than 0.05. 

This t test tells you that the evidence is not strong enough to persuade you that the 
treatment changes Vmax. But the results do look intriguing. 

The problem with the t test is that it analyzes only the best-fit value of the parameter of 
interest. It doesn’t look at all the data in the experiment. To take into account all the data, 
we need to use global fitting as explained in the next chapter. 
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32. Using global fitting to test for a treatment 
effect in a series of unmatched experiments 

Setting up a global fitting to analyze unpaired experiments 
Let’s continue the example from the previous chapter.  

Here is the model to fit the data with global fitting. It uses the syntax of GraphPad Prism. 

<A>Vmax = MeanCon + Rand1 
<B>Vmax = MeanCon + Rand2 
<C>Vmax = MeanCon - Rand1 - Rand2 
 
<D>Vmax = MeanCon + Effect + RandT1 
<E>Vmax = MeanCon + Effect + RandT2 
<F>Vmax = MeanCon + Effect - RandT1 - RandT2 
 
Y=Vmax*X/(Kd+X) 

 

The bottom line in the model defines the enzyme kinetics curve.  

The first six lines in the model define the Vmax term for each data set. Data sets A, B and C 
were controls. We want to fit the mean Vmax for the control curves. Curve A has a Vmax 
defined to be equal to the mean value for the control (MeanCon) plus a random factor 
(Rand1). Curve B is defined similarly with a different random factor. Curve C is defined as 
the mean control value minus the two random factors. If you take the average of the three 
Vmax values for curves A, B and C, you’ll see that the average really is MeanCon. 

( ) ( ) ( )MeanCon+Rand1 + MeanCon+Rand2 + MeanCon-Rand1-Rand2
Average=

3
=MeanCon

 

Curves D, E and F are for the treated condition. The mean of the treated is defined to be 
the mean of the controls plus a variable called Effect. This is the difference between the 
mean of the controls and the mean of the treated. The variation around this mean is 
modeled by RandT1 and RandT2. 

The model looks complicated, but it needs to be that way to fit a single parameter Effect 
for the mean difference between the control and treated animals. The model has seven 
parameters to fit: KM, MeanCon, Rand1, Rand2, Effect, RandT1, and RandT2.  

When fitting this model, all the parameters that define the Vmax and the treatment effect 
must be shared.  But what about KM? You could argue that it should be shared, since there 
is no evidence that the treatment changes the KM, and no theory suggesting it might. Or 
you could argue that the KM might really vary between animals based on subtle differences 
in the pH or ionic composition of the preparations. We chose the latter approach, 
although the results below would be very similar if we had designated the KM to be a 
shared parameter. 
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Fitting our sample data to the global model 
We fit the data using global curve fitting, sharing all parameters except the KM.  Here are 
the results for the other parameters. Since they are shared, we get one best-fit value for 
each for the entire model.       

Parameter Best-fit value SE 95% CI 
MEANCON 2250 65.50 2119 to 2381 

RANDC1 -60.27 87.15 -234.2 to 113.7 

RANDC2 -118.1 99.17 -316.1 to 79.81 

EFFECT 428.3 95.26 238.2 to 618.5 

RANDT1 218.4 99.07 20.62 to 416.1 

RANDT2 -228.9 93.29 -415.1 to -42.74 

 

The first thing to do is make sure that the results match the results of the individual fits. 
This is a way to make sure that the model is correct. The Vmax for the first data set (A) is 
defined as MEANCON+RAND1, or 2250 – 60.27, which equals (to four digits of precision) 
2190. This is identical to the value we obtained when we fit each curve independently. 
Similarly, the other Vmax values all match the values obtained when we fit the curves 
independently. Using the global model did not change the best-fit curves, just how we 
organize the results. The sum-of-squares (1145088) of the global fit accordingly matches 
the sum of the sum-of-squares of the six individual curve fits. Similarly, the degrees of 
freedom of the global fit (72) match the sum of the degrees of freedom of the six 
individual curves.  

The whole point of this fit is to determine the best-fit value of the treatment effect. The 
best-fit value is 428. This is the same as the mean difference we calculated for the 
unpaired t test. No surprise here. The curves are the same, so the difference between the 
average control Vmax and the average treated Vmax has to match. If it didn’t, we know there 
was something wrong with how we set up or fit the global model.  

Now let’s turn our attention to the confidence interval of the treatment effect. The global 
fit tells us that we can be 95% sure that the range 228 to 619 contains the true treatment 
effect. This interval was calculated by considering all of our data. In contrast, the t test 
only took into account the six Vmax values so its confidence interval was much wider (-10 to 
867).  

Finally, let’s compute a P value testing the null hypothesis that the treatment really 
doesn’t affect the Vmax at all. To do this, we compare the fit we just did with one 
constrained so Effect=0. Here are the results. 
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Parameter Best-fit value SE 95% CI 
MEANCON 2505 55.15 2395 to 2615 

RANDC1 -164.5 110.4 -384.9 to 55.79 

RANDC2 28.20 137.8 -246.9 to 303.3 

EFFECT 0.0 (fixed)   

RANDT1 206.4 100.3 6.248 to 406.5 

RANDT2 -200.7 94.83 -390.0 to -11.49 

 

Let’s check that this fit makes sense.  

Parameter Calculation Value Mean 

Control A 2505 - 165 2340 

Control B 2505 + 28 2533 

Control C 2505 + 165 - 28 2642 

2505 

Treated D 2505 + 206 2711 

Treated E 2505 - 201 2304 

Treated F 2505 – 206 + 201 2500 

2505 

 

Each curve is fit its own Vmax value, but the global fitting was constructed to ensure that 
the average of the control Vmax values matched the average of the Treated Vmax values 
(since Effect was constrained to equal 0). The table shows that the fit worked as intended. 
The two means are the same.  

Comparing models with an F test 
Here are the calculations of an F test to compare the two models. 

Model SS df 

  Null hypothesis (treatment effect is zero) 1,442,275 73 

  Alternative hypothesis (treatment not 
zero) 

1,145,087 72 

Difference 297,188 1 

Relative difference 0.25953 0.01389 

Ratio (F) 18.68 
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With such a high F ratio, the P value is tiny, much less than 0.0001. If the null hypothesis 
were true (that the treatment doesn’t change Vmax), there is only a slim chance (way less 
than 0.01%) of seeing such large treatment effects in our series of six experiments. In 
other words, it is exceedingly unlikely that the difference we observed between control 
and treated Vmax is due to chance. 

We conclude that the treatment effect is statistically significant. 

Comparing models with AICc 
Here are the results analyzed by AICc.  

Model SS N K AICc Probability Ratio 

Treatment has 
no effect 

1,442,275 84 11 847.5 0.03% 

Treatment is 
effective 

1,145,087 84 12 830.9 99.97% 
3977 

 

The AICc for the second model (treatment does have an effect) is much lower, so this 
model is much more likely to be true. In fact, given our data and these two alternatives, 
the second model is almost four thousand times more likely to be correct. We have 
substantial evidence that the treatment altered the Vmax in our series of experiments.  

Reality check 
The global fit convinced us that the difference we observed in Vmax between control and 
treated animals is very unlikely to be due to chance. The P value is tiny, so the results are 
statistically significant. The AICc criterion tells us that a model where control and treated 
have the same average Vmax is extremely unlikely to be correct.  

When interpreting data, one should not focus on statistical significance. Instead, 
concentrate on the size of the difference. Our treatment effect was 428, compared to 
control mean of 2228. This means the treatment increased Vmax, on average, by 428/2228 
or only 19.2%. Putting aside statistical calculations of P values, you cannot really interpret 
these results except by thinking about the reason you did the experiment. Is a 20% change 
worth caring about? The answer depends on why you did the experiment. 
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H. Fitting radioligand and enzyme kinetics 
data 

33. The law of mass action 

What is the law of mass action? 
Analyses of radioligand binding experiments and enzyme kinetics are based on a simple 
molecular model called the law of mass action. This “law” states that the velocity of a 
chemical reaction is proportional to the product of the concentrations (or mass) of the 
reactants.  

In the simplest case, one kind of molecule is transformed into a different kind of molecule. 
The rate at which the reaction occurs is proportional to the concentration of the starting 
material.  

[ ]

A
dA dZ=- =k A
dt dt

Z→

⋅
 

If two molecules combine, the reaction rate is proportional to the product of the 
concentrations. 

[ ] [ ]

A+B Z
dZ dA dB=- =- =k A B
dt dt dt

→

⋅ ⋅
 

If a molecule dimerizes, the reaction rate is proportional to the square of its 
concentration. 

[ ] [ ] 2

A+A Z
dZ = k A A k [A]
dt

→

⋅ ⋅ = ⋅
 

 

The law of mass action applied to receptor binding 
Binding between a ligand and its receptor is described by a simple, reversible, bimolecular 
reaction. (“Ligand” is just a fancy word for a molecule that binds to something.) 

Kon

Koff

Receptor Ligand    Receptor Ligand
→

+ ⋅
←

 

According to the law of mass action, the rate of association is: 
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Number of binding events per unit of time = kon⋅ [Ligand]⋅[Receptor]. 

[Ligand] and [Receptor] represent the free (not total) concentrations of each reactant, 
respectively, and kon denotes the association rate constant.  

The law of mass action says that the reverse reaction (the dissociation of the complex) 
occurs at a rate proportional to the concentration of the complex.  

Number of dissociation events per unit time = [Ligand⋅Receptor]⋅koff. 

Here koff is the dissociation rate constant, in units of inverse time. 

You can also make sense of these equations intuitively. Forward binding occurs when 
ligand and receptor collide due to diffusion, so the rate of binding is proportional to the 
concentration of each. The rate constant takes into account the fact that not every 
collision leads to binding -- the collision must have the correct orientation and enough 
energy. Once binding has occurred, the ligand and receptor remain bound together for a 
random amount of time. The probability of dissociation is the same at every instant of 
time. Therefore the rate of dissociation is only proportional to the concentration of the 
receptor ligand complex. 

After dissociation, the ligand and receptor are the same as at they were before binding. If 
either the ligand or receptor is chemically modified, then the binding does not follow the 
law of mass action. 

Mass action model at equilibrium 
Equilibrium is reached when the rate at which new ligand⋅receptor complexes are formed 
equals the rate at which the ligand⋅receptor complexes dissociate. At equilibrium: 

[ ] [ ] [ ]on offLigand Receptor k Ligand Receptor k⋅ ⋅ = ⋅ ⋅  

Rearrange that equation to define the equilibrium dissociation constant Kd. 

[ ] [ ]
[ ]

off
d

on

Ligand Receptor k K
Ligand Receptor k

⋅
= =

⋅
 

The Kd has a meaning that is easy to understand. Set [Ligand] equal to Kd in the equation 
above. The Kd terms cancel out, and you'll see that the ratio [Receptor]/ 
[Ligand⋅Receptor] equals 1.0, so [Receptor] equals [Ligand⋅Receptor]. Since all the 
receptors are either free or bound to ligand, this means that half the receptors are free and 
half are bound to ligand. In other words, when the concentration of ligand equals the Kd, 
at equilibrium ligand will be bound to half the receptors.  

If the receptors have a high affinity for the ligand, even a low concentration of ligand to 
bind a substantial number of receptors, so the the Kd will be low. If the receptors have a 
lower affinity for the ligand, you’ll need more ligand to get binding, so the Kd will be high. 

Don’t mix up Kd, the equilibrium dissociation constant, with koff, the dissociation rate 
constant. Even though they both include the word “dissociation”, they are not the same, 
and aren't even expressed in the same units.  

The table below reviews the units used to express the rate and equilibrium constants. 



 

 33. The law of mass action 189 

Constant Name Units 

kon Association rate constant, or on-rate 
constant 

M-1min-1 (or M-1sec-1) 

koff Dissociation rate constant, or off-rate 
constant 

min-1 (or sec-1) 

Kd Equilibrium dissociation constant M 

  

Fractional occupancy predicted by the law of mass action at 
equilibrium 
The law of mass action predicts the fractional receptor occupancy at equilibrium as a 
function of ligand concentration. Fractional occupancy is the fraction of all receptors that 
are bound to ligand. 

[Ligand×Receptor]Fractional occupancy=
[Total Receptor]

[Ligand×Receptor]=
[Receptor]+[Ligand×Receptor]

 

This equation is not useful, because you don’t know the concentration of unoccupied 
receptor, [Receptor]. A bit of algebra creates a useful equation. First, rearrange the 
definition of the Kd.  

[ ] [ ]
[ ]

[ ] [ ] [ ]

d

d

Ligand Receptor
K

Ligand Receptor

Ligand Receptor
Ligand Receptor

K

⋅
=

⋅

⋅
⋅ =

 

Now substitute that expression for [Ligand.Receptor] in the equation that defines 
fractional occupancy. 

( )
d

d

d

[Ligand×Receptor]Fractional occupancy=
[Receptor]+[Ligand×Receptor]

[Ligand]×[Receptor]/K= =
[Receptor]+ [Ligand]×[Receptor]/K

[Ligand]=
[Ligand+K ]

 

This equation assumes equilibrium. To make sense of it, think about a few different values 
for [Ligand].  
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[Ligand] Occupancy  
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Note that when [Ligand] is equal to the Kd, half the receptors are occupied at equilibrium. 

Assumptions of the law of mass action 
Although termed a “law”, the law of mass action is simply a model that can be used to 
explain some experimental data. Because it is so simple, however, the model is not useful 
in all situations. The model assumes: 

• All receptors are equally accessible to ligands. 

• Receptors are either free or bound to ligand. It doesn’t allow for more than one 
affinity state, or states of partial binding. 

• Binding does not alter the ligand or receptor. 

• Binding is reversible. 

Despite its simplicity, the law of mass action has proven to be very useful in describing 
many aspects of receptor pharmacology and physiology.  

The law of mass action was developed long ago, before we knew much about the chemical 
nature of molecular bonds. Now we know more. And for some systems, we know precise 
molecular details about exactly how a ligand binds to a receptor. Clearly the law of mass 
action is a very simple approximation of a ligand-receptor binding that may involve 
conformational changes, hydrogen bonds, ionic forces, and more. But it is a useful 
approximation, and that is the test of any model. A more complete model, that accounted 
for all the chemical details would have lots of parameters and be impossible to fit data to.  
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Hyperbolas, isotherms and sigmoidal curves 
The graphs below show binding at equilibrium, as predicted by the law of mass action. 
The two graphs show the same thing, but have different shapes.  

• The graph on the left plots occupancy as a function of [Ligand]. It follows a 
mathematical form called a rectangular hyperbola, which is also called a 
binding isotherm.  

• The graph on the right, plots occupancy as a function of the logarithm of 
[Ligand] (or equivalently, plots occupancy as a function of [Ligand] plotted on a 
logarithmic axis). This graph follows a sigmoidal shape. The solid portion of this 
curve corresponds to the curve on the left. The dotted portion of the curve goes 
to higher concentrations of [Ligand] not shown on the other graph.  
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34. Analyzing radioligand binding data 

Introduction to radioligand binding 
A radioligand is a radioactively labeled drug that can associate with a receptor, 
transporter, enzyme, or any site of interest. Measuring the rate and extent of binding 
provides information on the number of binding sites, and their affinity and accessibility 
for various drugs. There are three kinds of experimental protocols for radioligand binding, 
discussed in the next three chapters. 

Saturation binding experiments measure equilibrium binding of various 
concentrations of the radioligand. Analyze the relationship between binding and ligand 
concentration to determine the number of sites, Bmax, and the ligand affinity, Kd. See 
"Analyzing saturation radioligand binding data" on page 199. 

Competitive binding experiments measure equilibrium binding of a single 
concentration of radioligand at various concentrations of an unlabeled competitor. 
Analyze these data to learn the affinity of the receptor for the competitor. See "Analyzing 
competitive binding data" on page 211. 

Kinetic experiments measure binding at various times to determine the rate constants 
for radioligand association and dissociation. See "Analyzing kinetic binding data" on page 
233. 

Nonspecific binding 
In addition to binding to receptors of interest, radioligands also bind to other sites. 
Binding to the receptor of interest is called specific binding, while binding to the other 
sites is called nonspecific binding. This means that nonspecific binding can represent 
several phenomena:  

• In most cases, the bulk of nonspecific binding represents some sort of interaction 
of the ligand with membranes. The molecular details are unclear, but 
nonspecific binding depends on the charge and hydrophobicity of a ligand – but 
not its exact structure.  

• Nonspecific binding can also be binding to receptors, transporters or other 
proteins not of interest to the investigator. For example binding of the 
adrenoceptor agonist, epinephrine, to serotonin receptors or metabolic enzymes 
can be considered “nonspecific”.  

• Nonspecific binding can also be binding to the filters used to separate bound 
from free ligand.  

Nonspecific binding is usually (but not necessarily) proportional to the concentration of 
radioligand (within the range it is used). Add twice as much radioligand, and you'll see 
twice as much nonspecific binding. 

Nonspecific binding is detected by measuring radioligand binding in the presence of a 
saturating concentration of an unlabeled drug that binds to the receptors. Under those 
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conditions, virtually all the receptors are occupied by the unlabeled drug so the 
radioligand can only bind to nonspecific sites. Subtract the nonspecific binding at a 
particular concentration of radioligand from the total binding at that concentration to 
calculate the specific radioligand binding to receptors. 

Which unlabeled drug should you use for determining nonspecific binding? The obvious 
answer is to use the same compound as the radioligand, but in its unlabeled form. In 
many cases, this is necessary, as no other drug is known to bind to the receptors. But most 
investigators avoid using the same compound as the hot and cold ligand and prefer to 
define nonspecific binding with a drug that is chemically distinct from the radioligand but 
which binds to the same receptor.  

What concentration of unlabeled drug should you use? You want to use enough to block 
virtually all the specific radioligand binding, but not so much that you cause more general 
physical changes to the membrane that might alter binding. If you are studying a well-
characterized receptor, a useful rule-of-thumb is to use the unlabeled compound at a 
concentration equal to 100 times its Kd for the receptors, or 100 times the highest 
concentration of radioligand, whichever is higher. 

Ideally, you should get the same results defining nonspecific binding with a range of 
concentrations of several drugs, and you should test this when possible. In many assay 
systems, nonspecific binding is only 10-20% of the total radioligand binding. If the 
nonspecific binding makes up more than half of the total binding, you'll find it hard to get 
quality data. If your system has a lot of nonspecific binding, try different kinds of filters, a 
larger volume of washing buffer, warmer washing buffer, or a different radioligand. 

Ligand depletion 
In many experimental situations, you can assume that a very small fraction of the ligand 
binds to receptors (or to nonspecific sites). In these situations, you can also assume that 
the free concentration of ligand is approximately equal to the concentration you added. 
This assumption vastly simplifies the analysis of binding experiments, and the standard 
analysis methods depend on this assumption.  

In other situations, a large fraction of the ligand binds to the receptors (or binds 
nonspecifically). This means that the concentration of ligand free in the solution does not 
equal the concentration you added. The discrepancy is not the same in all tubes or at all 
times. The free ligand concentration is depleted by binding.  

Many investigators use this rule of thumb: If less than 10% of the ligand binds, don't 
worry about ligand depletion; if more than 10% of the ligand binds, you have three 
choices: 

• Change the experimental conditions. Increase the reaction volume without 
changing the amount of tissue. The problem with this approach is that it 
requires more radioligand, which is usually very expensive. 

• Measure the free concentration of ligand in every tube. This is possible if you use 
centrifugation or equilibrium dialysis, but is quite difficult if you use vacuum 
filtration to remove free radioligand. 

• Use analysis techniques that adjust for the difference between the concentration 
of added ligand and the concentration of free ligand. The next few chapters 
explain several such methods. 
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35. Calculations with radioactivity 

Efficiency of detecting radioactivity 
It is not possible to detect each radioactive disintegration. The fraction of radioactive 
disintegrations detected by your counter is called efficiency. Determine efficiency by 
counting a standard sample under conditions identical to those used in your experiment.  

It is relatively easy to detect gamma rays emitted from isotopes such as 125I, so efficiencies 
are usually over 90%, depending on the geometry of the counter. The efficiency is not 
quite 100% because the detector doesn’t entirely surround the tube, and a small fraction 
of gamma rays (photons) miss the detector.  

With 3H, the efficiency of counting is much lower, often about 40%.  When a tritium atom 
decays, a neutron converts to a proton and the reaction shoots off both an electron and a 
neutrino. The energy released is always the same, but it is randomly partitioned between 
the neutrino (not detected) and an electron (that we try to detect). When the electron has 
sufficient energy, it can travel far enough to encounter a fluor molecule in the scintillation 
fluid. This fluid amplifies the signal and gives of a flash of light detected by the 
scintillation counter. If the electron has insufficient energy, it is not captured by the fluor 
and is not detected.  

Since a large fraction of tritium atoms do not decay with enough energy to lead to a 
detectable number of photons, the efficiency of counting is much less than 100%. This low 
efficiency is a consequence of the physics of decay, and you can't increase the efficiency 
very much by using a better scintillation counter or a better scintillation fluid. However, 
poor technique can reduce the efficiency. Electrons emitted by tritium decay have very 
little energy, so can only be detected when they immediately encounter a fluor molecule. 
Radioactivity trapped in tissue chunks won't be detected. Nor will radioactivity trapped in 
an aqueous phase not well mixed into the scintillation fluid.   

Specific radioactivity 
When you buy radioligands, the packaging usually states the specific radioactivity as 
Curies per millimole (Ci/mmol). Since you measure counts per minute (cpm), the specific 
radioactivity is more useful if you change the units to be in terms of cpm rather than 
Curie. Often the specific radioactivity is expressed as cpm/fmol (1 fmol = 10-15 mole). 

To convert from Ci/mmol to cpm/fmol, you need to know that 1 Ci equals 2.22 x 1012 
disintegrations per minute dpm). The following equation converts Z Ci/mmol to Y 
cpm/fmol when the counter has an efficiency (expressed as a fraction) equal to E. 

12 -12cpm Ci dpm mmole cpmY =Z ×2.22x10 ×10 ×E
fmol mmole Ci fmole dpm

Ci=Z ×2.22×E
mmole
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In some countries, radioligand packaging states the specific radioactivity in Gbq/mmol. A 
Becquerel, abbreviated bq, equals one radioactive disintegration per second. A Gbq is 109 
disintegration per second. To convert from Gbq/mmol to cpm/fmol, use this equation:   

9
-12cpm Gbq 10 bq dpm mmole cpmY =Z × ×60 ×10 ×E

fmol mmole Gbq bq fmole dpm
Gbq =Z ×0.06×E

mmole

 

Calculating the concentration of the radioligand 
Rather than trust your dilutions, you can accurately calculate the concentration of 
radioligand in a stock solution. Measure the number of counts per minute in a small 
volume of solution and use the equation below. C is cpm counted, V is volume of the 
solution you counted in ml, and Y is the specific activity of the radioligand in cpm/fmol 
(calculated in the previous section). 

C cpm
0.001 pmol/fmolY cpm/fmolConcentration in pM= ×

V ml 0.001 liter/ml
C/Y=
V

 

Radioactive decay 
Radioactive decay is entirely random. A particular atom doesn’t “know” how old it is, and 
can decay at any time. The probability of decay at any particular interval is the same as the 
probability of decay during any other interval. If you start with N0 radioactive atoms, the 
number remaining at time t is:  

decay-K t
t 0N =N e ⋅⋅  

Kdecay is the rate constant of decay expressed in units of inverse time. Each radioactive 
isotope has a different value of Kdecay.  

The half-life (t½) is the time it takes for half the isotope to decay. Half-life and decay rate 
constant are related by this equation: 

1/2
decay decay

ln(2) 0.693t = =
K K

 

This table below shows the half-lives and rate constants for commonly used radioisotopes. 
The table also shows the specific activity assuming that each molecule is labeled with one 
isotope. (This is often the case with 125I and 32P. Tritiated molecules often incorporate two 
or three tritium atoms, which increases the specific radioactivity.) 
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Isotope Half life Kdecay Specific Radioactivity 
3H 12.43 years 0.056/year 28.7 Ci/mmol 
125I 59.6 days 0.0116/day 2190 Ci/mmol 
32P 14.3 days 0.0485/day 9128 Ci/mmol 
35S 87.4 days 0.0079/day 1493 CI/mmol 

 

You can calculate radioactive decay from a date where you (or the manufacturer) knew the 
concentration and specific radioactivity using this equation. 

decay-K TimeFractionRemaining=e ⋅
 

For example, after 125I decays for 20 days, the fraction remaining equals 79.5%. Although 
data appear to be scanty, most scientists assume that the energy released during decay 
destroys the ligand so it no longer binds to receptors. Therefore the specific radioactivity 
does not change over time. What changes is the concentration of ligand. After 20 days, 
therefore, the concentration of the iodinated ligand is 79.5% of what it was originally, but 
the specific radioactivity remains 2190 Ci/mmol. This approach assumes that the 
unlabeled decay product is not able to bind to receptors and has no effect on the binding. 
Rather than trust this assumption, you should always try to use newly synthesized or 
repurified radioligand for key experiments. 

Counting errors and the Poisson distribution 
The decay of a population of radioactive atoms is random, and therefore subject to a 
sampling error. For example, the radioactive atoms in a tube containing 1000 cpm of 
radioactivity won’t give off exactly 1000 counts in every minute. There will be more counts 
in some minutes and fewer in others. This variation follows a distribution known as the 
Poisson distribution. The variability is intrinsic to radioactive decay and cannot be 
reduced by more careful experimental controls.  

After counting a certain number of disintegrations in your tube, you want to know what 
the “real” number of counts is. Obviously, there is no way to know that. Just by chance, 
you may have chosen a time interval to count when there were more (or fewer) radioactive 
disintegrations than usual. But you can calculate a range of counts that is 95% certain to 
contain the true average value. If the number of counts, C, is greater than about 50 you 
can calculate the confidence interval using this approximate equation: 

( ) ( )95% Confidence Interval: C - 1.96 C   to C + 1.96 C  

For example, if you measure 100 radioactive counts in an interval, you can be 95% sure 
that the true average number of counts ranges approximately between 80 and 120 (using 
the equation here) or between 81.37 and 121.61 (using an exact equation not shown here). 

When calculating the confidence interval, you must set C equal to the total number of 
counts you measured experimentally, which is probably not the same as the number of 
counts per minute.  

Example: You placed a radioactive sample into a scintillation counter and counted for 10 
minutes. The counter tells you that there were 225 counts per minute. What is the 95% 
confidence interval? Since you counted for 10 minutes, the instrument must have detected 
2250 radioactive disintegrations. The 95% confidence interval of this number extends 
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from 2157 to 2343. This is the confidence interval for the number of counts in 10 minutes, 
so the 95% confidence interval for the average number of counts per minute extends from 
216 to 234. If you had attempted to calculate the confidence interval using the number 
225 (counts per minute) rather than 2250 (counts detected), you would have calculated a 
wider (and incorrect) interval.  

The Poisson distribution explains the advantages of counting your samples for a longer 
time. For example, the table below shows the confidence interval for 100 cpm counted for 
various times. When you count for longer times, the confidence intervals (when you 
express counts as cpm) will be narrower. 

 1 minute 10 minutes 100 minutes 

Counts per minute (cpm) 100 100 100 

Total counts  100 1000 10000 

95% CI of counts  81.4 to 121.6 938 to 1062 9804 to 10196 

95% CI of cpm 81.4 to 121.6 93.8 to 106.2 98.0 to 102.0 

 

The table below shows percent error as a function of the number of counts. Percent error 
is defined as the width of the confidence interval divided by the number of counts. 

Counts  Percent Error 
 50 27.72% 
 100 19.60% 
 200 13.86% 
 500 8.77% 
 1000 6.20% 
 2000 4.38% 
 5000 2.77% 
 10000 1.96% 
 25000 1.24% 
 50000 0.88% 
 100000 0.62% 
 C 1.96 C 196100

C C
⋅

⋅ =

 
 

Note that the percent error is inversely proportional to the square root of the counts. If 
you are trying to decide how long to count a tube, this means the percent error is inversely 
proportional to the square root of the counting time. If you count for four times as long, 
the results will be twice as precise. If you count for nine times as long, the results will be 
three times as precise. 

The GraphPad radioactivity web calculator 
GraphPad Software provides a free radioactivity calculator on our web site at 
http://www.graphpad.com. Click on QuickCalcs to see this, and other, free calculators. 
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Use it to perform these seven common calculations: 

Calculation Description 

Isotope decay  Calculates radioactive decay during a specified number of days. Select 
one of the common isotopes, or enter the half-life of another isotope.  

Concentration of 
stock  

Enter mCi/ml and Ci/mmole, which should be on the label. If you are 
using a molecule labeled with 125I, the specific activity equals 2200 
Ci/mmole if each molecule is labeled with one iodine.  
Also enter the percent of the original isotope remaining (calculated 
above). The calculations assume that the decay product is not 
biologically active, so the concentration of stock that is biologically 
active decreases over time.  

Dilution of stock  Enter the concentration in your stock solution, after accounting for 
decay. Also enter the concentration and volume you want.  The result 
is the volume of stock you need to use.  

Specific activity 
(cpm/fmol)  

Enter the specific radioactivity as Ci/mmol which should be on the 
label. If you are using a molecule labeled with 125I, the specific activity 
equals 2200 Ci/mmol if each molecule is labeled with one iodine.  
Also enter the counter efficiency - the fraction of radioactive 
disintegrations that are detected. The efficiency depends on the 
isotope and instrumentation. With low energy isotopes such as 
tritium, the efficiency also depends on the experimental details such 
as the choice of scintillation fluid, the amount of water in the sample, 
and the presence of any colored substances in the sample.  

Cpm to fmol/mg  Enter the specific radioactivity as cpm/fmol, the number of cpm 
counted, and the protein content of the sample in mg. The result is 
the number of binding sites in fmol/mg protein.  

Cpm to sites/cell  Enter the specific radioactivity as cpm/fmol, the number of cpm 
counted, and the cell count. The result is the number of binding sites 
per cell.  

Cpm to nM  Enter the specific radioactivity as cpm/fmol, the number of cpm 
counted, and the volume counted. The result is the concentration of 
radioligand in nM.  
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36. Analyzing saturation radioligand binding 
data 

Introduction to saturation binding experiments 
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Saturation radioligand binding experiments measure specific radioligand binding at 
equilibrium at various concentrations of the radioligand. Nonlinear regression analysis of 
saturation binding data allows you to determine receptor number and affinity. Because 
this kind of experiment used to be analyzed with linear Scatchard plots (more accurately 
attributed to Rosenthal), they are sometimes called "Scatchard experiments". 

Analyses of saturation binding data depend on the assumption that you have allowed the 
incubation to proceed to equilibrium. This can take anywhere from a few minutes to many 
hours, depending on the ligand, receptor, temperature, and other experimental 
conditions. The lowest concentration of radioligand will take the longest to equilibrate. 
When testing equilibration time, therefore, use a low concentration of radioligand 
(perhaps 10-20% of the Kd). 

Fitting saturation binding data 
The figure below illustrates a saturation binding assay at human M2 muscarinic 
acetylcholine receptors stably expressed in Chinese hamster ovary (CHO) cell membranes.  
The radioligand is the antagonist, [3H]N-methylscopolamine ([3H]NMS) and non-specific 
binding of this radioligand was determined as that obtained in the presence of a 
saturating concentration of the unlabelled muscarinic receptor antagonist, atropine. 
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The standard equation for specific radioligand binding to a receptor is based on the law of 
mass action and describes a hyperbolic relationship as follows: 

max

d

B XY
X K

⋅
=

+
 

where Bmax denotes the maximal density of receptor sites and Kd denotes the radioligand 
equilibrium dissociation constant. Because non-specific binding is generally a linear 
function of radioligand concentration (see figure above), its equation is that of a straight 
line that intercepts the axes at a value of 0: 

Y NS X= ⋅  

Therefore, the equation for the total binding curve (see figure above) represents both 
specific binding together with non-specific binding: 

max

d

B XY NS X
X K

⋅
= + ⋅

+
 

Fitting a curve to determine Bmax and Kd from specific binding 
The standard approach for analyzing saturation binding experiments is to subtract the 
non-specific curve from the total binding curve to determine the specific (receptor) 
binding for each concentration of the radioligand, and then fitting the resulting points to 
the first equation (above) describing specific binding.  This is shown in the figure below 
for our muscarinic receptor binding example: 
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 Bmax Kd 

Value 6464 0.343 

95% CI 4751 to 8177 0.0389 to 0.647 

 

Bmax is expressed in the same units as the Y values (commonly dpm, cpm, sites/cell or 
fmol/mg protein). Kd is expressed in the same units as the X values, usually nM or pM. If 
the Kd is low, the affinity is high. 

This method is only valid when a small fraction of the ligand binds to the receptor. If this 
assumption is true, then the free concentration of ligand equals the added concentration 
in both the tubes used to measure total binding and the tubes used to measure nonspecific 
binding. If the assumption is not valid, then the free concentration of ligand will differ in 
the two sets of tubes. In this case subtracting the two values makes no sense, and 
determining specific binding is difficult.  

Even when the above assumption is met, another point of contention amongst researchers 
relates to how one actually goes about subtracting non-specific binding from total binding 
to derive the specific binding.  Usually, you will have determined total binding in one set 
of assay tubes and non-specific binding in another set. Furthermore, you will probably 
have determined each point in duplicate, triplicate or even more replicates.  How do you 
subtract the non-specific binding from the total binding under these conditions? 

If the replicates are matched, you can subtract each non-specific data point from its paired 
total binding data point.  This is rare, as most binding assays do not match total and 
nonspecific replicates. 

You can take the average value of each set of non-specific binding replicates, and subtract 
this from the average value of the corresponding total binding replicates.  However, this 
approach reduces the total number of data points that constitute the specific binding 
curve. 

You can take the average value of each set of non-specific binding replicates, and subtract 
this from each individual corresponding total binding replicate. This is probably the most 
common approach, and results in a larger number of data points in the resulting specific 
binding curve. 

If you assume that non-specific binding is a linear function of radioligand concentration, 
you can perform a linear regression on the non-specific binding data to derive the 
corresponding line of best-fit.  Then, you subtract the ideal value of non-specific binding 
described by the line from each corresponding total binding replicate. 

None of these approaches are ideal, as they all involve data transformation of some kind.  
A less ambiguous approach is to use global fitting, as described in the next section. 

The problem with the standard approach to fitting specific saturation 
binding data 
In the standard approach to analyzing saturation binding data (above), you basically 
combine two real, experimentally determined, data sets (total binding and non-specific 
binding) to yield a “composite” curve (specific binding).  The data you analyze, the 
resulting specific binding values, were not actually experimentally determined but rather 
calculated by combining other data. Although this approach is generally valid for high 
quality data, it is nevertheless suboptimal for two reasons: 
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The curve fitting procedure will always have fewer degrees of freedom (fewer data points) 
after the transformation.  For example, the 16 data points describing the total and non-
specific binding of [3H]NMS in the original data set above are reduced to 8 points 
describing the specific binding of the radioligand. 

Whenever one set of data is used to perform a transformation of another set of data, the 
potential always exists for the propagation of error from either data set to the resulting 
transform. For example, you may have made a mistake in the determination of non-
specific binding in one set of tubes (see figure below).  After subtracting the non-specific 
binding from the total binding, the resulting specific binding curve may provide a poor fit 
to the saturation binding model, and thus provide poor estimates of Bmax and/or Kd. 
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All these problems associated with nonlinear regression analysis of transformed 
data sets can be overcome if the regression procedure fits the equations describing 
total and nonspecific binding to the raw data at the same time. 

Using global fitting to determine total and nonspecific binding at one 
time 
Using a global fitting approach, i.e., parameter-sharing, it is possible to fit total and 
nonspecific binding at one time to the raw, experimentally determined, saturation binding 
data. There is thus no need to subtract one data set from another to get specific binding. 
Just fit total and nonspecific at once.  

Depending on your nonlinear regression program, you would most likely need to place 
your total binding data into one column (e.g., column A for in our case), and nonspecific 
binding data into another column (e.g., column B). The following is in Prism 4 syntax 
equation, and defines one equation for column A and another for column B. When you fit 
this model, set the parameter NS to be shared between both data sets 

Nonspecific=NS*X 
Specific=Bmax*X/(KD + X) 
<A> Y = Specific + Nonspecific 
<B> Y = Nonspecific 
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Variable Units Comments 

X Usually nanomolar Concentration of unlabeled drug. 

Y Cpm; dpm; fmol/mg 
protein 

Total binding of radioligand. 

Bmax Same as Y axis; i.e., cpm; 
dpm; fmol/mg protein 

Maximal density of binding sites 
for the radioligand 

KD Same as X axis; i.e. 
concentration units 

Equilibrium dissociation 
constant of the radioligand. 

NS Same as Y axis; i.e., cpm; 
dpm; fmol/mg protein 

Fraction of the total binding that 
is non-specific binding. 
Constrained to be greater than 
zero. 

 

Note that the above syntax is specific to GraphPad Prism, particularly the <A>/<B> 
format, which refers to specific data set columns. Depending on the program you use, you 
will have to adapt the syntax to assign one equation for the total binding data set and 
another for the non-specific binding data set. Unfortunately, not all nonlinear regression 
programs offer global curve fitting. 

The figure below shows the best-fit curve for the binding of [3H]NMS to the M2 
muscarinic acetylcholine receptor, as well as its non-specific binding. The best-fit 
parameters are also shown: 
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Parameter Best-fit value 95% CI 

   Bmax 6291 4843 to 7739 

   Kd 0.317 0.109 to 0.525 

   NS 149.1 0.0 to 402.1 

 

If you compare the results from this analysis to the standard method shown in the 
previous section, you will note that the current global fit yields narrower 95% confidence 
intervals for the Bmax and Kd parameters.  This highlights the greater reliability in 
parameter estimation provided by sharing parameters across data sets. 
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Determining Kd and Bmax for two classes of binding sites 
If the radioligand binds to two classes of binding sites, fit the specific binding data to the 
following two-site binding equation. This equation is simply an extension of the one-site 
equation shown previously, and sums the binding to two sites, each with its own Bmax and 
Kd. 

max1 max2

d1 d2

B X B XY= +
K +X K +X

⋅ ⋅
 

This equation assumes that the radioligand binds to two independent noninteracting 
binding sites, and that the binding to each site follows the law of mass action. 

You will only get meaningful results from a two-site fit if you have ten or more (preferably 
a lot more) data points spaced over a wide range of radioligand concentrations. Be sure 
that you measure binding at radioligand concentrations below the high-affinity Kd and 
above the low affinity Kd.  

Note:  The two-site saturation binding model is simply an extension of the one-
site model.  Thus, the same procedures described earlier for using global-fitting 
to analyze total and nonspecific binding experiments are readily applied to both 
models.  

Checklist for saturation binding  
When evaluating results of saturation binding analyses, ask yourself these questions: 

Question Comment 

Did only a small fraction 
of the radioligand bind? 

The analysis assumes that the free concentration is almost identical 
to the concentration you added. You can test this by comparing the 
total counts that bound to the total counts added to the tube. If 
more than 10% of the ligand bound (at any ligand concentration), 
then the standard analysis won't work. Either change the 
experimental protocol (increase the volume) or use a method that 
accounts for depletion of radioligand -- see "Analyzing saturation 
binding with ligand depletion" on page 208. 

Did the binding 
equilibrate? 

The tubes with the lowest concentration of radioligand take the 
longest to equilibrate. So test equilibration time with a low 
concentration of radioligand. 

Did you use high enough 
concentrations of 
radioligand? 

Calculate the ratio of the highest radioligand concentration you 
used divided by the Kd reported by the program (both in nM or pM). 
The highest concentration should be at least 10 times the Kd, so that 
occupancy exceeds 90%. 

Is the Bmax reasonable? Typical values for Bmax are 10-1000 fmol binding sites per milligram 
of membrane protein, 100-10000 sites per cell or 1 receptor per 
square micron of membrane. If you use cells transfected with 
receptor genes, then the Bmax may be many times larger than these 
values. 
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Question Comment 

Is the Kd reasonable? Typical values for Kd of useful radioligands range between 10 pM 
and 10 nM. If the Kd is much lower than 10 pM, the dissociation rate 
is probably very slow and it will be difficult to achieve equilibrium. 
If the Kd is much higher than 10 nM, the dissociation rate will 
probably be fast, and you may be losing binding sites during 
separation of bound ligand from free radioligand. 

Are the standard errors 
too large? Are the 
confidence intervals too 
wide? 

Divide the SE of the Bmax by the Bmax, and divide the SE of the Kd by 
the Kd. If either ratio is much larger than about 20%, look further to 
try to find out why.  

Is the nonspecific 
binding too high? 

Divide the nonspecific binding at the highest concentration of 
radioligand by the total binding at the highest concentration. 
Nonspecific binding should usually be less than 50% of the total 
binding. 

 

Scatchard plots 

What is a Scatchard plot? 
In the days before nonlinear regression programs were widely available, scientists 
transformed data into a linear form, and then analyzed the data by linear regression. 
There are several ways to linearize binding data, including the methods of Lineweaver-
Burk and Eadie-Hofstee. However, the most popular method to linearize binding data is 
to create a Scatchard plot (more accurately attributed to Rosenthal), shown in the right 
panel below. 
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In the Scatchard plot, the X axis is specific binding and the Y axis is specific binding 
divided by free radioligand concentration. It is possible to estimate the Bmax and KD from a 
Scatchard plot (Bmax is the X intercept; Kd is the negative reciprocal of the slope). However, 
the Scatchard transformation distorts the experimental error, and thus violates several 
assumptions of linear regression. The Bmax and KD values you determine by linear 
regression of Scatchard transformed data may be far from their true values. 

After analyzing your data with nonlinear regression, however, it is often useful to display 
data as a Scatchard plot. The human retina and visual cortex are wired to detect edges 
(straight lines), not rectangular hyperbolas. Scatchard plots are often shown as insets to 
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the saturation binding curves. They are especially useful when you want to show how a 
treatment changes Bmax or Kd. 

Tip: You should analyze saturation binding data with nonlinear regression, not 
with Scatchard plots. Use Scatchard plots to display data, not to analyze data. 

When making a Scatchard plot, you have to choose what units you want to use for the Y-
axis. Some investigators express both free ligand and specific binding in cpm or dpm so 
the ratio bound/free is a unitless fraction. While this is easy to interpret (it is the fraction 
of radioligand bound to receptors), a more rigorous alternative is to express specific 
binding in sites/cell or fmol/mg protein, and to express the free radioligand concentration 
in nM. While this makes the Y-axis hard to interpret visually, it provides correct units for 
the slope (which equals -1/Kd). 

GraphPad note: It is easy to transform saturation data to form a Scatchard plot 
with Prism. From your data table, click Analyze, choose Transforms, switch to 
the list of Pharmacology and biochemistry transforms, and then choose the 
Scatchard transform. 

Plotting the line that corresponds to nonlinear regression analyses 
If there is one class of receptors, the Scatchard plot will be linear. Some people use linear 
regression to draw a line through the points. However, the linear regression line should 
NOT be used to analyze the data. The X-intercept of the regression line will be near the 
Bmax and the negative inverse of the slope will be near the Kd. However, the Bmax and Kd 
values determined directly with nonlinear regression will be more accurate.  

It isn’t hard to draw the Scatchard line that corresponds to the nonlinear regression 
determination of Bmax and Kd. The discussion below assumes that the “Bound” units for 
the Y axis are the same units used for the X-axis and in which you want to express Bmax 
(sites/cell or fmol/mg,), and the “free” units are the same as the units you want to use for 
the Kd (nM or pM). Since the X intercept of the Scatchard line is the Bmax, the Scatchard 
line ends at X=Bmax, Y=0. Since the slope of the Scatchard line equals –1/Kd , the Y-
intercept equals the Bmax divided by the Kd. The Scatchard line begins at X=0, Y= Bmax /Kd.  

To create a Scatchard line corresponding to the nonlinear regression fit: 

1. Create a new data table, with numerical X values and single Y values. 

2. Into row 1 enter X=0, Y= Bmax/Kd (both previously determined by nonlinear 
regression). 

3. Into row 2 enter X= Bmax (previously determined by nonlinear regression) and 
Y=0. 

4. Superimpose the points contained in this new data table on the Scatchard plot of 
your binding data. 

5. Connect the symbols of the new data table with a straight line. If your program 
allows you, hide the data point symbols but leave the interconnecting straight line. 

The result is a straight line, based on the nonlinear regression of your binding data, 
superimposed on the Scatchard transformation of the same binding data. 
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Scatchard plots of binding to two sites 

The appearance of a two-site Scatchard plot 

The left panel below shows binding of a radioligand to two independent binding sites 
present in equal concentrations, but with a tenfold difference in Kd. The two individual 
curves are shown as dotted and dashed curves. When you do the experiment, you can't 
observe the individual components, but observe the sum, which is shown as a solid curve. 
Note that this curve is not obviously biphasic. 

The right panel shows the same data plotted on a Scatchard plot. The binding to each 
receptor is shows as a straight line (dotted, or dashed). The total binding, plotted on a 
Scatchard plot, is curved. Note that the two lines that represent binding to each type of 
receptor are NOT the asymptotes of the curve. 
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Graphing the two lines of a two-site Scatchard plot 

To plot the two straight lines that correspond to the nonlinear regression fit, adapt the 
instructions (previous section) for plotting a Scatchard plot for one-site binding. Create a 
new data table that defines the two lines as shown below, using Bmax and Kd values 
determined by nonlinear regression. 

X A B 

0 Bmax1/Kd1  

Bmax1 0  

0  Bmax2/Kd2 

Bmax2  0 

 

Go to the graph of the Scatchard transformed data and add the new table to that graph. 
Plot the two data sets from the table using connecting lines but no symbols.  
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Analyzing saturation binding with ligand depletion 

Total binding with ligand depletion 
The standard methods for analyzing saturation binding assume that a tiny fraction of the 
radioligand binds to receptors. This means that the concentration of radioligand added is 
very similar to the concentration of radioligand free in solution.  

In some experimental situations, where the receptors are present in high concentration 
and have a high affinity for the ligand, that assumption is not true. A large fraction of the 
radioligand binds to receptors, so the free concentration in solution is quite a bit lower 
than the concentration you added. The free ligand concentration is depleted by binding to 
receptors. 

If possible you should avoid experimental situations where the free ligand concentration 
is far from the total concentration. You can do this by increasing the volume of the assay 
without changing the amount of tissue. The drawback is that you'll need more radioligand, 
which is usually expensive or difficult to synthesize. 

If you can't avoid radioligand depletion, you need to account for the depletion in your 
analyses. The obvious way to do this is to subtract the number of cpm (counts per minute) 
of total binding from the cpm of added ligand to calculate the number of cpm free in 
solution. This can then be converted to the free concentration in molar. There are four 
problems with this approach: 

• If you used this method, experimental error in determining specific binding 
would affect the free ligand concentration you calculate. Error in Y would affect 
X, which violates an assumption of nonlinear regression.  

• Since the free concentration in the nonspecific tubes is not the same as the free 
concentration in the total tubes, it is difficult to deal with nonspecific binding 
using this approach. You cannot calculate specific binding as the difference 
between the total binding and nonspecific binding. 

• This method works only for saturation binding experiments, and cannot be 
extended to analysis of competition curves. 

• You cannot implement this method with many commercially-available nonlinear 
regression programs, because they do not let you subtract Y from X as part of the 
nonlinear regression process.  

S. Swillens (Molecular Pharmacology, 47: 1197-1203, 1995) developed an equation that 
defines total binding as a function of added ligand, accounting for nonspecific binding and 
ligand depletion. By analyzing simulated experiments, that paper shows that fitting total 
binding gives more reliable results than you would get by calculating free ligand by 
subtraction. The equations shown below are not exactly the same as in Swillens' paper, 
but the ideas are the same. 

From the law of mass action, total binding follows this equation. 

max

d

Total Binding = Specific + Nonspecific
B [Free Ligand]Total Binding = + [Free Ligand] NS
K +[Free Ligand]

⋅
⋅
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The first term is the specific binding, which equals fractional occupancy times Bmax, the 
total number of binding sites. The second term is nonspecific binding, which is assumed 
to be proportional to free ligand concentration. The variable NS is the fraction of the free 
ligand that binds to nonspecific sites. 

This equation is not useful, because you don’t know the concentration of free ligand. What 
you know is that the free concentration of ligand equals the concentration you added 
minus the concentration that bound (specific and nonspecific). Defining X to be the 
amount of ligand added and Y to be total binding, the system is defined by two equations:  

max

d

B [Free Ligand]Y = + [Free Ligand] NS
K +[Free Ligand]

[Free Ligand]= X-Y

⋅
⋅

 

Combining the two equations: 

max

d

B (X-Y)Y = +(X-Y) NS
K +(X-Y)

⋅
⋅  

X, Y and Bmax are expressed in units of cpm per tube. To keep the equation consistent, 
therefore, Kd must also be converted to cpm units (the number of cpm added to each tube 
when the total concentration equals the Kd). 

Unfortunately, you cannot enter the equation for total binding with ligand depletion into 
most commercially-available nonlinear regression programs because Y appears on both 
sides of the equal sign. This is called an implicit equation, because it doesn’t really define 
Y but the definition is implicit in the equation. But simple algebra rearranges it into a 
quadratic equation, whose solution is shown below: 

2-b+ b -4 a cY =
2 a

⋅ ⋅
⋅

 

where 

( ) ( )
( )( )

d max

d max

a = -1-NS
b = X 2 NS+1 +K NS+1 +B

c = -X NS K +X +B

⋅  

Nonspecific binding with ligand depletion 
The method described above fits total binding data to an equation that includes both 
specific and nonspecific components. It does not require that you experimentally 
determine nonspecific binding. While this is convenient, many investigators would feel 
uneasy trusting those results without determining nonspecific binding experimentally.  

You can experimentally determine nonspecific binding by including a large concentration 
of an unlabeled ligand in your incubations. This will bind to virtually all the receptors, 
leaving only nonspecific sites free to bind radioligand. The conventional approach is to 
measure total and nonspecific binding at each ligand concentration, and to define specific 
binding as the difference. This approach cannot be used when a high fraction of ligand 
binds, because the free concentration of ligand in the total tubes is not the same as the 
free concentration of ligand in the nonspecific tubes. 
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We assume that nonspecific binding is a constant fraction of the concentration of free 
ligand. 

Nonspecific binding = Y =NS [Ligand]i  

We also assume that the free concentration of ligand equals the added concentration (X) 
minus the amount that bound (Y). 

[Ligand]=X-Y  

Combining the two equations: 

Y=(X-Y) NS
NSY=X

NS+1

⋅

⋅
 

Fitting total and nonspecific binding with ligand depletion 
The most ideal approach to analyzing saturation binding data with depletion is to use the 
combination of total and nonspecific binding equations described above to simultaneously 
fit both total and nonspecific binding data sets, if your nonlinear regression program 
allows you to do global fitting with parameter-sharing.  Shown below is the programming 
(using the Prism 4 syntax) for entering these equations into a computer program. 

KdCPM=KdnM * Vol * 1000 * SpecAct  
a = -1-NS 
b = X*(2*NS+1) + KdCPM*(NS+1) + Bmax 
c= -1*X*(NS*(KdCPM + X)+Bmax) 
Total= (-b + SQRT(b*b – 4*a*c))/(2*a) 
Nonspec=X*NS/(NS+1) 
<A>Y=Total 
<B>Y=Nonspec 

 

The <A> & <B> syntax defines one equation for column A (total binding) and a different 
equation for column B (nonspecific binding). If you use a program other than Prism,  you 
will have to adapt the equation.  

In the above equation, X is total ligand added in cpm, Y is total binding in cpm, SpecAct is 
specific radioactivity in cpm/fmol and Vol is reaction volume in ml.  You must fix both of 
these last two parameters to constant values based on your experimental design.  You 
must share the parameter NS between the two data sets. Nonlinear regression will find 
the best-fit value for that as well as for KdnM (the Kd in nM) and the Bmax (in cpm). The 
remaining variables (KdCPM, a, b, c, total, nonspec) are intermediate variables used to 
allow the equation to be written over many lines. They are not fit. 

In situations of ligand depletion, the free concentration of radioligand will differ between 
the total binding assay tubes and the nonspecific binding assay tubes. Subtracting the two 
values makes no sense, and determining specific binding is difficult. This is clearly a 
situation where global curve-fitting is the preferred analytical approach. 
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37. Analyzing competitive binding data 

What is a competitive binding curve? 
Competitive binding experiments measure the binding of a single concentration of labeled 
ligand in the presence of various concentrations of unlabeled ligand. Ideally, the 
concentration of unlabeled ligand varies over at least six orders of magnitude. 
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The top of the curve is a plateau at a value equal to radioligand binding in the absence of 
the competing unlabeled drug. The bottom of the curve is a plateau equal to nonspecific 
binding. The concentration of unlabeled drug that produces radioligand binding half way 
between the upper and lower plateaus is called the IC50 (inhibitory concentration 50%) or 
EC50 (effective concentration 50%). 

If the radioligand and competitor both bind reversibly to the same binding site, binding at 
equilibrium follows this equation (where Top and Bottom are the Y values at the top and 
bottom plateau of the curve). 

( )
( )50X LogIC

Top Bottom
Y Bottom

1 10 −

−
= +

+
 

Entering data for competitive binding curves 
Many investigators enter Y values as cpm or dpm. Other investigators transform their 
data to percent specific binding. The problem with this latter approach is that you need to 
define how many cpm (or dpm) equal 100% binding and how many equal 0% specific 
binding. 

It is best to use the logarithm of the concentration of competitor as your X value, rather 
than the concentration itself. For example, if the competitor concentration varied from 1 
nM to 1 mM, enter X values from -9 to -3. A log axis cannot accommodate a concentration 
of zero (log 0 is undefined). Instead, enter the logarithm of a very low competitor 
concentration (e.g., -10). 
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If you prefer to enter concentrations in the data table, rather than the logarithm of 
concentration, be sure to then transform the data to logarithms before performing 
nonlinear regression.  

Decisions to make before fitting the data 

Weighting 

When analyzing the data, you need to decide whether to minimize the sum of the squares 
of the absolute distances of the points from the curve or to minimize the sum of the 
squares of the relative distances. See "Weighting method" on page 307. The choice 
depends on the source of the experimental error. Follow these guidelines: 

If the bulk of the error comes from pipetting, the standard deviation of replicate 
measurements will be, on average, a constant fraction of the amount of binding. In a 
typical experiment, for example, the highest amount of binding might be 2000 cpm with 
an SD of 100 cpm. The lowest binding might be 400 cpm with an SD of 20 cpm. With data 
like this, you should evaluate goodness-of-fit with relative distances. The details on how to 
do this are in the next section.  

In other experiments, there are many contributions to the scatter and the standard 
deviation is not related to the amount of binding. With this kind of data, you should 
evaluate goodness-of-fit using absolute distances, which is the default choice. 

You should only consider weighting by relative distances when you are analyzing total 
binding data. When analyzing specific binding (or data normalized to percent inhibition), 
you should evaluate goodness-of-fit using absolute distances, as there is no clear 
relationship between the amount of scatter and the amount of specific binding.  

Constants 

To find the IC50, the concentration that inhibits 50% of the binding, the nonlinear 
regression algorithm needs to first define 100% and 0%. 

Ideally your data span a wide range of concentrations of unlabeled drug, and clearly 
define the bottom or top plateaus of the curve. If this is the case, the computer program 
can fit the 0% and 100% values from the plateaus of the curve and you don't need to do 
anything special. 

In some cases, your competition data may not define a clear bottom plateau, but you can 
define the plateau from other data. All drugs that bind to the same receptor should 
compete all specific radioligand binding and reach the same bottom plateau value. This 
means that you can define the 0% value (the bottom plateau of the curve) by measuring 
radioligand binding in the presence of a standard drug known to block all specific binding. 
If you do this, make sure that you use plenty of replicates to determine this value 
accurately. If your definition of the lower plateau is wrong, the values for the IC50 will be 
wrong as well. You can also define the top plateau as binding in the absence of any 
competitor. 

If you have collected enough data to clearly define the entire curve, let your program fit all 
the variables and find the top and bottom plateaus based on the overall shape of your 
data. If your data don't define a clear top or bottom plateau, you should define one or both 
of these values to be constants fixed to values determined from other data. 
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Competitive binding data with one class of receptors 

Fitting data to a one-site competitive binding curve 
 The one-site competitive binding equation outlined above describes your data in terms of 
three parameters, the Top, the Bottom and the LogIC50. In terms of curve shape, this 
model is equivalent to a standard, monotonic, sigmoid with a midpoint slope factor of 1 
(see below for further details on shallower and steeper curves).  If your data follow the law 
of mass action, then the resulting curve should be hyperbolic and not deviate significantly 
from a slope of 1. 

Y=Bottom+(Top-Bottom)/(1+10^(X-LogIC50)) 

Checklist for competitive binding results 
When evaluating results of competitive binding, ask yourself these questions: 

Question Comment 

Is the logIC50 reasonable? The IC50 should be near the middle of the curve, with at least 
several concentrations of unlabeled competitor on either side 
of it. 

Are the standard errors too 
large? Are the confidence 
intervals too wide. 

The SE of the logIC50 should be less than 0.5 log unit (ideally 
a lot less). 

Are the values of Top and 
Bottom reasonable? 

Top should be near the binding you observed in the absence 
of competitor. Bottom should be near the binding you 
observed in the presence of a maximal concentration of 
competitor. If the best-fit value of Bottom is negative, 
consider fixing it to a constant value equal to nonspecific 
binding determined in a control tube. 

Has binding reached 
equilibrium? 

Competitive binding incubations take longer to equilibrate 
than saturation binding incubations. You should incubate for 
4-5 times the half-life for radioligand dissociation. 

Does only a small fraction of 
the radioligand bind?  

The equations are based on the assumption that the free 
concentration of labeled ligand is essentially identical to the 
concentration you added. Compare the total binding in the 
absence of competitor in cpm, to the amount of ligand added 
in cpm. If the ratio is greater than 10% at any concentration, 
then you've violated this assumption.  Try to revise your 
experimental protocol, perhaps using a large incubation 
volume. 

Does the curve have the 
expected steepness? 

The competitive binding curve has a Hill slope (or slope 
factor) of –1. If your data form a curve shallower than this, see 
"Shallow competitive binding curves" on page 215. 

 

Ki from IC50 

The three-parameter one-site competitive binding equation, given above, fits your binding 
curve to find the IC50, the concentration of competitor that competes for half the specific 
binding. This is a measure of the competitor’s potency for interacting with the receptor 
against the radioligand, but it should not be confused as a measure of the competitor’s 
affinity. 
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The value of the IC50 is determined by three factors: 

• The affinity of the receptor for the competing drug. If the affinity is high, the IC50 
will be low. The affinity is usually quantified as the equilibrium dissociation 
constant, Ki. The subscript “i” is used to indicate that the competitor inhibited 
radioligand binding. You can interpret it the same as you interpret a Kd. The Ki is 
the concentration of the competing ligand that will bind to half the binding sites 
at equilibrium, in the absence of radioligand or other competitors. If the Ki is 
low, the affinity of the receptor for the inhibitor is high. 

• The concentration of the radioligand. If you choose to use a higher concentration 
of radioligand, it will take a larger concentration of unlabeled drug to compete 
for half the radioligand binding sites. 

• The affinity of the radioligand for the receptor (Kd). It takes more unlabeled drug 
to compete for a tightly bound radioligand (low Kd) than for a loosely bound 
radioligand (high Kd). 

You calculate the Ki, using the equation of Cheng and Prusoff (Cheng Y., Prusoff W. H., 
Biochem. Pharmacol. 22: 3099-3108, 1973).  
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Fitting the Ki directly 

The previous discussion assumes that you fit a model to find the best-fit value of the IC50 
and then compute the Ki from that. It is not difficult to re-write the model to directly 
determine the Ki. Use this equation: 
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As a user-defined equation for programming into a nonlinear regression program: 

IC50=(10^LogKi)/(1+(10^(LogRadioligand-LogKd))) 
LogIC50=Log(IC50) 
Y=Bottom+(Top-Bottom)/(1+10^(X-LogIC50)) 

 

For this analysis, be sure to constrain the values of LogRadioligand (logarithm of 
radioligand concentration) and LogKd (logarithm of radioligand Kd value) as constants. 

IC50 or Ki versus log IC50 or log Ki 

The standard competitive binding equations above are defined in terms of the logarithm 
of the IC50 or the logarithm of the Ki, so the nonlinear regression algorithm will find the 
best-fit value of the log IC50 or log Ki along with its SE and 95% CI. Depending on your 
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program, the algorithm may also report the IC50 (or Ki) and its 95% CI. It does this by 
taking the antilog of the log IC50 (or log Ki) and of both ends of the 95% CI. Since the 
confidence interval is symmetrical on the log scale, it is not symmetrical when converted 
to IC50 or Ki. 

If the concentrations of unlabeled compound are equally spaced on a log scale, the 
uncertainty of the log IC50 or log Ki will be symmetrical, but the uncertainty of the IC50 or 
Ki will not be. That is why the equations are written in terms of log IC50 or log Ki. This is a 
general feature of models that deal with measures of drug affinity and/or potency. If you 
average together results from several experiments, it is better to average the log IC50 or log 
Ki values, rather than the IC50 or Ki values. If you average IC50 or Ki values, one value that 
is far from the rest will have too much influence on the mean. See “Why you should fit the 
logEC50 rather than EC50” on page 263. 

Shallow competitive binding curves 

The slope factor (Hill slope) 
If the labeled and unlabeled ligands compete for a single class of binding site, the 
competitive binding curve will have a shape determined by the law of mass action. In this 
case, the curve will descend from 90% specific binding to 10% specific binding over an 81-
fold increase in the concentration of the unlabeled drug. More simply, virtually the entire 
curve will cover two log units (100-fold change in concentration). 
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To quantify the steepness of a competitive binding curve, you must fit your data to a 
sigmoid equation that contains a parameter that specifically describes the effect of 
changing the midpoint slope.  One such example is the four-parameter Hill equation, 
which was introduced in previous chapters of this book and is described in greater detail 
in the next section of this book.  The Hill equation is identical to the three-parameter 
competitive binding equation described above, except for the addition of a fourth 
parameter (usually called the HillSlope or the slope factor), which allows the curve to be 
either shallower or steeper than a hyperbola with a slope of 1. 

( )
( )50X-LogIC HillSlope

Top-Bottom
Y=Bottom+

1+10 ⋅
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The nonlinear regression program will then fit the top and bottom plateaus, the (log)IC50, 
and the Hill slope factor ). A standard competitive binding curve that follows the law of 
mass action has a slope of -1.0. If the slope is shallower, the Hill slope factor will be a 
negative fraction, perhaps -0.85 or -0.60.  Shown below is the syntax for programming 
this equation into a nonlinear regression program. 

Y=Bottom+(Top-Bottom)/(1+10^(X-LogIC50)*HillSlope) 

 

The slope factor describes the steepness of a curve. In most situations, there is no way to 
interpret the value in terms of chemistry or biology. If the slope factor is far from 1.0, then 
the binding does not follow the law of mass action at a single site. 
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Explanations for shallow binding curves include: 

Explanation Comment 

Experimental 
problems 

If the serial dilution of the unlabeled drug concentrations was done 
incorrectly, the slope factor is not meaningful. 

Curve fitting problems If the top and bottom plateaus are not correct, then the slope factor 
is not meaningful. Don't try to interpret the slope factor unless the 
curve has clear top and bottom plateaus. You may need to set the 
variables Top and Bottom to constant values. 

Negative cooperativity You will observe a shallow binding curve if the binding sites are 
clustered (perhaps several binding sites per molecule) and binding 
of the unlabeled ligand to one site causes the remaining site(s) to 
bind the unlabeled ligand with lower affinity. 

Heterogeneous 
receptors 

The receptors do not all bind the unlabeled drug with the same 
affinity. 

Ternary complex 
mechanism  

If agonist-bound receptors interact with an accessory protein to 
form a ternary complex, agonist curves can become shallow if the 
availability of the accessory protein becomes limiting relative to 
the concentration of receptor and agonist. 

 

Competitive binding curves can also (but rarely) be steep, with Hill slopes significantly 
greater than 1.  Explanations include: 
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Explanation Comment 

Wrong concentrations If the serial dilution of the unlabeled drug concentrations was 
done incorrectly, the slope factor is not meaningful.  

Not at equilibrium Before equilibrium is reached, you don’t expect a standard Hill 
slope of 1.0. 

Curve fitting problems You may have collected too many points at the top and bottom of 
your curve, but very few in the middle, even though this is the 
portion of the curve that is most important in defining the 
inhibition. 

Positive cooperativity You will observe a steep binding curve if the binding sites are 
clustered (perhaps several binding sites per receptor) and binding 
of the unlabeled ligand to one site causes the remaining site(s) to 
bind the unlabeled ligand with higher affinity. 

Note: If the slope factor of a competitive binding curve is significantly different 
from 1, then it is difficult to interpret the meaning of the IC50 in terms of any 
standard mechanistic mass-action models. Therefore, you should not attempt 
to derive a Ki value from the IC50, as it would be meaningless. Rather, you can 
simply quote the IC50 as an empirical measure of competitor potency. 

Competitive binding with two sites (same Kd for hot ligand) 
It is quite common to see competitive binding curves that deviate significantly from the 
expectations of simple mass-action binding to a single site. The most common reason for 
this is because the drugs are interacting with two distinct classes of receptors. For 
example, a tissue could contain a mixture of β1 and β2 adrenoceptors.  In this instance, the 
one-site competitive binding model can be readily extended to accommodate two binding 
sites, as follows: 

( )
1 2X-LogIC50 X-LogIC50

Fraction 1-FractionY=Bottom+ Top-Bottom +
1+10 1+10

 
  

 

In order to use this equation, the following assumptions must also be met: 

• The unlabeled ligand has distinct affinities for the two sites. 

• The labeled ligand has equal affinity for both sites. (If you are not willing to make 
this assumption, see "Competitive binding to two receptor types (" on page 219.) 

• Binding has reached equilibrium. 

• A small fraction of both labeled and unlabeled ligand bind. This means that the 
concentration of labeled ligand that you added is very close to the free 
concentration in all tubes. 

This equation has five variables: the top and bottom binding plateau, the fraction of the 
receptors of the first class, and the IC50 for competition of the unlabeled ligand at both 
classes of receptors. If you know the Kd of the labeled ligand and its concentration, you 
can convert the IC50 values to Ki values. 

When you look at the competitive binding curve, you will only see a biphasic curve in 
unusual cases where the affinities are extremely different. More often you will see a 
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shallow curve with the two components blurred together. For example, the graph below 
shows competition for two equally abundant sites with a ten fold (one log unit) difference 
in IC50. If you look carefully, you can see that the curve is shallow (it takes more than two 
log units to go from 90% to 10% competition), but you cannot see two distinct 
components.  
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Comparing one- and two-site models 
Often, it is a good idea to fit your competitive binding data to both the one-site 
competitive binding model and a two-site competitive binding model, and then compare 
the fits. Since the two-site model has two extra parameters, and thus the curve has extra 
inflection points, the model almost always fits the data better than the one site model. 
And a three-site model fits even better. Before accepting the more complicated model(s), 
you need to ask whether the improvement in goodness of fit is more than you'd expect by 
chance. The most common way to answer this question is to use an F test or Akaike’s 
Information Criterion.  Model comparison using these methods was discussed in Section 
G of this book. 

Before comparing the two models, you should look at the results of the actual curve fits 
yourself. Sometimes the two-site fit gives results that are clearly nonsense. For example, 
disregard a two-site fit when: 

• The two IC50 values are almost identical.  

• One of the IC50 values is outside the range of your data. 

• The variable Fraction is close to 1.0 or to 0.0. In this case, virtually all the 
receptors have the same affinity, and the IC50 value for the other site will not be 
reliable.  

• The variable Fraction is negative or greater than 1.0.  

• The best-fit values for Bottom or Top are far from the range of Y values observed 
in your experiment. 

If the results don’t make sense, don’t believe them. Only pay attention to the comparison 
of two fits when each of the fits makes sense. 
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Competitive binding to two receptor types (different Kd for hot 
ligand) 
The standard equation for competitive binding to two sites assumes that the labeled 
ligand has equal affinity for both sites. It is easy to derive an equation for situations where 
the labeled ligand binds differently to the two sites. 

This is one form of the standard equation for competitive binding to one site: 

max

d
d

i

[Hot Ligand] BY= +NonspecificK[Hot Ligand] + K + ×[Cold Ligand]
K

⋅
 

Binding is the sum of specific and nonspecific binding. To create an equation for two sites, 
you simply need to create an equation with two specific binding components with 
different values for Bmax, Kd, and Ki:  This is shown below as a user-defined equation. 

ColdnM=10^(X+9) 
KI1nM = 10^(LogKI1+9) 
KI2nM = 10^(LogKI2+9) 
SITE1= HotnM*Bmax1/(HotnM + KD1*(1+coldnM/Ki1nM)) 
SITE2= HotnM*Bmax2/(HotnM + KD2*(1+coldnM/Ki2nM)) 
Y = SITE1 + SITE2 + NS 

 

Make sure you enter data with X=log[unlabeled] and Y=cpm or dpm. 

Variable Units Comments 

X log(Molar) Concentration of unlabeled drug. 

Y cpm Total binding of radioligand. 

HotnM nM Concentration of labeled ligand added to each tube. Set to a 
constant value. 

KD1 nM Kd of the labeled ligand for the first site. Set to a constant 
value based on other experiments. 

KD2 nM Kd of the labeled ligand for the second site. Set to a 
constant value . 

logKI1 log(Molar) Affinity of the unlabeled drug for the first site. Try an 
initial value of 1.2 x your mid-range X value. 

logKI2 log(Molar) Affinity of the unlabeled drug for the second site. Try an 
initial value of 0.8 x your mid-range X value. 

Bmax1 Units of Y axis, 
usually cpm 

Try an initial value of 2 x your maximum Y value. (This 
assumes that you've used a concentration of radioligand 
that binds to half of the receptors. You may wish to adjust 
this.) 

Bmax2 Units of Y axis, 
usually cpm 

Try an initial value of 2 x your maximum Y value. (This 
assumes that you've used a concentration of radioligand 
that binds to one tenth of the receptors.) 

NSCPM Units of Y-axis, 
usually cpm. 

Nonspecific binding. Try an initial value of 1 x your 
minimum Y value. 
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Notes: 

• This equation does not account for ligand depletion. It assumes that the free 
concentration equals the added concentration. 

• When using this equation to fit data, you will need to assign constant values to 
KD1 and KD2, the KD of the hot ligand for the two sites. You will need to obtain 
these values from other experiments. Perhaps you can isolate tissue with only one 
of the receptor types and measure Kd in that preparation. 

Heterologous competitive binding with ligand depletion 
The standard sigmoidal equations used to fit competitive binding data assume that a 
small fraction of the radioligand binds relative to what is added. This means that the free 
concentration of radioligand is almost equal to the concentration you added, and that the 
free concentration is the same in all tubes in the assay. 

If a large (say greater than 10%) fraction of the radioligand binds to receptors, then the 
free concentration will be less than the added concentration of radioligand. The 
discrepancy between free and added radioligand concentration depends on the 
concentration of the unlabeled drug. The standard equation for competitive binding, 
shown below, needs two corrections to account for ligand depletion. 

max

d
i

[Free Ligand] BY= +Nonspecific
[Cold Ligand][Free Ligand] + K 1+

K

⋅
 
 
 

 

The free concentration of labeled ligand equals the amount you added minus the amount 
that bound.  

[Free ligand] =[Added ligand] - Y  

The nonspecific binding is not the same for all tubes. As you increase the concentration of 
cold ligand, less radioligand binds to receptors so the free concentration of radioligand 
increases. Since nonspecific binding is assumed to be proportional to the free 
concentration of radioligand, there will be more nonspecific binding in the tubes with 
higher concentrations of unlabeled drug.  

Nonspecific binding = NS [Free ligand]⋅  

Y, [Free ligand], and [Added ligand] are expressed in units of cpm. To be consistent, 
therefore the Kd also needs to be expressed in cpm units. [Cold ligand] and Ki are 
expressed in the same units (molar), so the ratio is unitless. 

Combine these equations, and you end up with a complicated quadratic equation whose 
solution is shown here: 

2-b+ b -4 a cY =
2 a

i i
i

 

where 
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KdCPM=KdnM*SpAct*vol*1000  
R=NS+1 
S=[1+10^(X-LogKi)]*KdCPM+Hot 
a=-1*R 
b=R*S+NS*Hot + Bmax 
c= -1*Hot*(S*NS + Bmax) 
Y= (-1*b + sqrt(b*b-4*a*c))/(2*a) 

 

Variable Units Comments 

X log(Molar) Logarithm of the concentration of unlabelled 
competitor. 

Y CPM Bound labeled ligand. 

Hot CPM Amount of labeled ligand added to each tube. 
Set to a constant value. 

SpAct cpm/fmol Specific radioactivity of labeled ligand. Set to 
constant value. 

Vol ml Incubation volume. Set to a constant value. 

KdnM nM Kd of labeled ligand. Set to a constant value. 

LogKi log(Molar) Try an initial value of 1 x your mid-range X 
value 

Bmax Units of Y axis, 
usually cpm 

Try an initial value of 10 x your maximal Y 
value (This assumes that you've used a 
concentration of radioligand that binds to one 
tenth of the receptors. You may wish to adjust 
this.) 

NS Unitless fraction Initial value =0.01 

 

You need to set four of the parameters to constant values. Hot is the number of cpm of 
labeled ligand added to each tube. SpAct is the specific activity of the radioligand in 
cpm/fmol, Vol is the incubation volume in ml, and KdnM is the Kd of the radioligand in 
nM (determined from other experiments). The nonlinear regression algorithm then fits 
this equation to your data to determine the logKI. It also fits two other variables, which 
are of less interest: Bmax, which is the maximum binding of radioligand (if present at a 
saturating concentration) in cpm, and NS, which is the fraction of the free ligand that 
binds nonspecifically. 

Note that this equation accounts for depletion of the hot ligand only, and does not adjust 
for depletion of the unlabeled compound. Also note that this equation is not easily 
extended to a situation with two binding sites. 
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38. Homologous competitive binding curves  

Introducing homologous competition 
The most common way to determine receptor number and affinity is to perform a 
saturation binding experiment, where you vary the concentration of radioligand. An 
alternative is to keep the radioligand concentration constant, and compete for binding 
with the same ligand, but not radioactively labeled. Since the hot (radiolabeled) and cold 
(unlabeled) ligands are chemically identical, this is called a homologous competitive 
binding experiment. It is also sometimes called a cold saturation experiment. An 
advantage of performing homologous competition binding experiments for determining 
radioligand Kd and Bmax values, rather than the more standard saturation binding method, 
is that you use less radioligand in the homologous competition experiment and generally 
have lower nonspecific binding than in the saturation assay. 

Most analyses of homologous competition data are based on these assumptions: 

Assumption Comments 

The receptors have 
identical affinity for the 
labeled and unlabeled 
ligand. 

This is a nontrivial assumption. With tritiated ligands, there is no 
reason to doubt it, since tritium doesn’t greatly alter the 
conformation of a molecule. However, iodination can change 
conformation and alter the binding affinity. Don't assume that 
iodinated and noniodinated compounds bind with the same 
affinity. If your radioligand is labeled with radioactive iodine, 
then you should use a competitor that is the same compound 
iodinated with nonradioactive iodine.   

There is no 
cooperativity. 

This means that binding of ligand to one binding site does not 
change its affinity at other site(s).  

No ligand depletion. The basic analysis methods assume that only a small fraction of 
ligand binds. In other words, the method assumes that free 
concentration of hot (and cold) equals the concentration you 
added. Since homologous competition curves are best performed 
with low concentrations of radioligand, it may be difficult to 
comply with this assumption. If a large fraction of radioligand 
binds, you can lower the fractional binding by increasing the 
incubation volume (without increasing the amount of tissue). A 
later section in this chapter explains how to analyze data when 
this assumption is not valid. 

Nonspecific binding is 
proportional to the 
concentration of labeled 
ligand. 

We assume that a certain fraction of hot ligand binds 
nonspecifically, regardless of the concentration of unlabeled 
ligand. This assumption has proven to be true in many systems. 
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Theory of homologous competition binding 
Start with the equation for equilibrium binding to a single class of receptors. 

max

d

[Ligand] BSpecific Binding=
[Ligand]+K

⋅
 

Set [Ligand] equal to the sum of the labeled (hot) and unlabeled (cold) ligand. Specific 
binding you measure (specific binding of the labeled ligand) equals specific binding of all 
ligand times the fraction of the ligand that is labeled. This fraction, hot/(hot+cold), varies 
from tube to tube.  Therefore specific binding of labeled ligand (Y) follows this equation: 

max

d

max

d

Y=Sp. binding of all ligand  Fraction of ligand that is hot
([Hot]+[Cold]) B [Hot]=

[Hot]+[Cold]+K [Hot]+[Cold]
B [Hot]=

[Hot]+[Cold]+K

⋅
⋅

⋅

⋅

 

Specific binding and Bmax are in the same units, usually cpm, dpm, sites/cell or fmol/mg. 
[Hot], [Cold] and Kd are in concentration units. Those units cancel so it doesn’t matter if 
you use molar, nM, or some other unit, so long as you are consistent. 

Maximum binding of labeled ligand occurs when the concentration of cold ligand equals 
zero. This is not the same as Bmax, because the concentration of hot ligand will not saturate 
all the receptors. In the absence of cold ligand (set [cold]=0), the binding equals  

max
[Cold]=0

d

B [Hot]Specific Binding =
[Hot]+K

⋅
 

The IC50 in a homologous binding experiment is the concentration of [Cold] that reduces 
specific binding of labeled ligand by 50%. So the IC50 is the concentration of cold that 
solves the equation below. The left side of the equation is half the maximum binding with 
no cold ligand. The right side is binding in the presence of a particular concentration of 
cold ligand. We want to solve for [Cold]. 

max max

d d

B [Hot] B [Hot]0.5  = 
[Hot]+K [Hot]+K +[Cold]

⋅ ⋅
⋅  

Solve this equation for [Cold], and you’ll find that you achieve half-maximal binding when 
[Cold] = [Hot] + Kd.  In other words, 

50 dIC =[Hot]+K  

Why homologous binding data can be ambiguous 
Since the IC50 equals [Hot] + Kd, the value of the Kd doesn’t affect the IC50 very much 
when you use a high concentration of radioligand. This means that you’ll see the same 
IC50 with a large range of Kd values. For example if you use a Hot ligand concentration of 
10 nM, the IC50 will equal 10.1 nM if the Kd is 0.1 nM (dashed curve below), and the IC50 
will equal 11 nM if the Kd is 1 nM (solid curve below). 
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If you used 10 nM of radioligand and your data followed the course of the curves shown 
above, the analysis would simply be ambiguous. You wouldn’t know if you have a low Kd 
with lots of receptors or a high Kd with few receptors.  

If the concentration of hot (radiolabeled) ligand greatly exceeds the Kd, the curve is 
ambiguous. An infinite number of curves, defined by different Kd and Bmax values, are 
almost identical. The data simply don’t define the Kd and Bmax . No curve-fitting program 
can determine the Kd and Bmax from this type of experiment – the data are consistent with 
many Kd and Bmax values.  

Using global curve fitting to analyze homologous (one site) 
competition data  
The difficulties associated with fitting homologous binding data discussed above can be 
minimized by performing the experiment with at two, or more, concentrations of 
radioligand and using global curve-fitting (parameter sharing) to simultaneously fit the 
entire family of curves to the homologous binding model. 

Tip: We recommend that you perform homologous competition experiments 
with at least two radioligand concentrations, and analyze the data using global 
curve-fitting. 

To fit homologous binding data, we also need to account for the effects of nonspecific 
binding.  The total measured binding equals specific binding plus nonspecific binding. 
Nonspecific binding is the same for all tubes since it only depends on the concentration of 
hot ligand, which is constant. The equation for specific binding is derived in “Theory of 
homologous competition binding” above. We simply need to add a nonspecific binding 
term to define total binding: 

max

d

B [Hot]Total Binding = +NS
[Hot]+[Cold]+K

⋅
 

Here is an equation for homologous competition binding. 

ColdNM=10^(x+9)  
KdNM=10^(logKD+9)  
Y=(Bmax*HotnM)/(HotnM + ColdNM + KdNM) + NS 
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This equation assumes that you have entered X values as the logarithm of the 
concentrations of the unlabeled ligand in molar, so 1 nM (10-9 molar) is entered as -9. The 
first line in the equation adds 9 to make it the logarithm of the concentration in nM, and 
then takes the antilog to get concentration in nM. 

Y is the total binding of the radioligand, expressed in cpm, dpm, fmol/mg or sites/cell. 
The Bmax will be expressed in the same units you use for Y.  

Since the experiment is performed with the concentrations of unlabeled ligand equally 
spaced on a log scale, the confidence intervals will be most accurate when the Kd is fit as 
the logKd. The second line converts the log of the Kd in moles/liter to nM.  

The equation defines Y (total binding) as a function of X (the logarithm of the 
concentration of the unlabelled compound) and four parameters. We are going to use 
global curve fitting to fit both data sets at once, so need to tell the program which 
parameters to share. 

Parameter Units Comments 

Bmax Same as Y 
values 

You want to fit one value of Bmax from both data sets, so 
set your program to share this parameter between data 
sets.  

HotnM nM Concentration of labeled ligand in every tube. Set this 
to a constant value that you know from experimental 
design. This will have a different constant value for 
each data set. In Prism, make this a data set constant, 
so Prism will read its value from the column titles of the 
data table. 

LogKd Log(M) You want to fit one value of Kd from both data sets, so 
set your program to share this parameter between data 
sets. 

NS Same as Y 
values 

Nonspecific binding depends on how much radioligand 
we used. The equation, as written above, adds a 
constant term NS (in units of Y. Since we expect 
different amounts of nonspecific binding at each 
concentration of hot ligand, we do not share the value 
of NS. Instead we ask the curve fitting program to find a 
different best-fit value of NS for each curve.   

 

To fit the model, you have to enter or choose initial values for each parameter.  

Parameter Units Comments 

Bmax Same as Y 
values 

Try an initial value of 10 × your maximal Y value (This 
assumes that you used a concentration of ligand that binds 
to about one tenth of these receptors).  

LogKd Log(moles
/liter) 

Try an initial value of 1.2 × your mid-range X value 

NS Same as Y 
values 

Try an initial value of 1 × your minimum Y value 
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Shown in the figure below are results of homologous competition binding data using two 
concentrations of radioligand (0.3 and 1 nM).  The nonlinear regression was set up so 
both the Bmax and the KdnM (Kd in nM concentration units) were shared between the data 
sets. This means that the program finds a single Bmax and single Kd for both data sets. A 
separate estimate is derived for NS from each data set, however, as each radioligand 
concentration will result in a different degree of non-specific binding. The parameter 
HotNm was set to a constant value for each data set (0.3 or 1). 

GraphPad note: To make a parameter have a different constant value for each 
data set, use Prism’s constraint tab in the nonlinear regression dialog. Set the 
parameter to be a data set constant, and put the values into the column title of 
the data table. See page 300 
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The confidence intervals of the global estimates of LogKd and Bmax are reasonable. By 
simultaneously analyzing both data sets, the results are far tighter than they would be if 
we fit each curve separately. 

Analyzing homologous (one site) competition data without global 
curve fitting 
There are two practical situations where you may not be able to use the global curve-
fitting approach outlined above to analyze homologous competition binding data.  The 
first situation is is where your nonlinear regression program does not allow you to 
perform global curve-fitting with parameter-sharing across data sets.  The second 
situation is where you have performed the experiment with only a single concentration of 
radioligand. 

The ambiguity associated with fitting single curves to the homologous binding model has 
already been discussed above.  If we take the same example from the previous section, but 
this time fit each curve individually instead of globally fitting the model to both data sets, 
we obtain the following results. 



 

 38. Homologous competitive binding curves 227 

-12 -11 -10 -9 -8 -7 -6 -5
0

500

1000

1500

2000

2500

0.3 nM

1 nM

Log [Cold]

To
ta

l B
in

di
ng

(D
PM

)

 

 [Hot] = 0.3 nM [Hot] = 1 nM 

Best-fit values   

     LogKd -8.702 -9.238 

     Bmax 4442 2259 

Std. Error   

     LogKd 0.2967 0.6205 

     Bmax 2661 1187 

95% CI   

     LogKd -9.319 to -8.085 -10.53 to -7.947 

     Bmax -1093 to 9978 -209.5 to 4727 

 

Although the curves fit the data very well, both Bmax and logKd parameters have large 
standard errors and accordingly wide 95% confidence intervals. This reflects the difficulty 
inherent in obtaining reliable parameter estimates from any one homologous competitive 
binding curve. 

Note:  If you have a computer program that can perform global curve fitting, 
then we recommend you perform any homologous competition experiment 
using two radioligand concentrations and globally fit both data sets to the 
homologous binding model. 

If you cannot use global curve fitting to analyze your data, or you are going to do the 
experiment with a single radioligand concentration, then you should follow these steps to 
ensure that you increase your chances of obtaining quality data. 

Step 1: Determine the IC50  
This first step is to check that you used a reasonable concentration of radioligand. 

Fit your data to the standard one-site competition equation. If your competition curve 
doesn’t have clearly defined top and bottom plateaus, you should set one or both of these 
to constant values based on control experiments.  
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Compare the best-fit value of the IC50 to the concentration of hot ligand you used. 
Homologous competition experiments only lead to useful results when the concentration 
of hot ligand is less than half the IC50. 

If Then do this 

IC50 is more than ten 
times [Hot] 

The concentration of [Hot] is lower than it needs to be. If you have 
quality data, you can continue with step 2. If you have too few cpm 
bound or if more than 10% of the added radioactivity binds to 
tissue, rerun the experiment with more radioligand  

 IC50 is between two 
and ten times [Hot] 

You’ve designed the experiment appropriately. Continue to step 2 
to determine the Kd and Bmax with confidence limits.  

IC50 is greater than 
[Hot] but not twice as 
high 

You’ll get better results if you repeat the experiment using less hot 
ligand.  

 IC50 is less than [Hot] If binding follows the assumptions of the analysis, it is impossible 
for the IC50 to be less than the concentration of hot ligand. Since 
Kd  = IC50 –[Hot], these data would lead to a negative value for Kd , 
which is impossible. One possibility is that your system does not 
follow the assumptions of the analysis. Perhaps the hot and cold 
ligands do not bind with identical affinities. Another possibility is 
that you simply used too high a concentration of hot ligand, so the 
true IC50 is very close to (but greater than) [Hot]. Experimental 
scatter may lead to a best-fit IC50 that is too low, leading to the 
impossible results. Repeat the experiment using a lot less hot 
ligand.  

 

Step 2: Determine Kd and Bmax 
Once you’ve determined that the IC50 is quite a bit larger than the concentration of hot 
ligand, fit the homologous competition binding model (see previous section) to determine 
the Bmax and Kd. Set HotnM equal to the concentration of labeled ligand in nM, and set it 
to be a constant value, otherwise the nonlinear regression procedure will not be able to 
converge on reasonable estimates for your Bmax and Kd parameters. 

 

If you have performed a series of homologous competition binding experiments using 
different radioligand concentrations, but cannot fit your data using global-fitting, you can 
still derive useful information from your experiments that can optimize your fit. 

From the one-site homologous competition binding model, we have shown previously that 

50 dIC =[Hot]+K  

By performing a series of homologous competition experiments using different 
concentrations of radioligand, you can plot each IC50 value against the corresponding 
value of [Hot]; a linear regression of these data should yield an estimate of the Kd value.  
Unfortunately, you cannot determined Bmax from this approach. 
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Homologous competitive binding with ligand depletion 
If a large fraction of the radioligand is bound to the receptors, homologous binding will be 
affected. Although you add the same amount of labeled ligand to each tube, the free 
concentration will not be the same. High concentrations of unlabeled drug compete for 
the binding of the labeled ligand, and thus increase the free concentration of the labeled 
ligand.  

Nonspecific binding is also affected by ligand depletion. Since nonspecific binding is 
proportional to the free concentration of labeled ligand, the amount of nonspecific 
binding will not be the same in all tubes. The tubes with the highest concentration of 
unlabeled drug have the highest concentration of free radioligand, so will have the most 
nonspecific binding. 

Because the free concentration varies among tubes, as does the nonspecific binding, there 
is no simple relationship between IC50 and Kd. The IC50 is nearly meaningless in a 
homologous binding curve with ligand depletion. 

The equations for homologous binding with ligand depletion are quite a bit more 
complicated than for homologous binding without depletion. The math that follows is 
adapted from S. Swillens (Molecular Pharmacology, 47: 1197-1203, 1995). 

Start with the equation for total binding in homologous competition as a function of the 
free concentration of radioligand. 

max

d

B [Free Radioligand, nM]Specific =
K +[Free  Radioligand, nM]+[Free Cold ligand, nM]

Nonspecific= [Free Radioligand, cpm] NS

Y=Specific+Nonspecific

⋅

⋅  

This equation defines total binding as specific binding plus nonspecific binding. 
Nonspecific binding equals a constant fraction of free radioligand, and we define this 
fraction to be NS. To keep units consistent, the radioligand concentration is expressed in 
nM in the left half of the equation (to be consistent with Kd and the concentration of cold 
ligand) and is expressed in cpm on the right half of the equation (to be consistent with Y). 

The problem with this equation is that you don't know the concentrations of free 
radioligand or free cold ligand. What you know is the concentrations of labeled and 
unlabeled ligand you added. Since a high fraction of ligand binds to the receptors, you 
cannot assume that the concentration of free ligand equals the concentration of added 
ligand.  

Defining the free concentration of hot ligand is easy. You added the same number of cpm 
of hot ligand to each tube, which we'll call HotCPM. The concentration of free radioligand 
equals the concentration added minus the total concentration bound, or HotCPM-Y (both 
HotCPM and Y are expressed in cpm).  

Defining the free concentration of cold ligand is harder, so it is done indirectly. The 
fraction of hot radioligand that is free equals (HotCPM - Y)/HotCPM. This fraction will be 
different in different tubes. Since the hot and cold ligands are chemically identical, the 
fraction of cold ligand that is free in each tube is identical to the fraction of hot ligand that 
is free. Define X to be the logarithm of the total concentration of cold ligand, the variable 
you vary in a homologous competitive binding experiment. Therefore, the total 
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concentration of cold ligand is 10X, and the free concentration of cold ligand is 
10X(HotCPM - Y)/HotCPM. 

Substitute these definitions of the free concentrations of hot and cold ligand into the 
equation above, and the equation is still unusable. The problem is that the variable Y 
appears on both sides of the equal sign.  Some simple, but messy, algebra puts Y on the 
left side of a quadratic equation, shown below as a user-defined equation: 

2b b 4acY
2a

− + −
=  

where 

[ ]a (NS 1) Total(nM)= − + ⋅  

[ ]( ) ( ) [ ] [ ]D maxb [Hot(cpm)] Total(nM) K NS 1 Total(nM) Hot(cpm) NS B [Hot(nM)]= ⋅ + ⋅ + + ⋅ ⋅ + ⋅

 

[ ]( ) [ ]D maxc [Hot(cpm)] Total(nM) K Hot(cpm) NS [Hot(cpm)] B [Hot(nM)]= − ⋅ + ⋅ ⋅ − ⋅ ⋅  

ColdnM=10^(X+9) 
KDnM=10^(LogKD+9)  
HotnM=HotCPM/(SpAct*vol*1000)  
TotalnM=HotnM+ColdnM 
Q=HotCPM*(TotalnM + KDnM) 
a=(NS+1)*TotalnM*-1 
b=Q*(NS+1)+TotalnM*HotCPM*NS + Bmax*HotnM 
c=-1*Q*HotCPM*NS - HotCPM*Bmax*HotnM 
Y= (-1*b + sqrt(b*b-4*a*c))/(2*a) 

 

When fitting data to this equation, you need to set three parameters to constant values. 
HotCPM is the number of cpm of hot ligand added to each tube. Vol is the incubation 
volume in ml. SpAct is the specific radioactivity in cpm/fmol. The nonlinear regression 
algorithm then fits Bmax in the units of the Y axis (usually cpm, which you can convert to 
more useful units) and logKd as log molar. 

As with homologous binding data without ligand depletion, we recommend that you 
perform the experiment using more than one radioligand concentration and fit the data 
using global-fitting to share a single Bmax value and single Kd value across all data sets. 
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Variable Units Comments 

X Log(Molar)  

Y Cpm  

HotCPM Cpm Amount of labeled ligand added to each tube. Set to a 
constant value. 

SpAct Cpm/fmol Specific radioactivity of labeled ligand. Set to a 
constant value. 

Vol ml Incubation volume. Set to a constant value. 

logKd Log(Molar) Initial value = 1 x the mid-range X value 

Bmax Units of Y axis, usually 
cpm 

Initial value = 10 x your maximal Y value (This 
assumes that you've used a concentration of 
radioligand that binds to one tenth of the receptors. 
You may wish to adjust this.) 

NS Unitless fraction This is the fraction of free ligand that binds 
nonspecifically. Initial value =0.01 

Fitting homologous competition data (two sites) 
With some systems it is possible to determine Kd and Bmax values for two independent 
sites using homologous competition data. With most systems, however, you won’t get 
reliable results.  

You can only determine Bmax and Kd from homologous binding data if you use a 
concentration of hot ligand that is much lower than the Kd value. If your system has two 
binding sites, you must choose a concentration much lower than the Kd of the high affinity 
site. Using such a low concentration of radioligand, you’ll bind only a small fraction of 
low-affinity sites. You only be able to detect the presence of the second, low-affinity, site if 
they are far more abundant than the high-affinity sites.  

For example, imagine that the low affinity site (Kd=10 nM) is ten times as abundant as the 
high affinity site (Kd=0.1 nM). You need to use a concentration of hot ligand less than 0.1 
nM, say 0.05 nM. At this concentration you bind to 33.33% of the high affinity sites, but 
only to 0.0049% of the low affinity sites. Even though the low affinity sites are ten times 
as abundant, you won’t find them in your assay (low affinity binding will be only 0.15% of 
the binding). 

To attempt to determine the two Kd and Bmax   values from a homologous competition 
curve, fit the data to the equation below. Assuming no cooperativity and no ligand 
depletion, the binding to each site is independent and depends on the Bmax and Kd values 
of each site. The binding that you measure, Y, is the sum of the binding to the two receptor 
sites plus nonspecific binding. 

Site1=(Bmax1*HotnM)/(HotnM + 10^(X+9)+ 10^(logKd1+9))  
Site2=(Bmax2*HotnM)/(HotnM + 10^(X+9)+ 10^(logKd2+9))  
Y= site1 + site2 + NS 

 

This is a difficult equation to fit, and you will almost certainly have to try many sets of 
initial values to converge on a reasonable solution. It is especially important to adjust the 
initial values of the two Bmax values. 
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Variable Units Comments 

X log(molar) Concentration of the unlabeled compound. 

Y CPM or 
fmol/mg or 
sites/cell. 

Total binding of the labeled compound. 

Bmax1 Same as Y 
values. 

Initial value=1 x your maximum Y value (this assumes 
that you used a concentration of ligand that binds to 
almost all of the high affinity class of receptors). 

Bmax2 Same as Y 
values. 

Initial value = 20 x your maximum Y value (this 
assumes that you used a concentration of ligand that 
binds to five percent of the second class of receptors). 

LogKd1 log(molar) Initial value = 1.2 x your mid-range X value. 

LogKd2 log(molar) Initial value = 0.8 x your mid-range X value. 

NS Same as Y 
values. 

Initial value = = 1. x your minimum Y value. 

HotnM nM Concentration of labeled ligand in every tube. Set this to 
a constant value that you know from your experimental 
design. 

 

Consider this approach for analyzing homologous competitive binding data to determine 
the characteristics of two sites. First use a very low concentration of radioligand and fit to 
a single site. This will determine the Bmax and Kd of the high affinity site. Then repeat the 
experiment with a higher concentration of radioligand. Fit these data to the two-site 
equation, but set Kd and Bmax for the high affinity site to constant values determined 
from the first experiment. Alternatively, and if your nonlinear regression program allows 
it, you can perform a global fit of both equations simultaneously to both data sets by using 
parameter-sharing, similar to the detailed method outlined above for homologous 
competition binding to one binding site. 

Advantages and disadvantages of homologous binding experiments 
Determining receptor number with homologous binding has one clear advantage: You 
need far less radioligand than you would need if you performed a saturation binding 
experiment. This reason can be compelling for ligands that are particularly expensive or 
difficult to synthesize. 

The disadvantage of determining receptor number and affinity from a homologous 
competitive binding experiment is that it can be hard to pick an appropriate concentration 
of radioligand. If you use too little radioligand, you’ll observe little binding and will obtain 
poor quality data. If you use too much radioligand, the curve will be ambiguous and you 
won’t be able to determine Bmax and Kd. The use of a minimum of two different radioligand 
concentrations in a homologous binding assay, in conjunction with the global curve-fitting 
approach outlined above, provides the best compromise between saturation binding 
assays and standard (one-curve) homologous competition binding assays. 

Using homologous binding to determine the Kd and Bmax of two binding sites with is 
difficult, even with multiple radioligand concentrations. You are probably better off using 
a saturation binding experiment. 
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39. Analyzing kinetic binding data 

Dissociation ("off rate") experiments  
A dissociation binding experiment measures the “off rate” for radioligand dissociating 
from the receptor. Initially ligand and receptor are allowed to bind, perhaps to 
equilibrium. At that point, you need to block further binding of radioligand to receptor so 
you can measure the rate of dissociation. There are several ways to do this: 

• If the tissue is attached to a surface, you can remove the buffer containing 
radioligand and replace with fresh buffer without radioligand. 

• Spin the suspension and resuspend in fresh buffer. 

• Add a very high concentration of an unlabeled ligand. If this concentration is 
high enough, it will instantly bind to nearly all the unoccupied receptors and 
thus block binding of the radioligand. 

• Dilute the incubation by a large factor, at least 100 fold dilution. This will reduce 
the concentration of radioligand by that factor. At such a low concentration, new 
binding of radioligand will be negligible. This method is only practical when you 
use a fairly low concentration of radioligand so its concentration after dilution is 
far below its Kd for binding. 

You then measure binding at various times after that to determine how rapidly the 
radioligand falls off the receptors. 
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Each ligand-receptor complex dissociates at a random time, so the amount of specific 
binding follows an exponential dissociation. 

-K XY=Span e +Plateau⋅⋅  
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Variable Meaning Comment 

X Time Usually expressed in units of seconds or 
minutes. 

Y Total binding Usually expressed in units of cpm, dpm, 
fmol/mg, or sites/cell. 

Span Difference between 
binding at time zero and 
plateau. 

Specific binding (same units as Y) 

Plateau  Binding that doesn't 
dissociate.  

Nonspecific binding (same units as Y). 

K Dissociation rate 
constant often called koff.  

Expressed in units of inverse time (inverse of 
units of X-axis) 

 

Analyzing dissociation data 
To analyze dissociation binding data: 

1. Enter the data with X equal to time after you initiated dissociation and Y equal to 
binding (usually total binding).  

2. Perform nonlinear regression using an exponential decay equation.  

3. If you entered specific (rather than total) binding as your dependent variable, 
make the parameter, Plateau, a constant equal to zero. If you have entered total 
binding, leave the parameter Plateau as to be fitted. 

4. Look at the nonlinear regression results. The variable K is the dissociation 
constant (often referred to in texts as koff or k-1) expressed in units of inverse time. 
If you entered the X values as minutes, koff is in units of min-1. The results also 
show the half-life in units of time (minutes in this example). 

5. You can use the koff value to determine the half-life (t1/2) of dissociation.  Use the 
following relationship: t1/2 = 0.693/koff. 

Association binding experiments 
Association binding experiments are used to determine the association rate constant. You 
add radioligand and measure specific binding at various times thereafter. 

Binding follows the law of mass action: 

Kon

Koff

Receptor Ligand    Receptor Ligand
→

+ •
←

 

 

At any given time, the rate at which receptor-ligand complexes form is proportional to the 
radioligand concentration and the number of receptors still unoccupied. The rate of 
dissociation is proportional to the concentration of receptor-ligand complexes. 
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Binding increases over time until it plateaus when specific binding equals a value we call 
Ymax. This is not the same as Bmax. Ymax is the amount of specific binding at equilibrium for 
a certain concentration of ligand used in an association experiment. Bmax is the maximum 
amount of binding extrapolated to a very high concentration of ligand. These principles let 
us define the model mathematically. 

 

( )

( )

on

max on

off

off

max

Rate of association = [Receptor]×[Ligand]×k
= Y -Y ×[Ligand]×k

Rate of dissociation = [Receptor Ligand]×k
=Y×k

dYNet rate of association =
dX

= Rate of association - rate of dissociation
= Y -Y ×[L

⋅

( )
on off

max on on off

igand]×k -Y×k

=Y ×[Ligand]×k -Y [Ligand]×k +k

 

Integrate that differential equation to obtain the equation defining the kinetics of 
association: 

( )on off-([Ligand] k + k ) X
maxY=Y 1-e ⋅ ⋅⋅  
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The rate at which binding increases is determined by three factors (for a constant set of 
experimental conditions such as pH and temperature): 

• The association rate constant, kon or k+1. This is what you are trying to determine.  

• The concentration of radioligand. If you use more radioligand, the system 
equilibrates faster. 

• The dissociation rate constant, koff or k-1. Some people are surprised to see that the 
observed rate of association depends in part on the dissociation rate constant. 
During the incubation, radioligand both binds to and dissociates from receptors. 
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The system reaches equilibrium when the two rates are equal. The observed rate 
of association measures how long it takes to reach equilibrium. If the radioligand 
dissociates quickly from the receptor, equilibrium will be reached faster (but with 
less binding). 

Analyzing "on rate" experiments 
To analyze association (on-rate) data: 

1. Enter the data with X equal to time and Y equal to specific binding. (If you enter 
total binding, you'll need to use a more complicated equation that accounts for the 
kinetics of nonspecific binding.) 

2. Fit the specific binding data to an exponential association equation. The simplest 
case, one-phase exponential association, is shown here: 

( )-k X
maxY=Y 1-e ⋅⋅  

3. The variable k in the exponential association equation is the observed rate 
constant, k

ob
, expressed in units of inverse time. If you entered X values in 

minutes, then k
ob

 is expressed in min-1. This is not the same as the association 

rate constant, kon. 

4. This equation assumes that a small fraction of the radioligand binds to receptors, 
so the concentration of free radioligand equals the amount you added and does 
not change over time. 

5. To calculate the association rate constant (kon or k1), usually expressed in units of 

Molar-1 min-1, use this equation: 

ob off
on

k -kk =
[radioligand]

 

 

Variable Units Comment 

kon Molar-1 min-1 Association rate constant; what you want to know. 

kob min-1 The value of K determined by fitting an exponential association 
equation to your data. 

koff min-1 The dissociation rate constant. See the previous section. 

[radioligand] Molar Set by the experimenter. Assumed to be constant during the 
experiment (only a small fraction binds). 

Fitting a family of association kinetic curves 
If you perform your association experiment at a single concentration of radioligand, it 
cannot be used to determine kon unless you are able to fix the value of koff from another 
experiment.  

If you perform multiple association kinetic experiments, each with a different radioligand 
concentration, you can globally fit the data to the association kinetic model to derive a 
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single best-fit estimate for kon and one for koff.  You don’t need to also perform a 
dissociation (off rate) experiment.  

Shown below is an example of an association kinetic experiment conducted using two 
concentrations of radioligand. All other conditions (temperature, pH, etc.) were the same 
for both runs, of course. Times were entered into the X column, specific binding for one 
concentration of radioligand were entered into the first (A) Y column, and binding for the 
other concentration were entered into column B. 

Here is the syntax for the global model as you would enter it into GraphPad Prism. 

<A>Radioligand=1e-9 
<B>Radioligand=3e-9 
Kob=Radioligand*kon+koff 
Y=Ymax*(1-exp(-1*Kob*X)) 

 

The first line defines the intermediate variable Radioligand for data set A. The 
concentration is 1nM, and it is expressed in scientific notation as 1 x 10-9 molar. The 
second line defines the variable Radioligand for data set B. The third line defines the 
observed rate constant as a function of radioligand concentration and the two rate 
constants. The final line computes Y (specific binding) for any value of X (time).  

You could also enter the model in a simpler form into Prism. 

Kob=Radioligand*kon+koff 
Y=Ymax*(1-exp(-1*Kob*X)) 

 

This model does not define the parameter radioligand. Instead, enter the concentrations 
as the column titles of columns A and B, and define the parameter Radioligand to be a 
data set constant within Prism. See page 300. 

Here are the curves as determined by global fitting.  
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Globally fitting an association curve together with a dissociation 
curve 
Another way to determine both association and dissociation rate constants from one 
experiment is to run an experiment that first measures ligand association, and then 
measures ligand dissociation.   
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For example in the experiment below, radioligand was added at time zero, and total 
binding was measured every five minutes for one hour. At time=60, a very high 
concentration of unlabeled drug was added to the tubes. This entirely blocked new 
binding of radioligand to the receptors. Every five minutes, total binding was measured as 
a way to assess the rate of ligand dissociation. 
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Here is the model, in the form used by GraphPad Prism. 

radioligand=1e-10 
Kob=[Radioligand]*Kon+Koff 
Time0=60 
Kd=Koff/Kon 
Eq=Bmax*radioligand/(radioligand + Kd) 
 
Association=Eq*(1-exp(-1*Kob*X)) 
 
YatTime0 = Eq*(1-exp(-1*Kob*Time0)) 
Dissociation= YatTime0*exp(-1*Koff*(X-Time0)) 
 
Y=IF(X<Time0, Association, Dissociation) + NS 

 

 

Variable Explanation Units Kind of variable 
Radioligand The concentration of 

radioactively labeled ligand.  
Molar Constant. We set its 

value within the 
equation. An alternative 
would have been to set it 
to a constant value in the 
nonlinear regression 
dialog. 

Kob The apparent “on rate” calculated 
from the concentration of 
radioligand with the association 
and dissociation rate constants.  

min-1 Intermediate variable, 
defined within the 
equation for 
convenience. 

Kon Association rate constant M-1 min-1 Parameter to fit. 
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Variable Explanation Units Kind of variable 
Koff Dissociation rate constant min-1 Parameter to fit. 

Time0 The time when dissociation was 
initiated.  

min Constant. We set its 
value within the 
equation. An alternative 
would have been to set it 
to a constant value in the 
nonlinear regression 
dialog. 

Kd The dissociation constant for the 
receptor-ligand binding, in 
Molar.  

min-1 Intermediate variable, 
defined within the 
equation for 
convenience. 

Eq The amount of binding (in CPM, to 
match the Y values) at equilibrium. 
Calculated from the concentration 
of radioligand we used and its Kd. 
This is an intermediate variable, 
defined within the equation. 

cpm Intermediate variable, 
defined within the 
equation for 
convenience. 

Bmax The maximum amount of 
binding sites. This is not the 
maximum bound at the 
concentration of ligand we chose, 
but the maximum number of 
sites that can binding ligand 

cpm Parameter to fit. 

YatTime0 The predicted binding at 
X=Time0. The dissociation part 
of the experiment begins with 
this amount of binding.  

cpm Intermediate variable, 
defined within the 
equation for 
convenience. 

Association The predicted Y values for the 
association part of the 
experiment (up to X=60). In 
units  

cpm Intermediate variable, 
defined within the 
equation for 
convenience. 

Dissociation The predicted Y values for the 
dissociation part of the 
experiment (after time X=60). 

cpm Intermediate variable, 
defined within the 
equation for 
convenience. 

NS Nonspecific binding. Assumed to 
be constant over time. In units of 
CPM (to match Y).  

cpm We set this to a constant 
value based on good 
control measurements. 
An alternative would 
have been to make this a 
parameter to fit. 

X Time minutes Independent variable 

Y Total binding cpm Dependent variable 
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Association computes the association of a ligand over time. Dissociation computes the 
dissociation of a ligand after time0. The final line uses an IF statement (Prism syntax) to 
define Y equal to Association before time0 and equal to dissociation thereafter, and then 
adds the nonspecific binding (NS). 

The model has three parameters to fit: the association rate constant, the dissociation rate 
constant, and the maximum number of binding sites.  

Note: This is not strictly a global model, as it fits one data set and not several. 
But it fits one model (exponential association) to part of the data set and 
another model (exponential decay) to another portion of the data set. This is 
effectively a form of global fitting.  

The graph below shows the best-fit curve and results. 
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Analysis checklist for kinetic binding experiments 

Question Comment 

Did you go out to a long 
enough time point?  

Dissociation and association data should plateau, so the data obtained 
at the last few time points should be indistinguishable. 

Is the value of kon 
reasonable? 

The association rate constant, kon, depends largely on diffusion so is 
similar for many ligands. Expect a result of about 107 - 108 M-1 min-1 

Is the value of koff 
reasonable? 

If the koff is greater than 1 min-1, the ligand has a low affinity for the 
receptor, dissociation will occur while you are separating bound and 
free ligands, and you'll have a hard time obtaining quality data.  If koff 
is less than 0.001 min-1 , you'll have a difficult time obtaining 
equilibrium as the half-time of dissociation will be greater than 10 
hours! Even if you wait that long, other reactions may occur that ruin 
the experiment. 

Are the standard errors 
too large? 

Examine the SE and the confidence intervals to see how much 
confidence you have in the rate constants.  
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Does only a tiny fraction 
of radioligand bind to 
the receptors. 

The standard analyses of association experiments assume that the 
concentration of free radioligand is constant during the experiment. 
This will be approximately true only if a tiny fraction of the added 
radioligand binds to the receptors. Compare the maximum total 
binding in cpm to the amount of added radioligand in cpm. If that 
ratio exceeds 10% or so, you should revise your experimental protocol. 

Using kinetic data to test the law of mass action 
Standard binding experiments are usually fit to equations derived from the law of mass 
action. Kinetic experiments provide a more sensitive test than equilibrium experiments to 
determine whether the law of mass action actually applies for your system. To test the law 
of mass action, ask these questions: 

Does the Kd calculated from kinetic data match the Kd calculated from 
saturation binding? 
According to the law of mass action, the ratio of koff to kon is the Kd of receptor binding: 

off
d

on

kK =
k

 

The units are consistent: koff is in units of min-1; kon is in units of M-1min-1, so Kd is in units 
of M. 

If binding follows the law of mass action, the Kd calculated this way should be the same as 
the Kd calculated from a saturation binding curve. 

Does kob increase linearly with the concentration of radioligand? 
The observed association rate constant, kob, is defined by this equation: 

ob off onk =k +k [radioligand]⋅  

Therefore, if you perform association rate experiments at various concentrations of 
radioligand, the results should look like the figure below. As you increase the 
concentration of radioligand, the observed rate constant increases linearly. If the binding 
is more complex than a simple mass action model (such as a binding step followed by a 
conformational change) the plot of kob vs. [radioligand] may plateau at higher radioligand 
concentrations. Also, you should extrapolate the plot back to zero radioligand to 
determine the intercept, which equals koff. If the law of mass action applies to your system, 
the koff determined this way should correspond to the koff determined from a dissociation 
experiment. Finally, this kind of experiment provides a more rigorous determination of 
kon than that obtained with a single concentration of radioligand. 
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 Is specific binding 100% reversible, and is the dissociated ligand chemically intact? 

Nonspecific binding at "time zero" should equal total binding at the end (plateau) of the 
dissociation. In other words, all of the specific binding should dissociate if you wait long 
enough. Use chromatography to analyze the radioligand that dissociates to prove that it 
has not been altered. 

Is the dissociation rate consistent with different experimental 
conditions? 
Determine the dissociation constant after binding various concentrations of radioligand 
for various lengths of time. If your ligand binds to a single site and obeys the law of mass 
action, you'll obtain the same dissociation rate constant in all experiments. 

Is there cooperativity? 
If the law of mass action applies, binding of a ligand to one binding site does not alter the 
affinity of another binding site. This also means that dissociation of a ligand from one site 
should not change the dissociation of ligand from other sites. To test this assumption, 
compare the dissociation rate after initiating dissociation by infinite dilution with the 
dissociation rate when initiated by addition of a large concentration of unlabeled drug. If 
the radioligand is bound to multiple noninteracting binding sites, the dissociation will be 
identical in both experimental protocols as shown in the left figure. Note that the Y axis is 
shown using a log scale. If there were a single binding site, you'd expect the dissociation 
data to appear linear on this graph. With two binding sites, the graph is curved even on a 
log axis. 
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The right figure shows ideal dissociation data when radioligand is bound to interacting 
binding sites with negative cooperativity. The data are different depending on how 
dissociation was initiated. If dissociation is initiated by infinite dilution, the dissociation 
rate will change over time. The dissociation of some radioligand will leave the remaining 
ligand bound more tightly. When dissociation is initiated by addition of cold drug, all the 
receptors are always occupied by ligand (some hot, some cold) and dissociation occurs at 
its maximal unchanging rate. 

Kinetics of competitive binding 
The standard methods of analyzing competitive binding experiments assume that the 
incubation has reached equilibrium. These experiments are usually used to learn the 
dissociation constant of the receptors for the unlabeled compound, the Ki. The law of mass 
action tells us that the Ki is the ratio of the off-rate to the on-rate of the unlabeled 
compound. You can determine these values in a kinetics experiment as follows. Add 
labeled and unlabeled ligand together and measure the binding of the labeled ligand over 
time. This method was described by Motulsky and Mahan in Mol. Pharmacol. 25:1-9, 
1984. 

KA = K1*L*1E-9 + k2 
KB = K3*I*1e-9 + K4 
S=SQRT((KA-KB)^2+4*K1*K3*L*I*1e-18) 
KF = 0.5 * (Ka + KB + S) 
KS = 0.5 * (KA + KB - S) 
DIFF=KF - KS 
Q=Bmax*K1*L*1e-9/DIFF 
Y=Q*(k4*DIFF/(KF*KS)+((K4-Kf)/KF)*exp(-KF*X)-((K4-KS)/KS)*exp(-KS*X)) 

 

Variable Units Comments 

X Minutes Time. 

Y cpm Specific binding. 

k1 M-1 min-1 Association rate constant of radioligand. Set to a constant value 
known from other experiments. 

k2 min-1 Dissociation rate constant of radioligand. Set to a constant value 
known from other experiments. 

k3 M-1 min-1 Association rate constant of unlabeled ligand. Variable to be fit. Try 
108 as an initial value. 

k4 min-1 Dissociation rate constant of unlabeled ligand. Variable to be fit. 
Try 0.01 as an initial value. 

L nM Concentration of radioligand. Set to a constant value you know 
from experimental design.  

Bmax Units of Y 
axis. Usually 
cpm. 

Total number of receptors. Either leave as a variable or set to a 
constant you know from other experiments. If a variable, set the 
initial value to 100 x your maximal Y value (assumes that it bind to 
1% of receptors. 

I nM Constant set experimentally. Concentration of unlabeled ligand. 

 

Notes: 
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• This equation does not account for ligand depletion. It assumes that only a small 
fraction of radioligand binds to receptors, so that the free concentration of 
radioligand is very close to the added concentration. 

• This method will only give reliable results if you have plenty of data points at 
early time points. 
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40. Analyzing enzyme kinetic data 

Introduction to enzyme kinetics 
Living systems depend on chemical reactions which, on their own, would occur at 
extremely slow rates. Enzymes are catalysts that reduce the needed activation energy so 
these reactions proceed at rates that are useful to the cell.  

Product accumulation is often linear with time 
In most cases, an enzyme converts one chemical (the substrate), into another (the 
product). A graph of product concentration vs. time follows three phases. 
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1. At very early time points, the rate of product accumulation increases over time. 
Special techniques are needed to study the early kinetics of enzyme action, since 
this transient phase usually lasts less than a second (the figure greatly exaggerates 
the first phase). 

2. For an extended period of time, the product concentration increases linearly with 
time. 

3. At later times, the substrate is depleted, so the curve starts to level off. Eventually 
the concentration of product reaches a plateau.  

It is difficult to fit a curve to a graph of product as a function of time, even if you use a 
simplified model that ignores the transient phase and assumes that the reaction is 
irreversible. The model simply cannot be reduced to an equation that expresses product 
concentration as a function of time. To fit these kind of data (called an enzyme progress 
curve) you need to use a program that can fit data to a model defined by differential 
equations or by an implicit equation. For more details, see RG Duggleby, "Analysis of 
Enzyme Reaction Progress Curves by Nonlinear Regression", Methods in Enzymology, 
249: 61-60, 1995. 

Rather than fit the enzyme progress curve, most analyses of enzyme kinetics fit the initial 
velocity of the enzyme reaction as a function of substrate concentration. The velocity of 
the enzyme reaction is the slope of the linear phase of product accumulation, expressed as 
amount of product formed per time. If the initial transient phase is very short, you can 
simply measure product formed at a single time, and define the velocity to be the 
concentration divided by the time interval.  
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The terminology describing these phases can be confusing. The second phase is often 
called the "initial rate", ignoring the short transient phase that precedes it. It is also called 
"steady state", because the concentration of enzyme-substrate complex doesn't change. 
However, the concentration of product accumulates, so the system is not truly at steady 
state until, much later, the concentration of product truly doesn't change over time. This 
chapter considers data collected only in the second phase. 

Enzyme velocity as a function of substrate concentration 
If you measure enzyme velocity at many different concentrations of substrate, the graph 
generally looks like this: 
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 Enzyme velocity as a function of substrate concentration often follows the Michaelis-
Menten equation: 

max

M

V [S]Velocity=V=
[S]+K

 

Vmax is the limiting velocity as substrate concentrations get very large. Vmax (and V) are 
expressed in units of product formed per time. If you know the molar concentration of 
enzyme, you can divide the observed velocity by the concentration of enzyme sites in the 
assay, and express Vmax as units of moles of product formed per second per mole of 
enzyme sites. This is the turnover number, the number of molecules of substrate 
converted to product by one enzyme site per second. In defining enzyme concentration, 
distinguish the concentration of enzyme molecules and concentration of enzyme sites (if 
the enzyme is a dimer with two active sites, the molar concentration of sites is twice the 
molar concentration of enzyme). 

KM is expressed in units of concentration, usually in Molar units. KM is the concentration 
of substrate that leads to half-maximal velocity. To prove this, set [S] equal to KM in the 
equation above. Cancel terms and you'll see that V=Vmax/2. 

The meaning of KM 
To understand the meaning of KM, you need to have a model of enzyme action. The 
simplest model is the classic model of Michaelis and Menten, which has proven useful 
with many kinds of enzymes. 

1
2

1

k k

k

E+S ES  E+P 
−

→R  



 

 40. Analyzing enzyme kinetic data 247 

The substrate (S) binds reversibly to the enzyme (E) in the first reaction. In most cases, 
you can't measure this step. What you measure is production of product (P), created by 
the second reaction. 

From the model, we want to derive an equation that describes the rate of enzyme activity 
(amount of product formed per time interval) as a function of substrate concentration.  

The rate of product formation equals the rate at which ES turns into E+P, which equals k2 
times [ES]. This equation isn't helpful, because we don't know ES. We need to solve for ES 
in terms of the other quantities. This calculation can be greatly simplified by making two 
reasonable assumptions. First, we assume that the concentration of ES is steady during 
the time intervals used for enzyme kinetic work. That means that the rate of ES formation 
equals the rate of ES dissociation (either back to E+S or forward to E+P). Second, we 
assume that the reverse reaction (formation of ES from E+P) is negligible, because we are 
working at early time points where the concentration of product is very low. 

1 -1 2

Rate of ES formation = Rate of ES dissolution
k [S] [E]=k [ES]+k [ES]⋅ ⋅ ⋅ ⋅

 

We also know that the concentration of free enzyme [E] equals the total concentration of 
enzyme [Etotal] minus the concentration of substrate-bound enzyme [ES]. So by 
substitution, 

1 total -1 2k [S] ([E ]-[ES])=k [ES]+k [ES]⋅ ⋅ ⋅ ⋅  

Solving for ES, 

1 total total

2 -11 2 -1

1

k [E ] [S] [E ] [S][ES]= = k +kk [S]+k +k [S]+
k

⋅ ⋅ ⋅
⋅

 

The rate of product formation is 

2Velocity=k [ES]⋅  

and, substituting the expression for [ES] above, 

2 total
2

2 -1

1

k [E ] [S]Velocity=k [ES]= k +k[S]+
k

⋅ ⋅
⋅  

Finally, define Vmax (the velocity at maximal concentrations of substrate) as k2 times Etotal, 
and KM, the Michaelis-Menten constant, as (k2+k-1)/k1. Substituting: 

max

M

V [S]Velocity=V=
[S]+K

⋅
 

Note that Km is not a binding constant that measures the strength of binding between the 
enzyme and substrate. Its value includes the affinity of substrate for enzyme, but also the 
rate at which the substrate bound to the enzyme is converted to product. Only if k2 is 
much smaller than k-1 will KM equal a binding affinity. 

The Michaelis-Menten model is too simple for many purposes. The Briggs-Haldane model 
has proven more useful: 
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E+S ES EP E+P→R R  

Under the Briggs-Haldane model, the graph of enzyme velocity vs. substrate looks the 
same as under the Michaelis-Menten model, but KM is defined as a combination of all five 
of the rate constants in the model.  

Assumptions of enzyme kinetic analyses 
Standard analyses of enzyme kinetics (the only kind discussed here) assume: 

• The production of product is linear with time during the time interval used.  

• The concentration of substrate vastly exceeds the concentration of enzyme. This 
means that the free concentration of substrate is very close to the concentration 
you added, and that substrate concentration is constant throughout the assay.  

• A single enzyme forms the product.  

• There is negligible spontaneous creation of product without enzyme 

• No cooperativity. Binding of substrate to one enzyme binding site doesn't 
influence the affinity or activity of an adjacent site. 

• Neither substrate nor product acts as an allosteric modulator to alter the enzyme 
velocity. 

How to determine Vmax and KM 
To determine Vmax and KM: 

1. Enter substrate concentrations into the X column and velocity into the Y column 
(entering replicates if you have them). 

2. Enter this equation as a new equation into your program, and fit it to your data 
using nonlinear regression. 

Y = (Vmax * X)/(Km + X) 

 

Variable Comment 

X Substrate concentration. Usually expressed in µM or mM. 

Y Enzyme velocity in units of concentration of product per time. It is 
sometimes normalized to enzyme concentration, so concentration of 
product per time per concentration of enzyme. 

Vmax   The maximum enzyme velocity. A reasonable rule for choosing an initial 
value might be that Vmax equals 1.0 times your maximal Y value. Vmax is 
expressed in the same units as the Y values. 

Km  The Michaelis-Menten constant. A reasonable rule for choosing an initial 
value might be 0.2 x your maximal X value. 

Checklist for enzyme kinetics  
When evaluating results of enzyme kinetics, ask yourself these questions: 
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Question Comment 

Was only a small fraction of 
the substrate converted to 
product? 

The analysis assumes that the free concentration of substrate 
is almost identical to the concentration you added during the 
time course of the assay. You can test this by comparing the 
lowest concentration of substrate used in the assay with the 
concentration of product created at that concentration. 

Is the production of 
product linear with time? 

Check the concentration of product at several times to test 
this assumption. 

Did you use high enough 
concentrations of 
substrate? 

Calculate the ratio of the highest substrate concentration you 
used divided by the best-fit value of KM (both in the same 
concentration units). Ideally, the highest concentration 
should be at least 10 times the KM. 

Are the standard errors too 
large? Are the confidence 
intervals too wide? 

Divide the SE of the Vmax by the Vmax, and divide the SE of the 
KM by the KM. If either ratio is much larger than about 20%, 
look further to try to find out why.  

Is product produced in the 
absence of enzyme? 

The analysis assumes that all product formation is due to the 
enzyme. If some product is produced spontaneously, you'll 
need to do a fancier analysis to account for this. 

Did you pick a time point at 
which enzyme velocity is 
constant. 

Measure product formation at several time points straddling 
the time used for the assay. The graph of product 
concentration vs. time should be linear. 

Is there any evidence of 
cooperativity? 

The standard analysis assumes no cooperativity. This means 
that binding of substrate to one binding site does not alter 
binding of substrate to another binding pocket. Since many 
enzymes are multimeric, this assumption is often not true. If 
the graph of V vs. [S] looks sigmoidal, see "Allosteric 
enzymes" on page 251. 

Comparison of enzyme kinetics with radioligand binding 
The Michaelis-Menten equation for enzyme activity has a mathematical form similar to 
the equation describing equilibrium binding; they both describe rectangular hyperbolae. 

max

M

max

d

V [S]Enzyme Velocity=V=
[S]+K
B [L]Specific Binding=B=
[L]+K

 

However, the parameters mean different things. Note these differences between binding 
experiments and enzyme kinetics. 

• It usually takes many minutes or hours for a receptor incubation to equilibrate. It 
is common (and informative) to measure the kinetics prior to equilibrium. 
Enzyme assays reach steady state (defined as constant rate of product 
accumulation) typically in a few seconds. It is uncommon to measure the kinetics 
of the transient phase before that, although you can learn a lot by studying those 
transient kinetics (see an advanced text of enzyme kinetics for details). 

• The equation used to analyze binding data is valid at equilibrium - when the rate 
of receptor-ligand complex formation equals the rate of dissociation. The equation 
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used to analyze enzyme kinetic data is valid when the rate of product formation is 
constant, so product accumulates at a constant rate. But the overall system in not 
at equilibrium in enzyme reactions, as the concentration of product is continually 
increasing. 

• Kd is a dissociation constant that measures the strength of binding between 
receptor and ligand. KM is not a binding constant. Its value includes the affinity of 
substrate for enzyme, but also the kinetics by which the substrate bound to the 
enzyme is converted to product 

• Bmax is measured as the number of binding sites normalized to amount of tissue, 
often fmol per milligram, or sites/cell. Vmax is measured as moles of product 
produced per minute.  

Displaying enzyme kinetic data on a Lineweaver- Burk plot 
The best way to analyze enzyme kinetic data is to fit the data directly to the Michaelis-
Menten equation using nonlinear regression. Before nonlinear regression was available, 
investigators had to transform curved data into straight lines, so they could analyze with 
linear regression.  

One way to do this is with a Lineweaver-Burk plot. Take the inverse of the Michaelis-
Menten equation and simplify: 

M M M

max max max max max

[S]+K K K1 [S] 1 1= = + = +
V V [S] V [S] V [S] V V [S]

⋅  

Ignoring experimental error, a plot of 1/V vs. 1/S will be linear, with a Y-intercept of 
1/Vmax and a slope equal to KM/Vmax. The X-intercept equals -1/KM.  

1
Vmax

Slope K
V

M=
max

−
1

KM

1/[Substrate]
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Use the Lineweaver-Burk plot only to display your data. Don't use the slope and intercept 
of a linear regression line to determine values for Vmax and KM. If you do this, you won't 
get the most accurate values for Vmax and KM. The problem is that the transformations 
(reciprocals) distort the experimental error, so the double-reciprocal plot does not obey 
the assumptions of linear regression. Use nonlinear regression to obtain the most accurate 
values of KM and Vmax (see page 19).  

Tip: You should analyze enzyme kinetic data with nonlinear regression, not 
with Lineweaver-Burk plots. Use Lineweaver-Burk plots to display data, not to 
analyze data. 
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Allosteric enzymes 
One of the assumptions of Michaelis-Menten kinetics is that there is no cooperativity. If 
the enzyme is multimeric, then binding of a substrate to one site should have no effect on 
the activity of neighboring sites. This assumption is often not true. 

If binding of substrate to one site increases the activity of neighboring sites, the term 
positive cooperativity is used. Activity is related to substrate concentration by this 
equation: 

h
max
h h

0.5

V [S]Velocity=V=
[S] +K

 

When the variable h equals 1.0, this equation is the same as the Michaelis-Menten 
equation. With positive cooperativity, h will have a value greater than 1.0. If there are two 
interacting binding sites, h will equal between one and two, depending on the strength of 
the cooperativity. If there are three interacting binding sites, h will equal between 1 and 3. 
Note that the denominator has the new variable K0.5 instead of KM.  

h=1

h=4

h=2
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To fit data to the equation for enzyme activity with positive cooperativity, use the equation 
below. For initial values, try these rules: Vmax=1 x your maximal Y value, K=0.5 x your 
maximal X value, and h=1.0 

 

Y=Vmax*X^h/(K^h + X^h) 

 

The variable h does not always equal the number of interacting binding sites (although h 
can not exceed the number of interacting sites). Think of h as an empirical measure of the 
steepness of the curve and the presence of cooperativity. 

Enzyme kinetics in the presence of an inhibitor 

Competitive inhibitors 
If an inhibitor binds reversibly to the same site as the substrate, the inhibition will be 
competitive. Competitive inhibitors are common in nature.  
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One way to measure the effect of an inhibitor is to measure enzyme velocity at a variety of 
substrate concentrations in the presence and absence of an inhibitor. As the graph below 
shows, the inhibitor substantially reduces enzyme velocity at low concentrations of 
substrate, but doesn't alter velocity very much at very high concentrations of substrate.  
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As the graph above shows, the inhibitor does not alter Vmax, but it does increase the 
observed KM (concentration of substrate that produces half-maximal velocity; some texts 
call this “apparent KM”). The observed KM is given by the following equation, where Ki is 
the dissociation constant for inhibitor binding (in the same concentration units as 
[Inhibitor]): 

M,obs M
i

[Inhibitor]K =K 1+
K

 
⋅  
 

 

Using global fitting to fit Ki 

The best way to find the best-fit value of Ki is to fit all your data at once using global 
nonlinear regression. Fit to this model. 

KMobs=Km(1+[I]/Ki) 
Y=Vmax*X/(KMobs+X) 

 

Variable Comment 

X Substrate concentration. Usually expressed in µM or mM. 

Y Enzyme velocity in units of concentration of product per time. It is 
sometimes normalized to enzyme concentration, so concentration of 
product per time per concentration of enzyme. 

Vmax   The maximum enzyme velocity, in the absence of inhibitor. A reasonable 
rule for choosing an initial value might be that Vmax equals 1.0 times your 
maximal Y value. Vmax is expressed in the same units as the Y values. Share 
this parameter to get one best-fit value for the entire experiment. 

Km  The Michaelis-Menten constant, in the same units as X. A reasonable rule 
for choosing an initial value might be 0.2 x your maximal X value. Share this 
parameter to get one best-fit value for the entire experiment.  

Ki The inhibition constant, in the same units as your X values and KM. Share. 

I The concentration of inhibitor, in the same units as Ki. For each data set, 
this is a constant that you enter.  
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Fit the family of curves, setting up the global curve fitting to share the parameters Vmax, 
KM, and Ki. This means you’ll get one best-fit value for each of these parameters from the 
entire set of experiments. Set I to be a constant whose value varies with each data set. The 
first data set is a control, where I equals 0. 

GraphPad note: In Prism, enter each inhibitor concentration as the column title 
for the appropriate data set. In the nonlinear regression dialog (constraints 
tab), define I (inhibitor concentration) to be a data set constant. This means 
that Prism will get its value from the heading of each column.  
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GraphPad note: The companion step-by-step example book has detailed 
instructions for fitting a family of enzyme inhibition curves to determine the Ki. 
You’ll also find this example at www.graphpad.com.  

Finding Ki without global fitting 
If you don’t have a program that can fit data with global nonlinear regression, you can use 
a less accurate method.  

If you have determined the KM in the presence and absence of a single concentration of 
inhibitor, you can rearrange that equation to determine the Ki.  

i
M,obs

M

[Inhibitor]K = K
-1.0

K

 

You'll get a more reliable determination of Ki if you determine the observed KM at a variety 
of concentrations of inhibitor. Fit each curve to determine the observed KM. Enter the 
results onto a new table, where X is the concentration of inhibitor and Y is the observed 
KM. If the inhibitor is competitive, the graph will be linear. Use linear regression to 
determine the X and Y intercepts. The Y-axis intercept equals the KM and the X-axis 
intercept equals the negative Ki. 
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Another approach is to measure enzyme velocity at a single concentration of substrate 
with varying concentrations of a competitive inhibitor. The results will look like this.  
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The concentration of competitor that reduces enzyme velocity by half is called the IC50. Its 
value is determined by three factors: 

• The dissociation constant for binding of inhibitor to enzyme, the Ki. If the Ki is 
low (the affinity is high), the IC50 will be low. The subscript i is used to indicate 
that the competitor inhibited enzyme activity. It is the concentration of the 
competitor that will bind to half the enzyme sites at equilibrium in the absence 
of substrate or other competitors. 

• The concentration of the substrate. If you choose to use a higher concentration of 
substrate, it will take a larger concentration of inhibitor to compete for 50% of 
the activity. 

• The KM. It takes more inhibitor to compete for a substrate with a low KM than for 
a substrate with a high KM. 

You can calculate the Ki, using the equation of Cheng and Prusoff (Cheng Y., Prusoff W. 

H., Biochem. Pharmacol. 22: 3099-3108, 1973).  
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Inhibitors that are not competitive 
Not all inhibitors are competitive. Some inhibitors decrease the observed Vmax, with or 
without increasing the observed KM. Consult an advanced text on enzyme kinetics for 
information about non-competitive, uncompetitive, and mixed inhibition.  

Competitive and non-competitive inhibitors bind reversibly. An inhibitor that binds 
covalently to irreversibly inactivate the enzyme is called an irreversible inhibitor or 
inactivator. 
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I. Fitting dose-response curves 

41. Introduction to dose-response curves 

What is a dose-response curve? 
Dose-response curves can be used to plot the results of many kinds of experiments. The X 
axis plots concentration of a drug or hormone. The Y axis plots response, which could be 
almost any measure of biological function. For example, the response might be enzyme 
activity, accumulation of an intracellular second messenger, membrane potential, 
secretion of a hormone, change in heart rate or contraction of a muscle. 

The term “dose” is often used loosely. In its strictest sense, the term only applies to 
experiments performed with animals or people, where you administer various doses of 
drug. You don't know the actual concentration of drug at its site of action—you only know 
the total dose that you administered. However, the term “dose-response curve” is also 
used more loosely to describe in vitro experiments where you apply known concentrations 
of drugs. The term “concentration-response curve” is therefore a more precise label for 
the results of these types of experiments. The term “dose-response curve” is occasionally 
used even more loosely to refer to experiments where you vary levels of some other 
variable, such as temperature or voltage. 

An agonist is a drug that binds to a receptor and causes a response. If you administer 
various concentrations of an agonist that causes a stimulatory response, the dose-
response curve will go uphill as you go from left (low concentration) to right (high 
concentration). If the agonist causes an inhibitory response, the curve will go downhill 
curve with increasing agonist concentrations. A full agonist is a drug that appears able to 
produce the maximum cellular or tissue response. A partial agonist is a drug that 
provokes a response, but the maximum response is less than the maximum response to a 
full agonist in the same cell or tissue. An inverse agonist is a drug that reduces a pre-
existing basal response, which is itself due to constitutive activation of a system in the 
absence of other ligands, e.g., perhaps due to an activating mutation in a receptor. 

An antagonist is a drug that does not provoke a response itself, but blocks agonist-
mediated responses. If you vary the concentration of antagonist (in the presence of a fixed 
concentration of agonist), the antagonist dose-response curve (also called an “antagonist 
inhibition curve”) will run in the opposite direction to that of the agonist dose-response 
curve.  It should be noted that the classification of drugs as full agonists, partial agonists, 
inverse agonists and antagonists is highly dependent on the biological system in which 
they are tested.  For example, if drug binding is strongly coupled to response in one 
system and only weakly coupled to response in another system, then a full agonist in the 
first system may appear as a partial agonist in the second system. Similarly, if a system is 
not constitutively active in the absence of ligands, then an inverse agonist in such a system 
would appear indistinguishable from a simple antagonist. 
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The shape of dose-response curves 
Many steps can occur between the binding of the agonist to a receptor and the production 
of the response. So depending on which drug you use and which response you measure, 
dose-response curves can have almost any shape. However, in very many systems, dose-
response curves follow a standard shape that is almost identical to that observed for the 
binding of a drug to a receptor. While a plot of response vs. the amount of drug is thus 
typically a rectangular hyperbola, the dose range for the full relationship may span several 
orders of magnitude, so it is more common to plot response vs. logarithm of the dose. 
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Dose-response experiments typically use around 5-10 doses of agonist, approximately 
equally spaced on a logarithmic scale. For example, doses might be 1, 3, 10, 30, 100, 300, 
1000, 3000, and 10000 nM. When converted to logarithms, these values are equally 
spaced: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0.  

Note: The logarithm of 3 is actually 0.4771, not 0.50. The antilog of 0.5 is 
3.1623. So to make the doses truly equally spaced on a log scale, the 
concentrations ought to be 1.0, 3.1623, 10.0, 31.623 etc.  

Since the linkage between agonist binding and response can be very complex, any shape is 
possible. It seems surprising, therefore, that so many dose-response curves have shapes 
almost identical to receptor binding curves. The simplest explanation is that the link 
between receptor binding and response is direct, so response is proportional to receptor 
binding. However, in most systems one or more second-messengers can link receptor 
binding to the final, measured, response. For example, the binding of some agonists can 
activate adenylyl cyclase, which creates the second-messenger cAMP. The second 
messenger then binds to an effector (such as a protein kinase) and initiates or propagates 
a response.  Thus, direct proportionality between binding and response is not commonly 
observed in biological systems. 

What do you expect a dose-response curve to look like if a second messenger mediates the 
response? If you assume that the production of second messenger is proportional to 
receptor occupancy, the graph of agonist concentration vs. second messenger 
concentration will have the same shape as receptor occupancy (a hyperbola if plotted on a 
linear scale, a sigmoid curve with a slope factor of 1.0 if plotted as a semilog graph). If the 
second messenger works by binding to an effector, and that binding step follows the law of 
mass action, then the graph of second messenger concentration vs. response will also have 
that same standard shape. It isn’t obvious, but Black and Leff have shown that the graph 



 

258 I. Fitting dose-response curves 

of agonist concentration vs. response will also have that standard shape, provided that 
both binding steps follow the law of mass action (see Chapater 42). In fact, it doesn't 
matter how many steps intervene between agonist binding and response. So long as each 
messenger binds to a single binding site according to the law of mass action, the dose-
response curve will follow the same hyperbolic/sigmoid shape as a receptor binding curve. 

The EC50 
A standard dose-response curve is defined by four parameters: the baseline response 
(Bottom), the maximum response (Top), the slope (Hill slope), and the drug 
concentration that provokes a response halfway between baseline and maximum (EC50). 

It is easy to misunderstand the definition of EC50. It is defined quite simply as the 
concentration of agonist that provokes a response half way between the baseline (Bottom) 
and maximum response (Top).  It is impossible to define the EC50 until you first define the 
baseline and maximum response. Depending on how you have normalized your data, this 
may not be the same as the concentration that provokes a response of Y=50. For instance, 
in the example below, the data are normalized to percent of maximum response, without 
subtracting a baseline. The baseline is about 20%, and the maximum is 100%, so the EC50 
is the concentration of agonist that evokes a response of about 60% (half way between 
20% and 100%). 
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Don't over interpret the EC50. It is simply the concentration of agonist required to provoke 
a response halfway between the baseline and maximum responses. Because the EC50 
defines the location of the dose-response curve for a particular drug, it is the most 
commonly used measure of an agonist’s potency.  However, the EC50 is usually not the 
same as the Kd for the binding of agonist to its receptor, i.e., it is not a direct measure of 
drug affinity. 

The steepness of a dose-response curve 
Many dose-response curves follow the shape of a receptor binding curve. As shown below, 
81 times more agonist is needed to achieve 90% response than a 10% response.  
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Some dose-response curves however, are steeper or shallower than the standard curve. 
The steepness is quantified by the Hill slope, also called a slope factor. A dose-response 
curve with a standard slope has a Hill slope of 1.0. A steeper curve has a higher slope 
factor, and a shallower curve has a lower slope factor. If you use a single concentration of 
agonist and varying concentrations of antagonist, the curve goes downhill and the slope 
factor is negative. The steeper the downhill slope, the more negative the Hill slope.  
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The equation for a dose-response curve 
The general equation for a sigmoidal dose-response curve is also commonly referred to as 
the “Hill equation”, the “four-parameter logistic equation”, or the “variable slope sigmoid 
equation”.  One form of this equation is as follows: 

( )
   HillSlope

50
HillSlope

Top-Bottom
Response=Bottom+

EC1+
[Drug]
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When you fit this equation, you want to find the best fit value of the LogEC50, rather than 
the EC50 itself (see next section). Making that change, as well as defining Y to be the 
response and X to be the logarithm of [Drug] gives us: 

 

( )

( )
( )

50

50

HillSlopeLogEC

X

LogEC -X HillSlope

Top-Bottom
Response=Bottom+

101+
10

Top-Bottom
                =Bottom+

1+10

 
 
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If you wish to manually enter this equation into your nonlinear regression program, the 
following syntax is standard for many different software packages: 

 

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) 

 

Other measures of potency 

The pEC50 

The pEC50 is defined as the negative logarithm of the EC50. If the EC50 equals 1 micromolar 
(10-6 molar), the log EC50 is –6 and the pEC50 is 6. There is no particular advantage to 
expressing potency this way, but it is customary in some fields. 

Note: Expressing potency as the pEC50 is a similar practice to quantifying 
acidity with the pH, which is the negative logarithm of [H+]. 

If you want to fit the pEC50 directly rather than fitting the logEC50, use the following 
equation syntax. 

Y=Bottom + (Top-Bottom)/(1+10^((X - pEC50)*HillSlope))  

Calculating any EC value from the EC50 and Hill slope 
The potency of a drug is commonly quantified as the EC50 or the logarithm of the EC50. But 
in some systems you might be more interested in the EC80 or the EC90 or some other 
value. You can compute the EC80 or EC90 (or any other EC value) from the EC50 and Hill 
slope. Or you can fit data to determine any EC value directly. If you express response as a 
percentage, a standard dose-response curve is described by this equation:  

H

H H
50

[A]F=100×
[A] +EC

 

[A] is the agonist concentration, EC50 is the concentration that gives half-maximal effect, 
and H is the Hill coefficient or slope factor that defines the steepness of the curve. [A] and 
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EC50 are expressed in the same units of concentration, so the units cancel out.  F is the 
fractional response, expressed as a percentage. 

If you set F to any fractional response you want, and define ECF as the agonist 
concentration necessary to achieve that response, then by substitution in the equation 
above, 

H
F

H H
F 50

ECF=100×
EC +EC

 

and rearranging yields this equation: 

1/H

F 50
FEC = ×EC

100-F
 
 
 

 

If you know the EC50 and Hill slope (H), you can easily compute the EC80 or EC10 or any 
other value you want. For example, if the Hill slope equals 1, the EC90 equals the EC50 
times nine. If H equals 0.5, the curve is shallower and the EC90 equals the EC50 times 81.  

Determining any EC value directly 
You can also fit data directly to an equation written in terms of the ECF. The advantage of 
this approach is that Prism will report the 95% confidence value for ECF. Use the equation 
below, where X is the log of concentration and Y is response, which ranges from Bottom to 
Top. In the example below, F is set to a value of 80, but you can set it to be any desired 
value between 0 and 100. 

F=80 
logEC50=logECF - (1/HillSlope)*log(F/(100-F)) 
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))  

 

To fit data to this equation, you'll need to consider reasonable initial values for your 
parameters. We suggest setting Top equal to your maximal Y value and Bottom equal to 
your minimum Y value, as determined from your data points. For HillSlope, simply pick a 
value, probably +1.0 or –1.0. For logEC, enter the logarithm of your middle X value as a 
crude initial value, or enter a value based on the range of concentrations you use.  

Here is a simplified equation for fitting the EC90. Here, the response is expressed as a 
percent ranging from zero to one hundred, so we dispense with the variables Top and 
Bottom. 

logEC50=logEC90 - (1/HillSlope)*log(9) 
Y=100/(1+10^((LogEC50-X)*HillSlope))  

 

Dose-response curves where X is concentration, not log of 
concentration 
Dose-response curves are generally performed with concentrations that are equally 
spaced on a log scale, and are usually fit to find the best-fit value of the LogEC50 (see 
below). It is also possible to make the concentrations equally spaced on a linear scale, and 
fit to find the EC50.  
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Start with the standard equation for the dose-response curve: 

( )
   HillSlope

50
HillSlope

Top-Bottom
Response=Bottom+

EC1+
[Drug]

 

 

Define Y to be response, and X to be [Drug], and simplify. 

( )
HillSlope   

50

Top-Bottom
Response=Bottom+

EC1+
X

 
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Written as a user-defined equation for most nonlinear regression programs: 

Y=Bottom + (Top-Bottom)/(1 + (EC50/X)^HillSlope) 

 

When the Hill Slope is set to 1.0, this is the same as the one-site binding hyperbola (except 
this equation adds a bottom baseline term). 

0 5 10 15 20 25
0

1000

2000

Bottom=500
Top=2000
EC50=2.0
Hill Slope=1.0

Dose

R
es

po
ns

e

 

When the Hill Slope is much greater than 1.0, the dose-response curve has a sigmoidal 
shape. 
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Note the confusing point here. A standard dose response curve, with a Hill Slope equal to 
1.0, has a sigmoidal shape when X is the log of concentration or dose. The same standard 
dose response curve (with a Hill slope equal to 1.0) has a hyperbolic shape when X is 
concentration (or dose). Nothing sigmoidal about it.  

If the Hill slope is greater than 1.0, the curve has a sigmoidal shape either way – when X is 
concentration (or dose) or when X is the logarithm of concentration (or dose).  
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Tip: When you see a sigmoidal dose-response curve, look carefully at the X axis 
to see if X is concentration (or dose) or the logarithm of concentration (or 
dose). 

In general, you should avoid fitting dose-response curves on a linear scale, for two 
reasons. First, if the curve spans many orders of drug dose magnitude, then it becomes 
graphically difficult to present.  Second, the error associated with the EC50 parameter 
(linear scale) of the standard dose-response model does not follow a Gaussian distribution 
and therefore cannot be used in standard statistical analyses that require the parameters 
follow a Gaussian distribution. This is discussed next. 

Why you should fit the logEC50 rather than EC50  
As shown above, you can write an equation for a dose-response curve either in terms of 
EC50 or log EC50. Curve fitting finds the curve that minimizes the sum-of-squares of the 
vertical distance from the points. Rewriting the equation to change between EC50 and log 
EC50 isn't going to make a different curve fit better. All it does is change the way that the 
best-fit EC50 is reported.  

However, rewriting the equation to change between EC50 and log EC50 has a major effect 
on standard error and confidence interval of the best-fit values. Consider these sample 
results: 
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These data were fit to a dose-response curve with a Hill slope of 1. The best-fit value for 
logEC50 is -6.059.  Converting to the EC50 is no problem – simply take the antilog. The 
EC50 is 10-6.059 M, about 0.87 µM.  

The standard error of the logEC50 is 0.2717. It is used as an intermediate result to calculate 
a confidence interval, which ranges from -6.657 to -5.461.  This means that the 95%CI of 
the EC50 extends from 10-6.657 to 10-5.461 –- from 0.22 to 3.46 µM. Expressed as 
concentrations (rather than log of concentration) the interval is not centered on the best-
fit value (0.87 µM). Switching from linear to log scale turned a symmetrical confidence 
interval into a very asymmetrical interval, which you can report. 

If you fit the same data to an equation describing a dose-response curve in terms of the 
EC50 rather than the logEC50, the EC50, remains 0.87 µM.  But now the program computes 
the SE of the EC50 (0.5459 µM), and uses this to compute the 95% confidence interval of 
the EC50, which ranges from -0.3290 to +2.074 µM. Note that the lower limit of the 
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confidence interval is negative! Since the EC50 is a concentration, negative values are 
nonsense. Even setting aside the negative portion of the confidence interval, it includes all 
values from zero on up, which isn't terribly useful.  

The problem is that the uncertainty of the EC50 really isn't symmetrical, especially when 
you space your doses equally on a log scale. Nonlinear regression (from Prism and most 
other programs) always reports a symmetrical confidence interval. In cases like this – 
fitting dose response data to a model written in terms of the EC50 – the confidence 
interval is not very helpful. 

When some people see the SE of the logEC50, they are tempted to convert this to the 
standard error of the EC50 by taking the antilog. In the example, the SE of the logEC50 is 
0.2717. The antilog of 0.2717 equals 100.2717 or 1.869. What does this mean? It certainly is 
NOT the SE of the EC50. The SE does not represent a point on the axis; rather it represents 
a distance along the axis. A distance along a log axis does not represent a consistent 
distance along a linear (standard) axis. For example, increasing the logEC50 1 unit from -9 
to -8 increases the EC50 9nM; increasing the logEC50 1 unit from -3 to -2 increases the 
EC50 by 9 mM (which equals 9,000,000 nM). So you cannot interpret the number 1.869 
as a concentration. You can interpret it as a multiplier – a factor you multiply by or divide 
into the EC50.  To calculate the 95% CI, first multiply 1.869 by a constant from the t 
distribution for 95% confidence and the appropriate number of degrees of freedom (11 
degrees of freedom in this example, so t is 2.201). The result is 4.113 Then compute the 
95% CI of the EC50. It extends from the best-fit EC50 divided by 4.113 to the best-fit EC50 
times 4.113, from 0.21 µM to 3.58 µM. 

Decisions when fitting sigmoid dose-response curves  
From the preceding discussion, it is clear that most of the time you should enter your X 
values as logarithms of concentration or dose if you want to perform a standard sigmoidal 
dose-response curve fit. If you entered actual concentrations, most standard data analysis 
programs can transform those values to logarithms for you.  

Note: Since the logarithm of zero is undefined, you cannot enter a 
concentration of zero as a logarithm. If you enter a concentration of zero and 
then transform to logarithms, Prism will leave that result blank. Instead of 
entering a dose of zero, enter a low concentration, e.g., one log unit below your 
lowest non-zero concentration. 

Before fitting a dose-response curve, you will need to make these decisions: 

Decision Discussion 

Choose Hill slope of 1 
or variable slope? 

If you have plenty of data points, you should choose to fit the Hill 
Slope along with the other parameters. If data are scanty, you may 
wish to consider fixing the Hill Slope to a value of 1. 

Set Top to a constant 
value? 

Ideally, the top part of the curve is defined by several data points. 
In this case, the nonlinear regression program will be able to fit the 
top plateau of the curve. If this plateau is not well defined by data, 
then you'll need to make the top plateau be a constant based on 
controls. 
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Decision Discussion 

Set Bottom to a 
constant value? 

Ideally, the bottom part of the curve is defined by several data 
points. In this case, the nonlinear regression program will be able 
to fit the bottom plateau of the curve. If this plateau is not well 
defined by data, then you'll need to make the bottom plateau be a 
constant based on controls. If you have subtracted a background 
value, then the bottom plateau of the curve must be 0. The program 
won’t know this unless you tell it. Make Bottom a constant equal to 
zero in this case. 

Absolute or relative 
weighting? 

See "Weighting method" on page 307.  

Fit each replicate or 
averages? 

See "Replicates" on page 307. 

 

Checklist. Interpreting a dose-response curve. 
After fitting a dose-response model to your data, ask yourself these questions: 

Question Comment 

Is the logEC50 reasonable? The EC50 should be near the middle of the curve, with at least 
several data points on either side of it. 

Are the standard errors too 
large? Are the confidence 
intervals too wide. 

The SE of the logEC50 should be less than 0.5 log unit (ideally 
a lot less). 

Is the value of Bottom 
reasonable? 

Bottom should be near the response you observed with zero 
drug. If the best-fit value of Bottom is negative, consider fixing 
it to a constant value equal to baseline response. If you know 
where the bottom of the curve should be, then set Bottom to 
that constant value. Or constrain Bottom to be greater than 0. 

Is the value of Top 
reasonable? 

Top should be near the response you observed with maximal 
concentration drug. If the best-fit value of Top is not 
reasonable, consider fixing it to a constant value. If you know 
where the top of the curve should be, then set Top that 
constant value. 

If you used a variable slope 
model, are there enough data 
to define the slope?  

If you asked Prism to find a best-fit value for slope, make sure 
there at least a few data points between 10 and 90% . If not, 
your data don't accurately define the slope factor. Consider 
fixing the slope to its standard value of 1.0 

If you used a model with a 
Hill Slope of 1, does the data 
appear to be steeper or 
shallower? 

If the data appear to form a curve much steeper or shallower 
than the standard dose-response curve with a slope of 1, 
consider fitting to a model with a variable slope. 

Does the curve appear to be 
biphasic or non-sigmoid? 

The standard dose-response models assume that the curve is 
monotonic and sigmoid. If the curve goes up, and then down, 
you'll need a more complicated model (see next chapter). 
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42.  The operational model of agonist action 

Limitations of dose-response curves 
Fitting a standard sigmoidal (logistic) equation to a dose-response curve to determine 
EC50 (and perhaps slope factor) doesn't tell you everything you want to know about an 
agonist. The problem is that the EC50 is determined by two properties of the agonist: 

• How well it binds to the receptor, quantified by the affinity of the drug for 
binding to its receptor. 

• How well it causes a response once bound. This property is known as the 
agonist’s efficacy. Since efficacy depends on both agonist and tissue, a single drug 
acting on a single kind of receptor can have different efficacies, and thus different 
EC50 values, in different tissues. 

A single dose-response experiment cannot untangle affinity from efficacy. Two very 
different drugs could have identical dose-response curves, with the same EC50s and 
maximal responses (in the same tissue). One drug binds tightly with high affinity but has 
low efficacy, while the other binds with low affinity but has very high efficacy. Since the 
two dose-response curves are identical there is no data analysis technique that can tell 
them apart. You need to analyze a family of curves, not an individual curve, to determine 
the affinity and efficacy. The rest of this chapter explains how. 

Derivation of the operational model 
Black and Leff (Proc. R. Soc. Lond. B, 220:141-162, 1983) developed the operational 
model of agonism to help understand the action of agonists and partial agonists, and to 
develop experimental methods to determine the affinity of agonist binding and a 
systematic way to measure relative agonist efficacy based on an examination of the dose-
response curves. 

Start with a simple assumption: Agonists bind to receptors according to the law of mass 
action. At equilibrium, the relationship between agonist concentration ([A]) and agonist-
occupied receptor ([AR]) is described by the following hyperbolic equation: 

T

A

[R ]×[A][AR]=
[A]+K

 

[RT] represents total receptor concentration and KA represents the agonist-receptor 
equilibrium dissociation constant. 

What is the relationship between agonist-occupied receptor (AR) and receptor action? We 
know biochemical details in some cases, but not in others. This lack of knowledge about 
all the steps between binding and final response prevents the formulation of explicit, 
mechanistic equations that completely describe a dose-response curve. However, Black 
and Leff derived a “practical” or “operational” equation that encompasses the behavior of 
all of these unknown biochemical cascades. They began with the observation that many 
dose-response curves have a sigmoidal shape with a Hill Slope of 1.0, (the curves are 
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hyperbolas when response is plotted against agonist concentration, sigmoidal when 
response is plotted against the log of agonist concentration). They then proved 
mathematically that if agonist binding is hyperbolic and the dose-response curve has a 
Hill slope of 1.0, the equation linking the concentration of agonist-occupied receptors to 
response must also be hyperbolic. This second equation, shown below, has been termed 
the “transducer function”, because it is a mathematical representation of the transduction 
of receptor occupation into a response: 

max

E

Effect [AR]Effect=
[AR]+K

⋅
 

The parameter, Effectmax, is the maximum response possible in the system. This may not 
be the same as the maximum response that a particular agonist actually produces. The 
parameter KE is the concentration of AR that elicits half the maximal tissue response. The 
efficacy of an agonist is determined by both KE and the total receptor density of the tissue 
([RT]). Black and Leff combined those two parameters into a ratio ([RT]/KE) and called 
this parameter tau (τ), the “transducer constant”. Combining the hyperbolic occupancy 
equation with the hyperbolic transducer function yields an explicit equation describing 
the effect at any concentration of agonist: 

max

A

Effect  [A]Effect=
(K +[A])+ [A]

τ
τ

⋅ ⋅
⋅

 

This equation can be rewritten as follows, to make it easier to compare the operational 
model with the standard sigmoid equation for an agonist dose-response curve. 

( )
max

max

AA

[A] Effect
Effect  [A] +1Effect= = KK +[A] +1 +[A]

+1

τ
τ τ
τ

τ

 ⋅ ⋅ ⋅ ⋅  
⋅

 

This form of the equation makes it clear that the maximum effect in the dose-response 
relationship seen with a particular agonist is not Effectmax, but rather is Effectmax 
multiplied by τ/(τ+1). Only a full agonist in a tissue with plenty of receptors (high values 
of τ) will yield a maximum response that approaches Effectmax. 

The EC50 does not equal KA (the equilibrium dissociation constant for agonist binding to 
the receptors) but rather KA/(1+ τ). With a strong agonist (large τ value), you'll get half-
maximal response by binding fewer than half the receptors, so the EC50 will be much less 
than KA. 

This figure shows a dose-response curve for a partial agonist, and shows the relationship 
between EC50 and maximum response to terms in the operational model. 
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The parameter, τ, is a practical measure of efficacy. It equals the total concentration of 
receptors in the system divided by the concentration of receptors that need to be occupied 
by agonist to provoke a half-maximal tissue response. The τ value is the inverse of the 
fraction of receptors that must be occupied to obtain the half-maximal response. If τ 
equals 10, that means that occupation of only 10% of the receptors leads to a half-maximal 
response. If τ equals 1.0, that means that it requires occupation of all the receptors to give 
a half-maximal response. This would happen with a partial agonist or with a full agonist in 
a tissue where the receptors had been significantly depleted. Because τ is a property of 
both the tissue and receptor system, it is not a direct measure of intrinsic efficacy, which 
is commonly defined as a property belonging only to an agonist-receptor pair, irrespective 
of the assay system in which it is measured. 

The equations above show agonist stimulated response, so the curves all begin at zero. It 
is easy to add a Basal parameter to model observed response in the absence of drug, so 
the response with no agonist equals Basal rather than zero. 

Shallower and steeper dose-response curves 
Some sigmoid dose-response curves are steeper or shallower than a curve with a standard 
slope factor of 1. The operational model can be extended to analyze these curves. 

If you assume the initial binding of the agonist to the receptor follows the law of mass-
action (Hill slope equals 1 for the binding step), then transduction step(s) between 
occupancy and final response must follow an equation that allows for variable slope. If the 
dose-response curve is still sigmoid, then the operational model can be extended fairly 
simply, by including a slope parameter, n. The extended form of the operational model is: 

n n
max

n n n
A

Effect  [A]Effect=
(K +[A]) + [A]

τ
τ

⋅ ⋅
⋅

 

The relationship between this operational model and the variable slope sigmoid equation 
are as follows: 

A
50 n 1/n

KEC =
(2+ ) -1τ

 

n
max

max n

Effect  E =
+1

τ
τ

⋅
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When n equals 1, the equation is the same as those shown earlier, describing dose-
response curves with Hill slopes of 1.0. However, n is not the same as the Hill Slope (but 
the two values will be very close for full agonists). 

Designing experiments to fit to the operational model 
A single dose-response curve does not define both the affinity and efficacy of an agonist. If 
you try to fit the operational model equation to a single dose-response curve, you'll run 
into a problem. Either the curve-fitting program will report an error message, or it will 
report best-fit values with enormously wide confidence intervals.  

Any symmetrical dose-response curve is defined by four parameters: Bottom (response 
with no agonist), Top (response at very high concentrations), EC50 (concentration of 
agonist needed to provoke a response halfway between Bottom and Top) and the Hill 
Slope. However, the operational model equation has five parameters: Basal (response 
with no agonist), KA (dissociation constant of agonist binding), Effectmax (maximum 
possible effect with a full agonist and plenty of receptors), τ (a measure of agonist 
efficacy), and n (transducer slope). 

Since the operational model has more parameters than are needed to describe a sigmoid 
dose-response curve, any curve can be defined by an infinite combination of operational 
model parameters. Even if a curve-fitting program could find best-fit values (rather than 
report an error message), the best-fit parameter estimates may not be correct.  

To fit the operational model to data, therefore, you cannot analyze just a single dose-
response curve. Instead you must fit a family of dose-response curves. Use one of these 
experimental approaches: 

• One approach is to reduce the number of accessible receptors in a tissue or cell 
line to such an extent that a full agonist can no longer produce the maximal 
cellular response, no matter how high a concentration is used.  A common 
method for reducing the number of functional receptors is to treat the tissue or 
cell line with a drug (e.g., alkylating agent) that binds irreversibly to the agonist 
binding site on the receptor, and thus permanently occludes that site.  The 
agonist curve before alkylation is then compared to the curve after alkylation. 
This is the experimental method of choice for generating data that will allow 
affinity and efficacy estimates for drugs that are full agonists. 

• A second approach that works only for partial agonist drugs is to directly 
compare the dose-response curve of a partial agonist with the dose-response 
curve of the full agonist.  This method does not require receptor alkylation, but 
does require a known full agonist for the receptor of interest. 

Note: All the dose-response curves should be obtained with the same tissue or 
cell line, in order to minimize variability in Effectmax between preparations. This 
also applies to the use of recombinant expression systems (e.g., cell lines) with 
genetically engineered differences in receptor density; simultaneous analysis of 
curves obtained across different cell-lines will introduce between-tissue 
variability into the analysis, which can lead to problems with parameter 
estimation. In contrast, receptor depletion experiments using the same 
preparation of cells before and after treatment should only be subject to within-
tissue variability. 
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Fitting the operational model to find the affinity and efficacy of a 
full agonist 

Theory of fitting receptor depletion data to the operational model 
To fit the operational model, one must account for data from two (or more) dose-response 
curves. For a full agonist, you must compare the dose-response curve in the absence or 
presence of receptor depletion. Experimentally, the key is to ensure that the receptors 
have been sufficiently alkylated such that the full agonist can no longer yield a maximal 
tissue response at saturating concentrations. These conditions are especially important to 
ensure that fitting the operational model to the data will yield a good estimate of the 
Effectmax model parameter, which is crucial for successful estimation of the remaining 
model parameters. You can do this by globally fitting all the dose-response curves at one 
time, sharing model parameters across all the data sets. 

Let’s first consider an experiment where the dose-response curve to a full agonist is 
determined in the absence or presence of progressive depletion of accessible receptor 
binding sites (this is also referred to as reducing “receptor reserve”).  Because τ = [RT]/KE, 
irreversibly occluding agonist binding will reduce [RT] and thus reduce the value of τ. This 
will lower the maximal response and shift the dose-response curve to the right.  

The operational model assumes that irreversibly occluding some receptors does not 
change the other three parameters. It assumes that the affinity of the agonist for the 
remaining receptors (KA), the value of the transducer slope (n), and the value Effectmax, 
are properties of the tissue, not the drug, so have one value for all curves (note that 
Effectmax refers to the maximum possible effect when no receptors are occulded, not the 
maximum effect attained in a particular dose-response curve).  To fit the operational 
model, therefore, we want to globally fit all the data sets, sharing the value of KA,, n, and 
Effectmax  but finding separate best-fit values of τ for each data set. 

Fitting receptor depletion data to the operational model with Prism 
Follow these steps: 

1. Since concentrations are equally spaced on a log scale, enter data with X equal to 
the logarithm of the agonist concentration. Or transform your data to make X equal 
to the log of concentration if necessary. 

2. Enter the operational model into your program. Here is one version:  

operate= (((10^logKA)+(10^X))/(10^(logtau+X)))^n 
Y=Basal + (Effectmax-Basal)/(1+10^operate)  

 

3. If you have already subtracted off any basal activity, then constrain Basal to a 
constant value of zero. 

4. Set up global fitting so logKA, n and Effectmax are shared among data sets. If you 
didn’t constrain Basal to be a constant also share it among data sets. Don’t 
share logtau, as its value will be unique for each curve. 

5. Consider the following recommendations for initial parameter values: 
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Parameter Initial Values 

Effectmax  1 x maximum Y value for the full agonist curve in the absence of 
receptor depletion  

n  Set to 1 (initial value to be fit) 

Basal 1 x minimum Y value for the full agonist curve. (If there is no basal 
response in the absence of agonist, then set this value as a constant of 
zero, or omit it from the equation). 

logKA  1 x the X value corresponding to the response half way between the 
highest and lowest Y values for the agonist curve after receptor 
depletion. 

logTau Set to 0.0 (initial value to be fit). Since logtau starts at zero, this means 
that the initial value for τ is 1.0. This value of τ corresponds to a dose-
response curve that plateaus at half Effectmax , and usually results in 
successful convergence. 

 

Why fit the log of KA and the log of τ? When writing any model for data analysis, you 
should arrange the parameters so that the uncertainty is symmetrical and Gaussian. If you 
fit to the logarithm of KA and τ, the uncertainty is more symmetrical (and more Gaussian) 
than it would be if you fit to KA and τ  directly (see A. Christopoulos, Trends Pharmacol. 
Sci, 19:351-357, 1998).  

Why fit Basal? You may measure a “response” even in the absence of agonist. So include a 
basal parameter in the model. Basal is the measured response in the absence of agonist. If 
there is no basal activity, or if you have subtracted away basal before analyzing your data, 
then constrain Basal to a constant value of zero.  

Example of fitting receptor depletion data to the operational model 
In this example, we fit the operational model to two data sets. One data set is the response 
of human M1 muscarinic receptors, stably transfected into Chinese hamster ovary cells, to 
the agonist, acetylcholine in the absence of receptor alkylation, and the other shows the 
response to the same agonist in the same cells after receptor alkylation with the 
irreversible alkylating agent, phenoxybenzamine.  The actual response being measured is 
agonist-mediatied [3H]phosphoinositide hydrolysis (A. Christopoulos, University of 
Melbourne, unpublished).  Shown below are the actual data (d.p.m.): 

Log[Acetylcholine] Vehicle Alkylated 

-8.000 516 241 

-7.000 950 423 

-6.523 2863 121 

-6.000 7920 527 

-5.523 11777 745 

-5.000 14437 3257 

-4.523 14627 3815 

-4.000 14701 4984 

-3.523 15860 5130 
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Analysis of these data according to the operational model yielded the curve fits shown 
below: 

 Vehicle Alkyalted Shared 

Best-fit values    

LogKA -4.981 -4.981 -4.981 

Logτ 1.024 -0.2511  

n 1.279 1.279 1.279 

Basal 218.0 218.0 218.0 

Emax 15981 15981 15981 

Std. Error    

LogKA 0.1349 0.1349 0.1349 

Logτ 0.09797 0.02776  

n 0.1218 0.1218 0.1218 

Basal 171.5 171.5 171.5 

Emax 420.9 420.9 420.9 

95% CI    

LogKA -5.275 to -4.687 -5.275 to -4.687 -5.275 to -4.687 

Logτ 0.8105 to 1.237 -0.3116 to -0.1906  

n 1.014 to 1.545 1.014 to 1.545 1.014 to 1.545 

Basal 0 to 591.6 0 to 591.6 0 to 591.6 

Emax 15064 to 16898 15064 to 16898 15064 to 16898 

 

The table above shows some of the output from the Results page of the analysis (using 
GraphPad Prism). Note that the best-fit value for logKA is close to -5, a concentration that 
gives a full response in control conditions, and is a log unit away from the logEC50 of the 
control dose-response curve (which is close to -6). Here is a graph of the curves. 
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Fitting the operational model to find the affinity and efficacy of a 
partial agonist 

Theory of fitting partial agonist data to the operational model 
A second application of the operational model is to obtain affinity and efficacy estimates 
for one or more partial agonists by comparing their responses to a full agonist in the same 
tissue.  The analysis is different from fitting to the operational model after receptor 
inactivation. With receptor inactivation, the goal is to get a single value of logKA for the 
agonist. With partial agonists, we expect the get different values of logKA for each partial 
agonist used. 

It is impossible to determine the logKA of a full agonist without inactivating receptors (see 
method above).  However, for a full agonist (τ > 10), the Top and HillSlope parameters 
obtained from the standard sigmoid dose-response equation are very good 
approximations of the Effectmax and n parameters, respectively, of the operational model.  
This fact is exploited in the current method for obtaining operational model parameters 
for partial agonists.  Specifically, the dose-response curve for the full agonist is fit to the 
standard sigmoidal dose-response equation, while the dose-response curves for the partial 
agonist(s) are fit to the operational model. The Top and HillSlope parameters of the full 
agonist curve are used by the operational model as Effectmax and n, respectively, when 
fitting the partial agonist curve. 

GraphPad note: Prism 4 lets you share parameters across data sets, even when 
different data sets are fit to different equations. This feature is also available in 
some other computer programs, but not in all of them. 

Fitting partial agonist data to the operational model with Prism 
Follow these steps: 

1. Since concentrations are equally spaced on a log scale, enter data with X equal to 
the logarithm of the agonist concentration. Or transform your data to make X equal 
to the log of concentration. 

2. Enter the data for the full agonist into your first data set column (e.g., column A), 
and the data for the partial agonist in column B. 

3. Choose nonlinear regression, and enter a user-defined equation. The following 
example is specific for GraphPad Prism. If you use a different program, you will 
probably need to modify enter the model differently. 

operate= (((10^logKA)+(10^X))/(10^(logtau+X)))^n 
<A> Y = Basal + (Effectmax-Basal)/(1+10^(LogEC50-X)*n) 
<~A> Y = Basal + (Effectmax-Basal)/(1+10^operate) 

GraphPad note: The second line in the equation is preceded by <A> so it only 
applies to data set A. It is a standard sigmoidal dose-response curve. The third 
line is preceded by <~A> so it applies to all data sets except A. It is the 
operational model and can be used for data in columns B and onwards. This 
means that you can actually fit more than one partial agonist to the model at 
the same time, provided you have a full agonist curve in column A. 
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4. For Basal, n and Effectmax, choose to share the values for all data sets. Leave 
logtau, logKA, and logEC50 to be individually fitted. 

5. Consider the following recommendations for initial parameter values: 

Parameter Initial Values 

Effectmax  1 x maximum Y value for the full agonist curve in the absence of 
receptor depletion  

n  Set to 1 (initial value to be fit) 

Basal 1 x minimum Y value for the full agonist curve. (If there is no 
basal response in the absence of agonist, then set this value as a 
constant of zero, or omit it from the equation). 

logKA  1 x the X value corresponding to the response half way between 
the highest and lowest Y values for the partial agonist curve. 

logTau Set to 0.0 (intial value to be fit). Since logtau starts at zero, this 
means that the intial value for τ is 1.0. This value of τ corresponds 
to a dose-response curve that plateaus at half Effectmax , and 
usually results in successful convergence. 

logEC50 1 x the X value corresponding to the response half way between 
the highest and lowest Y values for the full agonist curve. 

 

Example of fitting partial agonist data to the operational model 
In this example, we wish to obtain affinity and efficacy estimates for the partial agonist, 
pilocarpine, by comparing its responses to those of the full agonist, oxotremorine-M, in 
Chinese hamster ovary cells transfected with the human M3 muscarinic acetylcholine 
receptor (A. Christopoulos, University of Melbourne, unpublished). The response being 
measured is the same as that for the previous example.  Note that the full agonist 
properties of oxotremorine-M were confirmed separately in receptor depletion 
experiments): 

Log[Agonist] Oxotremorine-M Pilocarpine 

-7.70 280  

-7.10 1222  

-6.49 4086  

-5.89 6893  

-5.29 7838  

-4.69 8062  

   

-6.70  253 

-6.17  502 

-5.65  1263 

-5.12  1879 

-4.60  2467 

-4.08  2818 
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 Oxotremorine-M Pilocarpine Shared 

Best-fit values    

Basal 128.6 128.6 128.6 

Emax 8076 8076 8076 

LogEC50 -6.487 (not used)  

n 1.290 1.290 1.290 

LogKA (not used) -5.446  

Logτ (not used) -0.2258  

Std. Error    

Basal 73.77 73.77 73.77 

Emax 74.36 74.36 74.36 

LogEC50 0.006110 (not used)  

n 0.06146 0.06146 0.06146 

LogKA (not used) 0.05676  

Logτ (not used) 0.01655  

95% CI    

Basal 0.0 to 309.1 0.0 to 309.1 0.0 to 309.1 

Emax 7894 to 8258 7894 to 8258 7894 to 8258 

LogEC50 -6.502 to -6.472 (not used)  

n 1.140 to 1.441 1.140 to 1.441 1.140 to 1.441 

LogKA (not used) -5.585 to -5.307  

Logτ (not used) -0.2663 to -0.1853  
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43. Dose-response curves in the presence of 
antagonists 

Competitive antagonists 
The term antagonist refers to any drug that will block, or partially block, a response. 
When investigating an antagonist, the first thing to check is whether the antagonism is 
surmountable by increasing the concentration of agonist. The next thing to ask is whether 
the antagonism is reversible.  After washing away antagonist, does agonist regain 
response? If an antagonist is surmountable and reversible, it is likely to be competitive 
(see next paragraph). Investigations of antagonists that are not surmountable or 
reversible are beyond the scope of this manual. 

A competitive antagonist binds reversibly to the same receptor as the agonist. A dose-
response curve performed in the presence of a fixed concentration of antagonist will be 
shifted to the right, with the same maximum response and the same shape. 

The dose ratio 
Gaddum (J. Physiol. (Lond.), 89, 7P-9P, 1936) derived the equation that describes 
receptor occupancy by agonist in the presence of a competitive antagonist. The agonist is 
drug A, its concentration is [A] and its dissociation constant is Ka. The antagonist is called 
drug B, so its concentration is [B] and dissociation constant is Kb. If the two drugs 
compete for the same receptors, fractional occupancy by agonist (ƒ) equals: 

a
b

[A]f = 
[B][A]+K 1+ K

  
 

 

In the above equation, the occupancy of agonist [A] is determined by its Ka. It can 
therefore be seen that the presence of a competitive antagonist multiplies the Ka value by a 
factor equal to 1+[B]/Kb. In other words, the only effect of a simple competitive antagonist 
on an agonist is to shift the occupancy of the agonist by this constant factor; it has no 
other effects on the properties of the agonist. This theoretical expectation forms the basis 
of all currently used methods for quantifying agonist-antagonist interactions, which 
therefore rely on the determination of agonist dose-response curve shifts in the presence 
of antagonists. 

Because a competitive antagonist does not alter the relationship between agonist 
occupancy and final response, it is unnecessary for you to know this relationship for the 
Gaddum equation above to be useful in analyzing dose-response curves. Thus, the 
equation can just as easily be written in terms of an agonist’s EC50 value in the dose-
response curve, rather than its Ka value in the occupancy curve.  You don't have to know 
what fraction of the receptors is occupied at the EC50 (and it doesn't have to be 50%). The 
key to the usefulness of the equation is that whatever the initial agonist occupancy, you'll 
get the same occupancy (and thus the same response) in the presence of antagonist when 
the agonist concentration is multiplied by 1+[B]/Kb.  Here is what the equation looks like 
when it is written in terms of the classic sigmoid dose-response curve relationship. 
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The graph below illustrates this relationship.  If concentration A of agonist gives a certain 
response in the absence of competitive antagonist, but concentration A' is needed to 
achieve the same response in the presence of a certain concentration of the antagonist, 
then A'/A represents the factor 1+[B]/Kb. The ratio, A′/A, is called the “dose ratio”, and is 
most conveniently (although not exclusively) determined using EC50 values. You'll get a 
different dose ratio if you use a different concentration of antagonist, but the shift will 
always reflect the constant (1+[B]/Kb) if the interaction is truly competitive.  Thus, if you 
know [B] and can determine the dose ratio, you should be able to derive a value for Kb. 
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The Schild slope factor 
In theory, the principal goal behind measuring agonist dose-response curve shifts in the 
presence of competitive antagonists is to use the relationship embodied in the dose ratio 
to obtain an estimate of the antagonist’s Kb value, i.e., its equilibrium dissociation 
constant.  In practice, this can only be accurately derived when you determine the effects 
of more than one concentration of antagonist on the dose-response curve of the agonist.  
If the interaction were truly competitive, then the shift of the agonist dose-response curve 
in the presence of antagonist will always correspond to 1+[B]/Kb, irrespective of the value 
of [B]. Using different concentrations of B, therefore, allows you to check if the 
relationship holds.  This procedure was first extensively developed by the pharmacologist, 
Heinz O. Schild (Arunlakshana and Schild, Br. J. Pharmac., 14, 48-57, 1959), and it is thus 
commonly associated with his name (i.e., “Schild analysis”). 

In his studies, Schild also asked the question: what happens if the relationship between 
antagonist concentration and agonist dose-response curve shift doesn’t follow the factor 
1+[B]/Kb?  For example, some non-competitive antagonists can shift agonist dose-
response curves to the right without changing agonist maximal response, minimal 
response and slope, but the degree of the shift doesn’t follow the competitive relationship 
of 1+ [B]/Kb; in some cases the shift is greater than expected, whereas in others it is less 
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than expected.  Alternatively, an antagonist may be competitive, but the tissue or cellular 
preparation in which it is tested may contain more than one subtype of receptor with 
equal affinity and responsiveness to the agonist, but different affinities for the antagonist.  
Again, this latter situation may not result in changes of agonist dose-response curve shape 
in the presence of antagonist, but it can often result in agonist curve shifts that do not 
follow 1+[B]/Kb.  In order to accommodate agonist curve shifts in the presence of 
antagonists that were either greater than or less than expected for simple competition for 
a single receptor, Schild modified Gaddum’s equation by introducing a slope factor, 
commonly referred to as the “Schild slope”: 

S

a

[A]f = 
[B][A]+K 1+ K

 
  

 

In this equation, the antagonist term, [B], is now raised to the power S, where S denotes 
the Schild slope factor.  Thus, if the antagonist shifts the agonist dose-response curve to 
the right in a parallel fashion, but greater than that predicted for simple competition, then 
the value of S will be greater than 1.  In contrast, smaller-than expected agonist curve 
shifts can be accommodated by a value of S less than 1.  Notice that we have also changed 
the “Kb” parameter from the previous equation to a “K” in the above equation.  This is 
because a Kb value, i.e., an antagonist equilibrium dissociation constant, cannot be 
derived from the above equation if S does not equal 1, so by convention, we shouldn’t call 
it the Kb in the above model.  In practice, the K parameter should actually be estimated as 
a negative logarithm, so the equation can be re-written as follows: 

S

-pKa

[A]f = 
[B][A]+K 1+ 10

 
  

 

where pK is defined as the negative logarithm of K. Hence, the parameter, pK, represents 
a simple fitting constant that has no mechanistic meaning except when S=1, in which case 
pK = pKb. 

In Schild analysis, therefore, the determination of agonist dose-response curve shifts in 
the presence of different concentrations of antagonist allows you to first assess the 
conformity of the data to a model of simple competition, by determining whether the 
Schild slope is significantly different from 1 or not, and then quantify the antagonism (if 
S=1) by determining the pKb value (the dissociation constant of the antagonist binding). 

pKb vs pA2 

By convention, a pKb value can only be derived when S =1. In this circumstance, the data 
are deemed to be consistent with a simple mechanism of one-to-one competition between 
agonist and antagonist for the receptor, and the pKb is thus a mechanistic estimate of the 
negative logarithm of the antagonist’s equilibrium dissociation constant.  In practice, this 
is done by first fitting the Gaddum/Schild model to experimental data in order to obtain 
the estimate of S, and then performing a statistical test to determine whether this estimate 
of S is different from a value of 1.  If S is not significantly different from 1, then the 
equation is re-fitted to the data with S fixed as a constant value of 1, and the resulting 
estimate of pK is the pKb value. 

What happens if S is significantly different from 1?  In this case, the resulting estimate of 
pK is not the pKb, and cannot be quoted as such. It is not the negative logarithm of the 
dissociation constant of antagonist binding. You will have to conclude that your 
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experimental data are not consistent with a model of simple competition between agonist 
and antagonist.  Nevertheless, you may still wish to quote an empirical estimate of the 
potency of your antagonist for the sake of comparison with other drugs.  By convention, 
the most common estimate of antagonist potency that is independent of any particular 
mechanism is the “pA2 value”.  The pA2 is defined as the negative logarithm of the 
concentration of antagonist required to cause a 2-fold rightward shift of the agonist dose-
response curve.  It can readily be seen that for a competitive antagonist, pA2 = pKb, 
because a Kb concentration of a competitive antagonist will shift an agonist’s curve by a 
factor of two (1+[B]/Kb = 2 when [B]=Kb).  For a non-competitive antagonist, a pA2 value 
is not a pKb, but simply a measure of the potency of the antagonist to shift the curve of an 
agonist to the right by a factor of two.  Historically, the pA2 was determined from the x-
intercept of the Schild plot (see page 285), when S was not fixed to a value of 1, but it can 
easily be calculated from the following relationship between Gaddum/Schild model 
parameters:  

2
pKpA =
S

 

Thus, even if an antagonist is not competitive, a pA2 value can be quoted as an empirical 
estimate of the antagonist’s potency. 

An alternative to the classic Schild slope factor 

Although the Gaddum/Schild equation in its original form (see above) is still the most 
commonly used model for fitting agonist-antagonist dose-response data, we and others 
have noted that the two most relevant parameters of interest, the slope, S, and the pK, are 
highly correlated with one another. That is, when the nonlinear regression algorithm 
changes one parameter while trying to find its best-fit value, the other parameter also 
changes to try and compensate.  Parameters are always somewhat correlated, but these 
two are especially correlated, making the results less adequate.  We need to find a way to 
minimize this problem, while still allowing for the derivation of appropriate estimates of 
the Schild slope and pK.  One modification of the Gaddum/Schild equation that 
overcomes this problem is shown below (see D. R. Waud et al., Life Sci., 22, 1275-1286, 
1978; Lazareno and Birdsall, Br. J. Pharmac., 109, 1110-1119, 1993): 

( )S

-pKa

[A]f=
[B][A]+K 1+ 10

 
 
 

 

It can be seen that the difference between this modified equation and the original 
Gaddum/Schild equation is that the entire [B]/K term is now raised to the power S, rather 
than just the [B] term in the original equation. 

What effect does this have on the model and its ability to fit agonist-antagonist interaction 
data? We have performed many simulations to investigate the properties of the modified 
Gaddum/Schild model, and have found the following results.  First, the value of S is the 
same if we use the modified equation compared to the original form of the equation, so 
the S parameter can still be quoted as an estimate of the Schild slope.  Second, and most 
importantly, the parameters S and pK are far less correlated in the modified equation.  
Third, if the value of S is significantly different from 1 in the modified equation, then the 
estimate of the pK is not valid as an estimate of the antagonist’s pKb, but it is a valid 
estimate of the pA2.  In contrast, if the original form of the Gaddum/Schild equation were 
to be used, then the estimate of pK when the value of S is not 1 is meaningless; it cannot 
be used as an estimate of the pA2 unless it was first divided by the value of S (see above). 
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Obviously, it is far better to use a model that allows separate estimates of S and pA2 to be 
obtained directly from the curve-fitting process, rather than having to indirectly calculate 
a pA2 value from two previously estimated parameters that are each associated with their 
own standard errors.  Based on these findings, therefore, we can re-write the modified 
Gaddum/Schild model as follows: 

( )2

S

-pAa

[A]f=
[B][A]+K 1+ 10

 
 
 

 

The remaining sections of this chapter describe analyses based on this modified 
Gaddum/Schild model of agonist-antagonist interactions. 

Using global fitting to fit a family of dose-response curves to the 
competitive interaction model 
The most rigorous method for quantifying agonist-antagonist interactions is to globally fit 
the modified Gaddum/Schild model to all the agonist dose-response curves that were 
constructed in the absence or presence of different concentrations of antagonist.  For this 
approach to work, the nonlinear regression program must be able perform global fitting 
(i.e., share model parameters between all the data sets). 

If we combine the standard sigmoid dose-response equation with the modified 
Gaddum/Schild equation describe above, we obtain the following equation:  

( )

( )50
2

HillSlopeS
LogEC

-pA

Top-Bottom
Response=Bottom+

[B]10 1+ 10
1+

[A]

  
  

  
 
  
 

 

This equation defines a dose-response curve to an agonist, A, in the presence of increasing 
concentrations of antagonist, B.  When [B]=0, the equation becomes the standard sigmoid 
dose-response model described elsewhere in this book.  Using a program that allows 
global parameter sharing across multiple data sets, you can fit this equation directly to all 
your dose-response curves for a particular agonist determined in the absence or presence 
of different concentrations of antagonist by choosing to share the values of each 
parameter across all the data sets.  However, parameter-sharing alone won’t work because 
you are using an equation with two independent variables, agonist concentration [A] and 
antagonist concentration, [B]. You will also need to use a program that allows you have 
parameter-sharing feature in conjunction with two independent variables.  

GraphPad note: You can use two independent variables in Prism by assigning 
one of the variables to be in your X column, and the other variable as a Column 
title for its respective data sets. Other programs have different rules for multiple 
independent variables, or don’t allow you to use them at all. 

The worked example below illustrates data for the inhibition of acetylcholine-mediated 
[3H]phosphoinositide hydrolysis (d.p.m.) by the antagonist, N-methylscopolamine, in 
Chinese hamster ovary cells stably transfected with the human M1 muscarinic receptor (A. 
Christopoulos, University of Melbourne, unpublished).  Note that the concentrations of N-



 

 43. Dose-response curves in the presence of antagonists 281 

methylscopolamine (M) that were used in the experiment were entered as the column 
titles for the appropriate acetylcholine dose-response data set. 

Log[Acetylcholine] 0 3e-10 1e-9 3e-9 1e-8 

-8.00 688 162 310   

-7.00 3306 478 3209   

-6.52 12029 4663 564   

-6.00 29865 15009 9769 1501 462 

-5.52 35802 31041 25158 7833 1531 

-5.00 38300 36406 29282 23995 9463 

-4.52    35642 22583 

-4.00 36291 34412 36245 40341 31046 

-3.52    35573 33407 

 

The following syntax can be used to specify the model: 

EC50=10^LogEC50 
Antag=1+(B/(10^(-1*pA2)))^SchildSlope 
LogEC=Log(EC50*Antag) 
Y=Bottom + (Top-Bottom)/(1+10^((LogEC-X)*HillSlope)) 

 

Here are some comments about the variables in the equation.  

Variable Comments  

X The logarithm of agonist concentration in molar. The independent variable. 

Y The response (the dependent variable). In this example, the response is 
measured in dpm, but it could be in almost any units. 

B The concentration of antagonist in molar. In Prism, set this to be a data set 
constant, so its value comes from the title of each column. For any given data 
set (column) this is a constant. But its value varies from column to column, so 
you can also think of this as being a second independent variable. 

Bottom The bottom plateau of the dose-response curves, in the same units as Y. In 
most cases, this is a parameter to fit, and you can set its initial value to the  
minimum Y value for the agonist curves. Set this parameter to be shared, so 
you get one best-fit value for the family of curves, and not one value for each 
curve. If there is no basal response in the absence of agonist, then constrain 
this value as to be  a constant equal to zero, or omit it from the equation. 

Top The top plateau of the dose-response curves, in the same units as Y. This is a 
parameter to fit, and you can set its initial value to the maximum Y value for 
the agonist curves. Set this parameter to be shared, so you get one best-fit value 
for the family of curves, and not one value for each curve. 

LogEC50 The logarithm of the EC50 of the agonist alone, in log molar. This is a 
parameter to fit. Set is initial value to the X value corresponding to the 
response half way between the highest and lowest Y values for the full agonist 
curve. Set this parameter to be shared, so you get one best-fit value for the 
family of curves, and not one value for each curve. Its value only makes sense 
for the control curve, but it mathematically enters the equation for each curve 
so you must share its value.  
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Variable Comments  

HillSlope The slope of the agonist curve. Unitless. Set its initial value to 1.0. In some 
cases, you might want to constrain this to a constant value of 1.0. If you don’t 
hold it constant, you must set this parameter to be shared among all your data 
sets. You want a single value of the Hill slope for the experiment.  

SchildSlope The Schild slope, which will be close to 1.0 if the drug is a competitive 
antagonist. Set its initial value to 1.0. In some cases, you might want to 
constrain this to a constant value of 1.0. If you don’t hold it constant, you must 
set this parameter to be shared among all your data sets. You want a single 
value of the Schild slope for the experiment, not one for each concentration of 
antagonist. 

pA2 The negative logarithm of the concentration (in molar) of antagonist that shifts 
the agonist EC50 by a factor of 2. This is a parameter to fit (the whole point of 
this analysis). Enter a rough estimate of the negative logarithm of the 
antagonist’s Kb, based on the minimum concentration of antagonist that you 
observed experimentally to cause a discernible shift in the control agonist 
dose-response curve. It is essential that you set this parameter to be shared 
among all your data sets. You want a single value of pA2 for the experiment, 
not one for each concentration of antagonist.  

 

Note that EC50, LogeC, and Antag are intermediate variables used to write the model, and 
are not parameters that are to be fit. 

Ideally, the most appropriate approach for analyzing the entire family of dose-response 
curves is to fit them to two versions of the above equation, one where the SchildSlope 
parameter is set as a constant equal to 1, and the other where it is a shared value for all 
data sets, and then compare the two different forms of the equation using the F-test.  If 
the simpler model (Schild slope=1) is the better fit, then the estimate of pA2 is in fact the 
pKb, and may be quoted as such.  If the equation where the Schild slope does not equal 1 is 
the better fit, then the estimate of pA2 is not the pKb.  

 Shown below are the results of this analysis for the interaction between acetylcholine and 
N-methylscopolamine at the M1 muscarinic receptor, based on the table above. The 
equation where the Schild slope is allowed to vary does not fit the data significantly better 
than the model where the Schild slope is set to its conventional value 1.0. So we fixed the 
Schild slope to 1.0 in the results below. 

Comparison of Fits  

Null hypothesis SCHILDSLOPE = 1.0 

Alternative hypothesis SCHILDSLOPE unconstrained 

P value 0.5594 

Conclusion (alpha = 0.05) Do not reject null hypothesis 

Preferred model SCHILDSLOPE = 1.0 

F (DFn, DFd) 0.3494 (1,27) 
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Parameter Best-fit value 95% CI 

LOGEC50 -6.366 -6.470 to -6.261 

PA2 9.678 9.552 to 9.803 

BOTTOM 362.9 -1194 to 1920 

TOP 36500 35050 to 37951 

HILLSLOPE 1.559 1.252 to 1.867 
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The whole point of the analysis is to find the Kb of the antagonist. Since the data are 
consistent with a Schild slope of 1.0 (and we fixed Schild slope to 1.0 in the results 
shown), the PA2 value can be interpreted as the pKb. Therefore the Kb value equals 10-pkb, 
which equals 2.09x10-10M, or 0.209 nM. We can also transform each end of the 
confidence interval of the PA2, to obtain the 95% confidence interval for the pKb which 
ranges from 0.157 nM to 0.281 nM. 

Fitting agonist EC50 values to the competitive interaction model 
Although the procedure described in the previous section is the preferred method for 
analyzing agonist-antagonist interaction data, there are some situations where you are not 
able to use this method, or simply don’t need the level of rigor associated with it.  For 
instance, you may be doing experiments where only a few agonist concentrations are 
tested, such that only the linear portion of the sigmoid dose-response curve (on a 
logarithmic scale) is determined in the absence and presence of each antagonist 
concentration.  Alternatively, you may be using a nonlinear regression program that 
doesn’t allow you to use global parameter-sharing and/or two independent variables.  In 
these instances, you can’t fit the complete sigmoid model presented above, but you can 
still determine equieffective agonist concentrations, perhaps as EC50 values.  Lew and 
Angus (Trends Pharmacol. Sci., 16:328-337, 1995) have presented a simple method for 
analyzing agonist-antagonist interactions using nonlinear regression of agonist EC50 
values obtained in the absence or presence of antagonist. 

Start with the Gaddum equation for occupancy as a function of agonist and antagonist 
concentrations: 



 

284 I. Fitting dose-response curves 

a
b

[A]f=
[B][A]+K 1+ K

 
  

 

Simple algebra expresses the equation this way: 

a b

b

1f=
K [B]+K1+
K [A]

 
 
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Thus you can obtain any particular occupancy ƒ, with any concentration of antagonist [B] 
so long as you adjust A to keep the quantity in the parentheses constant (C).  

b[B]+K =C
[A]

 

Rearrange to show how you must change the agonist concentration to have the same 
response in the presence of an antagonist. 

b[B]+K =[A]
C

 

The EC50 is the concentration needed to obtain 50% of the maximal response. You don't 
know the fraction of receptors occupied at that concentration of agonist, but you can 
assume that the same fractional occupancy by agonist leads to the same response 
regardless of the presence of antagonist. So you can express the equation above to define 
EC50 as a function of the antagonist concentration [B]. 

b
50

[B]+KEC =
C

 

You determined the EC50 at several concentrations of antagonist (including 0), so you 
could fit this equation to your data to determine a best-fit value of Kb (and C, which you 
don't really care about). But it is better to write the equation in terms of the logarithm of 
EC50, because the uncertainty is more symmetrical on a log scale. See "Why you should fit 
the logEC50 rather than EC50" on page 263.  By tradition, we use the negative logarithm of 
EC50, called the pEC50.  For similar reasons, you want to determine the best-fit value of log 
Kb (logarithm of the dissociation constant of the antagonist) rather than Kb itself.  

( )b-pK
50pEC =-log [B]+10 -log(C)  

Define Y to be the pEC50, X to be the antagonist concentration [B], and a new constant P 
to be log C. Now you have an equation you can use to fit data: 

( )b-pKY=-log X+10 -P  

Determining the Kb using nonlinear regression of agonist pEC50 values 

1. Determine the EC50 of the antagonist in the presence of several concentrations of 
antagonist, including zero concentration. Enter these values into a data table as 
follows: Into the X column, enter the antagonist concentrations in molar. Into the 
Y column, enter the negative logarithm of the EC50 values. 
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2. Use nonlinear regression to fit this equation.  

Y=-1*log(X +(10^(-1*pKb)))-P 

Note: This equation is written so Y is the pEC50. It won’t work if you enter 
EC50 or logEC50 values instead.  

Dealing with Schild slopes that do not equal 1 

Here is how the equation above can be re-cast to find the Schild slope and the pA2 using 
nonlinear regression analysis of EC50 values.  The equation is again based on the modified 
Gaddum/Schild model presented earlier in this chapter: 

( )2-pA ×SS
50pEC =-log [B] +10 -log(c)  

Note that the parameter pKb in the original Lew and Angus equation has been replaced 
with pA2 in the above equation. This is because if the value for S is significantly different 
from 1, then the antagonist fitting parameter is not the pKb, but will be the pA2. 

Enter the following user-defined equation: 

K=-1*pA2 
Y=-1*log(X^S+(10^(K*S)))-P 

 

When performing this analysis, it is a good idea to fit the data to both equations at the 
same time and use the F-test to decide which one is the more appropriate equation.  If the 
simpler equation is the better equation, then the pKb estimate may be quoted.  Otherwise, 
you must conclude that your data are not consistent with a model of simple competition; 
you can still quote the pA2, however, as an empirical estimate of antagonist potency. 

Parameter Initial Values 

pA2 Enter a rough estimate of the negative logarithm of the antagonist’s Kb, 

based on the minimum concentration of antagonist that you observed 
experimentally to cause a discernible shift in the control agonist dose-
response curve. 

S  Set to 1. 

P An initial value of P = 0 usually results in a succesful convergence. 

 

The Schild plot 
The oldest method for analyzing agonist-antagonist interactions from functional 
experiments is the original linear regression method developed by Schild.  This method 
relies explicitly on the determination of agonist dose ratios in the absence and presence of 
antagonist.  If you perform experiments with several concentrations of antagonist, you 
can create a graph with log(Antagonist) on the X-axis and log(Dose ratio –1) on the Y-
axis; this is commonly referred to as the Schild Plot. If the antagonist is competitive, you 
expect a slope of 1.0 and an X-intercept of log Kb for the antagonist. 
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In comparison to the nonlinear regression methods outlined above, the linear regression 
method of the Schild plot is potentially flawed. The problem is that the EC50 of the control 
agonist dose-response curve is used to compute dose ratios for all other curves. Any error 
in that control value shows up in all the data points. The Schild plot was developed in an 
era when nonlinear regression was unavailable, so it was necessary to transform data to a 
linear form. This is no longer an advantage, and Schild plots can be thought of in the same 
category as Scatchard plots. That is, they are useful for graphical representations of 
agonist-antagonist interaction data, but for analytical purposes the nonlinear regression 
methods outlined above are superior. 

Antagonist inhibition curves 
There are often instances where complete agonist dose-response curves in the absence or 
presence of antagonist cannot be readily determined to fully define the effects of the 
antagonist over more than one or two orders of magnitude of antagonist concentrations.  
For example, there may be solubility problems with the agonist, or it may only be 
available in very small quantities such that large concentrations cannot be prepared, or it 
may rapidly desensitize the preparation when used at high, but not low, concentrations.  
These practical difficulties with the agonist, in turn, limit the investigator’s ability to 
accurately discriminate whether the antagonist is competitive or non-competitive, 
because non-competitive antagonists may appear competitive when tested at low 
concentrations, but reveal their non-competitive nature when tested at high 
concentrations. 

One approach to overcoming these limitations that has become increasingly popular is to 
test the effects of increasing, graded, concentrations of antagonist on a single, fixed, 
concentration of agonist.  This kind of experimental design is referred to as the 
“antagonist inhibition curve” design, and can readily test the effects of antagonist 
concentrations that span many orders of magnitude.  This method is particularly 
widespread in the measurement of biochemical responses using cell-based or tissue 
extract-based assays.  Shown below is an example of an agonist dose-response curve as 
well as the corresponding antagonist inhibition curve determined in the presence of a 
fixed agonist concentration (3 x 10-8 M) that produces the response denoted by the dotted 
line. 
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It can be seen that the shape of the antagonist inhibition curve appears similar to that of 
an antagonist competition binding curve obtained from a standard radioligand binding 
assay.  Indeed, the concentration of antagonist that reduces the initial level of agonist 
response by 50% is usually called the IC50, just like the concentration of antagonist that 
reduces specific radioligand binding by 50% in a binding assay.  However, this is where 
the similarities end.  Although it is relatively straightforward to obtain the LogKd of a 
competitive antagonist from a competition binding assay using the IC50 and the Cheng-
Prusoff equation, you generally cannot obtain an equivalent estimate of LogKb from a 
functional antagonist inhibition curve using the same method (see Leff and Dougall, 
Trends Pharmacol. Sci., 14, 110-112, 1993).  This is because the shape of the antagonist 
inhibition curve in a functional assay is dependent on the shape of the agonist dose-
response curve.  If an agonist produces steep dose-response curves in a given tissue or cell 
line, then the resulting antagonist inhibition curve will be very different from if the 
agonist produces shallow curves, or curves with a slope of 1. 

In order to properly analyze functional antagonist inhibition curve experiments, you need 
to include information about the control agonist dose-response curve in the analysis.  The 
appropriate experimental design requires that you construct a control agonist curve and 
the antagonist inhibition curve in the same tissue or cell line.  You can then analyze your 
data as follows: 

1. Enter your agonist dose-response data into the first column of a new Data table. 

2. Enter your antagonist inhibition curve data into the second column of your Data 
table. 

3. Analyze your data according to the following user-defined equation. The syntax is 
specific for GraphPad Prism, and will need to be slightly modified if you are using a 
different program: 
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Control=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) 
Antag=(10^LogEC50)*(1+((10^X)/(10^(-1*pA2)))^SchildSlope) 
WithAntag=Bottom+(Top-Bottom)/(1+(Antag/FixedAg)^HillSlope) 
<A>Y=Control 
<B>Y=WithAntag 

GraphPad note: The fourth line in the equation is preceded by <A> so it only 
applies to data set A. It is a standard sigmoidal dose-response curve. The last 
line is preceded by <B> so it applies to data set B. In this equation, therefore, it 
matters which data set you enter into Column A, and which data set is entered 
into Column B, so make sure that the control agonist dose-response data go 
into the first column and the antagonist inhibition curve data go into the second 
column. 

Globally share the values of all the parameters across all data sets, except for the 
parameter, FixedAg, which represents the initial fixed concentration of agonist used 
in the determination of the antagonist inhibition curve.  Choose to set FixedAg as a 
constant value equal to the fixed agonist concentration (Molar) used in your 
antagonist inhibition curve assay; for the above example, this value would be set as 
3e-8.  The nonlinear regression algorithm will then work its way through the 
equation.  The desired parameters determined by the algorithm will then reflect the 
best-fit values that describe both agonist and antagonist curves.  Because the Schild 
slope=1 in our example, the estimate of pA2 is the pKb.  As with the previous 
examples, however, you should also fit this model with the Schild slope fixed to 1 and 
compare it using the F test with the model where the Schild slope is shared (but 
allowed to vary) by both data sets. 

Shown below is the same example data set from above fitted to the model, as well as 
some of the output from the GraphPad Prism Results page. 
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 Control With Antagonist Shared 

BOTTOM 2.544 2.544 2.544 

TOP 101.9 101.9 101.9 

LOGEC50 -8.078 -8.078 -8.078 

HILLSLOPE 0.8206 0.8206 0.8206 

PA2 (not used) 8.135  

SCHILDSLOPE (not used) 1.00  

FIXEDAG (not used) 3.0000e-008  

 

An important consideration with fitting antagonist inhibition data is with respect to your 
initial parameter values.  Because this is a relatively complicated model, it is probably best 
to enter the initial values for each data set manually, based on reasonable first guesses.  
For example, the HillSlope and SchildSlope values can each be initially set to 1.  The 
LogEC50 and pA2 parameters can be assigned the X values corresponding to the 
approximate midpoints of the control agonist curve and the antagonist inhibition curve, 
respectively.  Note that the Top and Bottom parameters must be assigned according to the 
basal and maximal responses, respectively, of the control agonist dose-response curve. 
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44. Complex dose-response curves 

Asymmetric dose-response curves 
The standard (Hill) sigmoidal dose-response model is based on the assumption that the 
log(dose) vs. response curve is symmetrical around its midpoint.  

But some dose-response curves are not symmetrical.  In a recent study, Van der Graaf and 
Schoemaker (J. Pharmacol. Toxicol. Meth., 41, 107-115, 1999) showed that the application 
of the Hill equation to asymmetric dose-response data can lead to quite erroneous 
estimates of drug potency (EC50). They suggested an alternative model, known as the 
Richards equation, which could provide a more adequate fit to asymmetric dose-response 
data. Here is the Richards model shown both as an equation and as computer code. 

( )
( )b

SLogX -X HillSlope

Top-Bottom
Response=Bottom+

1+10 
 

 

Numerator = Top - Bottom 
Denominator=(1+10^((LogXb-X)*HillSlope))^S 
Y=Basal+Numerator/Denominator 

 

The Hill equation (variable slope sigmoidal dose-response curve) is sometimes called the 
four parameter logistic equation. It fits the bottom and top of the curve, the EC50 and the 
slope factor (Hill slope). The Richards equation adds an additional parameter, S, which 
quantifies the asymmetry.  Accordingly, this equation is sometimes referred to as a five-
parameter logistic equation. 

If S=1, the Richards equation is identical to the Hill equation (the four-parameter logistic 
equation) and the curve is symmetrical.  However, if S does not equal 1.0, then the curve is 
asymmetric.  The figure below shows a series of curves with various values of the 
symmetry parameter, S.  Only the value of S differs between the three curves. 
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The parameter LogXb, is not equivalent to the LogEC50. In the graph above, all three 
curves have LogXb = -6 yet the three curves have very different EC50s. If fit your dose-
response data to the asymmetric Richards model, you can compute the logEC50 using this 
equation: 

( )1/S
50 b

1LogEC =LogX - Log 2 -1
HillSlope

 
⋅ 

 
 

You can also rewrite the model, as shown below, to fit the logEC50 directly (instead of 
fitting LogXb.  

LogXb = LogEC50 + (1/HillSlope)*Log((2^(1/S))-1) 
Numerator = Top - Bottom 
Denominator = (1+10^((LogXb-X)*HillSlope))^S 
Y = Bottom + (Numerator/Denominator) 

 

Unless the curve is symmetrical (S=1), the logEC50 is not the same as the inflection point 
(LogXi) which equals: 

i b
1LogX =LogX + Log(S)

HillSlope
 

⋅ 
 

 

The Hill (four-parameter variable slope dose=response curve) equation is a simpler case 
of the Richards (five-parameter asymmetric dose-response curve) equation. As discussed 
previously in Chapter 21, this means that the two models are nested. You can fit data to 
both models and then compare the two fits with the extra sum-of-squares F test (or the 
AICc approach). Use the results of model comparison to decide whether the data are better 
described by a symmetric or an asymmetric model.  

When you fit the Richards five-parameter model to your data, you’ll probably find that the 
standard errors are large (so the confidence intervals are wide).  This is because the Hill 
slope and asymmetry parameter (S) in the Richards equation tend to be highly correlated 
with one another.  You’ll needs lots of data (with little scatter) to reliably fit both the Hill 
slope and the asymmetry factor. It is common to fix the Hill slope to 1.0 when fitting the 
Richards equation. 

For more information on asymmetrical dose-response curves, see the review by Girlado et 
al. (Pharmacol. Ther., 95, 21-45, 2002). 

Bell-shaped dose-response curves 
When plotted on a logarithmic axis, dose-response curves usually have a sigmoidal shape, 
as discussed in the previous chapter.  However, some drugs may cause an inhibitory 
response at low concentrations, and a stimulatory response at high concentrations, or 
vice-versa.  The net result is a bell-shaped dose-response curve. 

Bell-shaped dose-response curves have been observed experimentally, for example, for 
many receptors that couple to both stimulation and inhibition of the enzyme, adenylyl 
cyclase (see S. Tucek et al., Trends Pharmacol. Sci., 23, 171-176, 2002). 
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Tip: Unless you know that the reason for a non-standard dose-response curve 
shape in your experiment is due to an experimental error, avoid excluding data 
points simply to make a non-sigmoid curve fit a sigmoid model.  Instead, it is 
relatively easy to extend the standard model of dose-response curves to 
accommodate different nonlinear and saturating curve shapes. 

Combining two sigmoid equations 

The following equation combines two sigmoid dose-response relationships to describe a 
bell-shaped dose-response curve. In the figure below, the curve begins at Plateau1, turns 
over at the Dip and then approaches Plateau2.  The two different values for the LogEC50 
and nH parameters denote the midpoint potency and the slope factors, respectively, of 
each phase of the curve.  The variable, [A], denotes the agonist concentration. 

50 H 50 H

1 2
(LogEC 1-Log[A]) n 1 (Log[A]-LogEC 2) n 2

(Plateau -Dip) (Plateau -Dip)Y=Dip+ +
1+10 1+10⋅ ⋅  
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Here is one way the equation can be typed directly into a computer program:  

Span1=Plateau1-Dip 
Span2=Plateau2-Dip 
Section1=Span1/(1+10^((LogEC50_1-X)*nH1)) 
Section2=Span2/(1+10^((X-LogEC50_2)*nH2)) 
Y=Dip+Section1+Section2 

 

Because this model is more complicated than the standard monotonic sigmoid dose-
response curve, there are a number of practical considerations when it comes to using the 
model to fit data.  First, it is important that there are sufficient data points to adequately 
define both phases of the response; otherwise the model will fail to converge because it 
will have too many parameters relative to the number of points.  Second, it can be seen 
from the graph that there are two general types of bell-shaped relationships possible, one 
where the dip occurs at the highest level of response, and one where the dip occurs at the 
lowest level of response.  In order for the model to converge successfully, you need to be 
careful with your choice of initial parameter values.  Of particular importance is the sign 
of the slope parameter, nH.  As can be seen in the graph, the slope factors are positive for 
one kind of curve, but negative for the other. 
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Using the Gaussian distribution equation 

Sometimes, dose-response curves exhibit a dip after reaching a maximal response level, 
but the response after this dip is not sufficiently defined for the investigator to conclude 
whether the curve is truly bell-shaped or not.  This is often observed, for instance, when 
agonists cause desensitization of the tissue at the highest concentrations of drug used.  
Another common cause of these kinds of curve shapes is insufficient drug to fully define 
the entire dose-response relationship, perhaps due to solubility issues.   

When the data don’t follow a standard sigmoid shape, you should fit the data to a model 
that more closely approximates the shape of the curve yet still gives you measures of 
agonist potency, maximal response range and slope factor.  

Tip: If your dose-response data shows this kind of dip, beware of fitting your 
data to the standard sigmoid dose-response curve. The best-fit values for the 
maximal response and the EC50 will not be very accurate. 

One possibility for fitting these kinds of data is combining two sigmoidal shape curves, as 
described above. However, this approach is only useful when you have sufficient data 
points to fully define both phases of a curve.   

An alternative is to fit the data to the Gaussian distribution. While this distribution is 
rarely used to fit dose-response data, the figure below shows that a portion of the 
Gaussian distribution (solid) looks like a dose-response curve with a dip at the top. This is 
not a mechanistic model, but is a way to empirically fit your data and get parameters that 
you can compare between treatments. 

log(Dose)
 

This Gaussian distribution has been used successfully to fit dose-response data (see A. 
Christopoulos et al., J. Pharmacol. Exp. Ther., 298, 1260-1268, 2001). Shown below is 
how this equation can be rewritten to define a bell-shaped dose-response curve. 

2Log[A]10 -midA
slope-E=Basal+Range×e

 
 
    

where 

50midA=LogEC +slope -ln(0.5)  

In the original formulation of the Gaussian equation, the “midA” parameter would 
normally define the mean of the distribution, i.e., the x-axis value corresponding to the 
midpoint of the distribution – the peak.  For fitting dose-response curves, this is not 
useful because the x-axis value we want is the logarithm of drug causing the response 
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halfway between the Basal and the top of the dip, i.e., the LogEC50.  Thus, in the revised 
equation shown above, midA is corrected to allow for the estimation of the LogEC50. 

The reparameterized Gaussian dose-response equation defines a bell-shaped dose-
response curve in terms of only four parameters, the Basal response, the LogEC50, the 
maximal response Range (which is the maximal response range from Basal to the dip in 
the curve) and the Slope. Because the Gaussian equation requires fewer parameters than 
the bell-shaped equation described at the start of this section (4 vs. 7), it can be used to fit 
dose-response curves with fewer data points.   

Here is how you type the equation into a computer program. 

midA=LogEC50+Slope*SQRT(-ln(0.5)) 
Y=Basal+(Range*exp(-1*((X-midA)/Slope)^2)) 

 

The figure below shows a curve fit based on the modified Gaussian equation.  The dotted 
line shows the fit of the standard sigmoid equation to the same data set. Neither the EC50, 
nor the maximum response, would be correct if the data were fit to the standard sigmoidal 
dose response curve.  
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Troubleshooting tip: What does it mean if the curve fits the data well, but the 
LogEC50 is obviously way too high (beyond the range of your data)? Because of 
its symmetric nature, the Gaussian equation actually has two LogEC50 values, a 
LogEC50 for responses to the left of the dip, and a higher LogEC50 for responses 
to the right of the dip. If the best-fit LogEC50 is too high, your program probably 
fit the wrong one. Enter a smaller initial estimate of the LogEC50, and the 
program will fit the LogEC50 for the part of the curve where you actually have 
data. 

What are the advantages and disadvantages of using this equation to fit bell-shaped data 
compared to the previous equation (combining two sigmoidal curves)?  The main 
advantage of using the Gaussian is that you are dealing with a model containing fewer 
parameters, and thus increase your chances of obtaining a satisfactory fit with fewer data 
points.  The main disadvantage of the model is in its symmetric nature.  In the Gaussian, 
the “down” phase of the bell-shape is a mirror image of the “up” phase of the bell-shape.  
If you have a complete data set that fully defines both phases of the bell-shape, then the 
Gaussian will only provide a satisfactory fit if the two phases are practically mirror 
images, which is not that common.  In this latter instance, you are better off using the 
more complicated bell-shaped model described earlier, which accommodates different 
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slopes and plateaus for the two different phases.  The Gaussian is best reserved for those 
data sets where one of the phases of the curve is well-defined, but the other is not, as 
shown in the figure above. 

Note that the slope parameter is not equivalent to the Hill slope (nH) found in the sigmoid 
dose-response equations. Although the slope parameter of the Gaussian allows for curves 
of varying degrees of steepness, its actual value changes opposite to that of the Hill slope 
in a sigmoid fit.  That is, for steep curves, the value of the Gaussian slope gets smaller, 
whereas for shallow curves it gets larger, in contrast to the Hill slope.  As with the other 
bell-shaped equation, therefore, you need to be careful when entering the initial values for 
the Gaussian equation. 

Biphasic dose-response curves 
Another common deviation from the standard monotonic sigmoid shape is the biphasic 
sigmoid shape.  An example of an equation for a biphasic dose-response curve is shown 
below. 

50 H 50 H(LogEC 1-Log[A]) n 1 (LogEC 2-Log[A]) n 2
(Top-Bottom) Frac (Top-Bottom) (1-Frac)Y=Bottom+ +
1+10 1+10⋅ ⋅

⋅ ⋅
 

Here Top and Bottom are the maximal and minimal responses, respectively, LogEC501 
and LogEC502 are the midpoint potency parameters for the two different phases, 
respectively, nH1 and nH2 are their corresponding Hill slopes, and Frac is the fraction of 
the curve comprising the more potent phase.  The equation syntax is shown below, as is a 
figure illustrating a fit of the equation to a simulated (with random error) data set. 

Span=Top-Bottom 
Section1=Span*Frac/(1+10^((LogEC50_1-X)*nH1)) 
Section2=Span* (1-Frac)/(1+10^((LogEC50_2-X)*nH2)) 
Y=Bottom + Section1 +Section2 
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As with the preceding equations, successful curve-fitting with this model relies on the 
number of data points, the quality of the data and your initial values.  Our experience with 
this model is that it is especially sensitive to changes in the slope parameters, which often 
turn out to be significantly different from 1.  In the example above, for instance, the value 
for nH2 (for the less potent, right-most phase) was greater than 2, and the model had 
difficulty converging unless an estimate greater than 1 was entered as the initial value for 
that parameter.  For the Frac parameter, you can use the Constraints feature in the 
nonlinear regression dialog box to constrain this value to always be between 0 and 1. 
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J. Fitting curves with GraphPad Prism 

45. Nonlinear regression with Prism 

Using Prism to fit a curve 
To perform nonlinear regression with Prism, follow these steps. Later chapters explain 
your options in detail. 

1. Enter or import your data. It is essential that the table be formatted to  have a 
numerical X column. This will be the first column. You can enter one column of 
data for Y into column A, or several columns of Y data for different data sets (in 
columns B, C, etc.).  

2. You can start nonlinear regression from a data table, from a results table (often a 
transform of the data), or from a graph. Press the Analyze button and choose to 
do a built-in analysis. Then select Nonlinear regression (curve fit) from the 
list of curves and regressions. This will bring up the nonlinear regression dialog.  

3. On the first (Equation) tab of the dialog, pick an equation (model). You can choose 
a built-in (classic) model or enter your own. On this same tab, select the additional 
calculations you wish to perform.  

4. The dialog has six more tabs where you choose analysis options. 

5. Prism displays the results of nonlinear regression on a results sheet, which may 
have several subsheets (pages). It also superimposes the best-fit curve on a graph 
of those data.  

Note: The companion book of step-by-step examples includes several examples 
of nonlinear regression. These tutorials are also available on 
www.graphpad.com.  

Which choices are most fundamental when fitting curves? 
When you first learn about nonlinear regression, it is easy to feel overwhelmed by the 
many options, and be tempted to just skip over most of them. However, two choices are 
really important, and you must spend enough time to make sensible decisions:  

• Which model? Nonlinear regression fits a model to your data, so it is important 
that you pick a model appropriate for your experimental situation. If you pick 
the wrong model, the results simply won’t be helpful. 

• Which parameters (if any) to hold constant? A model defines Y as a function of X 
and one or more parameters. You won’t always want to ask Prism to find the 
best-fit value of all the parameters. For example, if you have subtracted away any 
nonspecific or background signal, a dose-response or kinetic curve must plateau 
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at zero. In this case, you should tell Prism to constrain that parameter to have a 
constant value of zero. Setting constraints in this way can have a huge impact on 
the results. 

Tip: Failing to set constraints is probably the most common error in curve 
fitting. Don’t rush to fit a curve without stopping to consider whether some 
parameters should be constrained to have a constant value. 

Prism’s nonlinear regression error messages 
In some cases, nonlinear regression is simply not able to find a best-fit curve, so reports 
an error message instead. Prism reports error messages at the top of the tabular results. 
Each error messages refers to a fit of a particular data set (column) so you might get 
results for some data sets and different error messages for others.  

Message Meaning 
Interrupted Either you clicked “Interrupt” on the progress dialog, or Prism 

exceeded the maximum allowed number of iterations specified 
in the Methods tab of the Nonlinear regression dialog.  

Bad initial values A math error, such as division by zero or taking the log of a 
negative number, occurred when Prism first evaluated the 
equation. The problem occurred before Prism began to fit the 
equation to your data. You may have picked the wrong equation 
or have picked wildly bad initial values for one or more 
parameters. 

Incorrect model A math error occurred when Prism first began the fitting 
process. This means that your model, with your initial values, 
doesn’t come close enough to your data for the fitting process to 
proceed. Check that you picked the right model and chose 
sensible initial values. 

Does not 
converge 

The fitting process began ok, but was unable to converge on 
best-fit values. Usually this means that one or more parameters 
were taking on unrealistic values. You may have chosen a model 
that is too complicated to describe your data. Try simplifying the 
model (for example, fitting a one-phase model rather than a two-
phase model). 

Floating point 
error 

During the fitting process Prism tried to do a mathematically 
impossible operation (divide by zero, take the log of a negative 
number) so the fitting procedure had to terminate. 

 

Note that these messages only tell you when the error occurred in the fitting process. In 
most cases, this does not tell you why the error occurred. For help in troubleshooting, see 
Chapter 6. 
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46. Constraining and sharing parameters 

The constraints tab of the nonlinear regression parameters dialog 
The Constraints tab of the nonlinear regression dialog is very versatile. For each 
parameter, you can choose to fix it to a constant value, constrain it to a range of values, or 
share its value between data sets.  

 

Constraining to a constant value 
In many cases, it makes sense to constrain one (or more) of the parameters to a constant 
value.  For example, even though a dose-response curve is defined by four parameters 
(bottom, top, logEC50 and HillSlope) you don’t have to ask Prism to find best-fit values for 
all the parameters. If the data represent a “specific” signal (with any background or 
nonspecific signal subtracted), it can make sense for you to constrain the bottom of the 
dose-response curve to equal zero. In some situations, it can make sense to constrain the 
Hill Slope to equal a standard value of 1.0.  

 

If you constrain a parameter to a constant value, this same value applies for all the data 
sets you are fitting. 

Tip: Think carefully about which parameters, if any, you want to fix to a 
constant value. This can have a big impact on the results. Failing to fix a 
parameter to a constant value is a common error in curve fitting.   
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You don’t have to enter the constant value in the dialog. Instead, you can link to a value 
you entered on an Info sheet. For example, here is an Info sheet with two values entered 
at the bottom.  

 

Using an Info constant is easy. On the constraints tab, you’ll choose to make a parameter a 
constant value. Then when you click here…   

     

… Prism will popup this dialog where you can choose any info constant on a linked info 
sheet.   

        

Prism shows linked constants in parentheses to indicate that they are linked and will be 
automatically updated when you edit the Info sheet. 
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Data set constants 
Define a parameter to be a Data set Constant and it will have a different constant 
value for each data set. For example, set the parameter I to be a data set contant: 

 

The values are not set in the Parameters dialog. Instead, Prism reads the values from the 
column headings of the data table. For example, each column may represent a different 
concentration of antagonist. In this case, use the concentrations as column (data set) 
titles, and set the parameter to be a data set constant. Prism will read the column titles, 
and set the parameter to the appropriate value for each data set.  

 

It is ok to enter column titles like “10.3 nM” or “Time= 5 seconds”. Prism will find the 
numbers within the column title, and use that as the parameter value.  But Prism extracts 
only the number. It doesn’t attempt to interpret any units you enter. So in this example, 
the parameter will equal 1, 2 or 5. Prism doesn’t attempt to interpret what the “nM” 
means.  

Note: Since data set constants are defined by the column title, and each column 
has only one title, it never makes sense to define more than one parameter to be 
a data set constant. 

You can think of the data set constant as being a second independent variable so provides 
a way to perform multiple nonlinear regression. For example, you can look at how 
response varies with both time and concentration. Enter the time values in the X column, 
so each row represents a different time point. Enter the concentration values as column 
titles so each column represents a different concentration. Now fit a model that uses both 
time and concentration, setting concentration to be a data set constant.  

For an example of how data constants are useful, see pages 236 and 280. As those 
examples show, data set constants are most useful when combined with global curve 
fitting.  

Tip: Don’t confuse the two ways of setting a parameter to a constant value. If 
you choose constant equal to you will enter a single value in the dialog, and 
this becomes the value of the parameter for all data sets. If you choose data 
set constant, you don’t enter a value into the dialog.  Prism gets the value 
from the column titles of the data table you are analyzing. The parameter can 
have a different value for each data set.  
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Constrain to a range of values 
Use the constraints tab of the nonlinear regression parameters dialog to constrain any 
parameter to be greater than, or less than, some value you enter, or to be between zero 
and a value you enter. For example, rate constants can’t be negative, so next to K, choose 
“must be less than” and enter 0. If a parameter must be a fraction, constrain it to be 
between 0.0 and 1.0.  

 

You can also constrain the relationship between two parameters. For example, if you are 
fitting a two-phase exponential model, constrain Kfast to be greater than Kslow.  

 

Shared parameters (global fitting) 
When Prism fits a family of data sets at once, it usually fits each data set independently of 
the rest. It is convenient to analyze all the data sets on a table at once, and helpful to have 
all the results organized in a single table. But the results will be the same as they would be 
if each fit were done separately.  

Prism 4 makes it possible to perform global fitting, where you specify that one or more 
parameters are to be shared among data sets. A shared parameter has a single best-fit 
value for all the data sets. Prism does a global fit of all the data sets, finding individual 
best-fit values for some parameters and a single, shared, best-fit value for others.  

To specify that you want to share a value, choose Shared value for all data sets in 
the Constraints tab. Or choose one of the other Shared choices that also includes a 
constraint (for example, Shared and must be less than ). 
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47. Prism’s nonlinear regression dialog 

The equation tab 

 

Choose an equation 
Choose a classic equation (Chapter 48) , choose a library equation (Chapter 49) or enter 
your own equation (Chapter 50).   

Optional calculations 

Option Discussion 

Confidence or prediction 
bands of the best-fit 
curve. 

Plot the best-fit curve as well as an envelope around the curve 
denoting the 95% confidence or prediction interval. See page 
32. 

Interpolate unknowns 
from a standard curve. 

Enter the unknowns at the bottom of the same data table as 
the standard curve. Enter Y values only, leaving X on those 
rows blank. Or enter X values only, leaving Y on those rows 
blank. See page 97. 

Runs test The runs test can help you determine whether your data 
systematically deviate from the model you chose. See page 36. 

Residuals Viewing a table and graph of residuals can help you decide 
whether your data follow the assumptions of nonlinear 
regression. See page 35. 

Dose-ratios for Schild 
plot 

See Chapter 43 for a detailed discussion, and alternative 
(better) ways to analyze Schild experiments. 

Ki from IC50 For competitive radioligand binding experiment, compute the 
dissociation constant (Ki) from the IC50. 
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To fit or not to fit? 
Choose whether you want to fit your model with nonlinear regression. The alternative is to 
plot the curve defined by the initial values. This is a very useful choice, as it lets you be 
sure that the initial values are sensible and generate a curve that comes near your data.  

Comparison tab 
Use the Comparison tab of the Nonlinear Regression Parameters dialog to specify one of 
three kinds of comparisons. 

Compare the fit of each data set to two equations (models) 
You’ve already chosen the first model (equation) on the first (equation) tab. Select the 
other equation at the bottom of the Comparison tab. For details, see Chapter 25. 

 

Does the best-fit value of a parameter (or several parameters) differ 
among data sets?  
Select the parameter or parameters to compare at the bottom of the dialog. If you select all 
the parameters, the comparison will ask whether the curves differ at all among data sets.  
If one data set is control and one is treated, this will ask whether the treatment changes 
the curve at all. If you choose only one parameter, the comparison will ask whether the 
best-fit value of that parameter is changed by the treatment. If you select two or more 
parameters, but not all, the comparison asks if those selected parameters differ among the 
data sets. You get one P value comparing the curves with those parameters shared vs. a fit 
with those parameters fit separately. Prism won’t compute separate comparisons of each 
parameter. See Chapter 27. 
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Test whether the best-fit value of a specified parameter differs 
significantly from a hypothetical value you propose 
Choose the parameter and enter the value at the bottom of the dialog. For example, you 
might test if a Hill Slope differs from 1.0 (a standard value). Or you might test if a baseline 
or intercept differs from 0.0. For details, see Chapter 26. 

 

F test or AICc? 
Prism offers two methods to compare models and data sets, the extra sum-of-squares F 
test and Akaike’s Information Criteria (AICc). Choose in the upper right of the dialog. The 
extra sum-of-squares F test is used more commonly by biologists, but the AICc method 
has some advantages. For a detailed discussion, see Chapter 24. 
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Initial values tab 
Nonlinear regression is an iterative procedure. The program must start with estimated 
initial values for each parameter. It then adjusts these initial values to improve the fit.  

Prism automatically provides initial values for each parameter, calculated from the range 
of your data. If you select a classic equation, the rules for calculating the initial values are 
built-in to the program. If you enter a user-defined equation, you define the rules. See 
page 331. 

The initial values tab of the Nonlinear Regression Parameters dialog lets you view and 
alter the initial values computed by the rules. 

 

How much difference do initial values make? 
When fitting a simple model to clean data, it won't matter much if the initial values are 
fairly far from the correct values. You'll get the same best-fit curve no matter what initial 
values you use, unless the initial values are very far from correct. Initial values matter 
more when your data have a lot of scatter or your model has many parameters. 

Viewing the curve generated by the initial values 
You'll find it easy to estimate initial values if you have looked at a graph of the data, 
understand the model, and understand the meaning of all the parameters in the equation. 
Remember that you just need an estimate. It doesn't have to be very accurate. 

If you aren't sure whether the initial values are reasonable, check Don't fit. Plot curve 
generated by initial values on the first tab of the nonlinear regression parameters 
dialog. When you click OK from the nonlinear regression dialog, Prism will not fit a curve 
but will instead generate a curve based on your initial values. If this curve is not generally 
in the vicinity of the data points, change the initial values before running nonlinear 
regression. 
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If you are having problems estimating initial values, set aside your data and simulate a 
family of curves using the analysis “Create a family of theoretical curves” (don’t use the 
Nonlinear Regression analysis). Once you have a better feel for how the parameters 
influence the curve, you might find it easier to go back to nonlinear regression and 
estimate initial values. 

Constraints for nonlinear regression 
The constraints tab is very useful. Besides setting constraints, you can also define a 
parameter to be a data set constant or to be shared among data sets. These choices are 
discussed in depth in Chapter 46. 

Weighting tab  
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Weighting method 
Chapter 14 explained the concept of differential weighting of data. Prism offers five ways 
to weight your data points. 

The last choice weights by the inverse of the square of the SD. If you enter replicates, 
Prism computes the SD of the replicates automatically. Or you can format the data table to 
enter SD directly. In this case, you can enter any values you want in the “SD” subcolumn. 
This lets you set up any kind of weighting scheme you want. 

If the weighting scheme you chose would result in a division by zero for any value, Prism 
does not fit the data set and reports "Weighting impossible" at the top of the results page. 

Prism also considers sample size when weighting. If you entered individual replicates, and 
chose to treat the replicates separately, then no special calculations are needed. If you 
entered replicate values, but chose to fit to the mean of the replicates, then Prism can 
multiply the weighting factor by N. The means computed from a large number of 
replicates get more weight than means computed from a few replicates. Similarly, if you 
enter mean, SD (or SEM) and N, Prism can multiply the weighting factor by N. 

Tip: If you are confused by weighting, just stick to the default choice (no 
weighting; minimize sum-of-squares). Changing to a different weighting 
method rarely has a huge impact on the results. 

Replicates 
In most experiments, you collect replicate Y values at every value of X. You should enter 
these into Prism into side-by-side subcolumns, from which Prism can automatically 
calculate error bars. When you fit a curve to these data, there are two ways Prism can fit a 
model to the data. It can treat each replicate as a separate point, or it can average the 
replicate Y values and treat the mean as a single point. Choose on the Methods tab of the 
nonlinear regression parameters dialog. See a more detailed discussion on page 87. 

Tip: If you are confused by the choice of fitting to individual replicates vs. the 
mean, choose to fit individual replicates (which is the default). This choice 
rarely has a huge impact on the results. 

Calculation options 

Derivatives 

While performing nonlinear regression, Prism repeatedly evaluates the partial derivative 
of your equation with respect to each parameter. This is the most time consuming part of 
nonlinear regression.  

If you choose a built-in equation, Prism uses analytical derivatives built into the program. 
In other words, our programmers did the necessary calculus to define each derivative as 
an equation. There is no choice for you to make. If you enter your own equation (or use a 
library equation), Prism evaluates the derivatives numerically, and you can choose the 
method Prism uses. 

Ordinarily, Prism uses Richardson's method to evaluate the derivatives. This method 
calculates the derivative by determining Y after both increasing and decreasing the value 
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of the parameter a bit. Check the option box to use a faster, but potentially less accurate, 
method (which only evaluates the equation after increasing the value). 

In most cases, the results will be identical regardless of the method. We recommend that 
you use the slow but accurate method to validate results with a new equation. You can 
then switch to the quick method for routine analyses if the speed of nonlinear regression 
matters to you (only an issue with huge files). With small data sets and fast computers, 
nonlinear regression will seem instantaneous even if you pick the slower method. 

Convergence criteria 

Prism stops iterating and declares the results to have converged when two iterations in a 
row change the sum-of-squares by less than 0.01%. If you check the box for strict 
convergence criteria, Prism will continue the iterations until five consecutive iterations 
each reduce the sum-of-squares by less than 0.000001%.  

We recommend that you use the slow method only when you are having difficulty fitting 
an equation, or to validate your results. Use the standard method for routine analyses. If 
you select the standard method, Prism will automatically switch to the stricter criteria if 
the R2 is less than 0.3  

Selecting the stricter criteria rarely affects the results but slows the calculations a bit (only 
noticeable with huge data sets or slow computers).  

Stop calculating after a certain number of iterations 

If this option is checked, Prism will stop nonlinear regression after the number of 
iterations you specify. In most cases, nonlinear regression converges in fewer than a few 
dozen iterations. If the iterations continue on and on and on, it may be because you've 
picked an inappropriate equation, picked unhelpful initial values, or have very scattered 
data. This option insures that Prism won't spend a long time on calculations that won't be 
helpful. It is especially useful when you use a Prism script to fit many data sets. 

Tip: If you are curious to see how nonlinear regression works, set this to option 
to stop after one iteration. Then you can look at the graph after a single 
iteration. If you want to view the curve after another iteration, check the option 
in the initial values tab to Use the results of the previous fit as initial 
values. Otherwise, you’ll just run the first iteration repeatedly. 
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Output tab 

 

Tip: You’ll probably only need to change the output options from their default 
setting on rare occasions. The default settings will suffice almost all the time. 

Include in tabular output 
Choose which parts of the output you wish to see. We recommend that you leave all the 
boxes checked to get the most complete output. Also choose the number of significant 
digits used to report results. This is especially useful if you embed the results table on a 
graph or layout.  

Table of XY values 
Curves are defined by many short line segments. You decide how many segments Prism 
will create. Prism initially creates all curves with 150 line segments. Increasing the 
number may improve the accuracy of standard curve calculations and make the curve 
appear smoother (especially if it has many inflection points). 

Normally, Prism hides this table of XY values of the line segments used to plot curves. 
Check the option box if you want to see this table as a results subpage. 

Summary table and graph 
When analyzing several data sets, the results table is rather lengthy. To display key results 
on a summary table, check the option box to create a summary table and select the 
variable you wish to summarize. Prism creates a summary table (as an additional results 
view) that shows the best-fit value of that variable for each data set, and graphs this table. 
Depending on your choices in the dialog, this may be a bar graph or an XY graph. It shows 
the best-fit value of a selected variable for each data set on the table. In some cases, you 
may analyze the summary table with linear or nonlinear regression. For example, the 
summary graph may show the best-fit value of a rate constant as a function of 
concentration (obtained from the column titles of the original data). You can fit a line or 
curve to that graph. 
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Note: When Prism compares the fits of two equations, it creates a summary 
table only from the results with the second equation. Since this may not be 
helpful, we suggest that you only make summary tables when fitting a single 
equation. 

Range tab 

 

You don’t have to fit a curve to all the data. Choose to ignore points with X values less 
than a limit you specify or greater than another limit you specify. 

After determining the best-fit values of the variables in the equation, Prism calculates and 
plots the best-fit curve. It automatically plots the curve starting at the X position of the 
first (lowest X) data point and ends at the last data point. You may enter different limits. 

Notice that the two range choices are very different. The first set of choices affects which 
data are analyzed, so affects the results. The second set of choices affects only how the 
curve is graphed, but does not affect the results. 

Tip: Range options will be useful only occasionally. In most cases, you’ll be 
happy with the default choices. 
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Default preferences for nonlinear regression 

 

The nonlinear regression parameters dialog affects one particular nonlinear regression 
analysis. Change settings on the Preferences dialog to change default settings for future 
nonlinear regression analyses. To open this dialog, pull down the Edit menu and choose 
Preferences and go to the Analysis tab. You can change these default settings: 

• Minimize sum-of-square of absolute distances or relative distances? 

• Report results of runs test of goodness-of-fit? 

• Use stricter (slower) criteria for convergence? 

• Make table and graph of residuals? 

• Number of line segments to generate curves. 

Note: Changing the analysis options changes the default settings for future 
nonlinear regression analyses. It will not change analyses you have already 
performed. When you do an analysis in the future, of course you can override 
any of the default settings. 
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48. Classic nonlinear models built-in to Prism 

Prism comes with 15 built-in classic equations that fill the needs of many biologists.  

Don’t try too hard to use a classic equation. If your needs are not quite filled by the classic 
equations, don’t hesitate to enter a user-defined equation, which is quite easy. 

Equilibrium binding 

One site binding (hyperbola) 
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This curve is known as a rectangular hyperbola, binding isotherm, or saturation binding 
curve. Y is zero initially, and increases to a maximum plateau value Bmax. 

This equation describes the equilibrium binding of a ligand to a receptor as a function of 
increasing ligand concentration. X is the concentration of the ligand, and Y is the specific 
binding. Bmax is the maximum number of binding sites, expressed in the same units as 
the Y-axis (usually radioactive counts per minute, sites per cell, or fmol of receptor per mg 
of tissue). Kd is the equilibrium dissociation constant, expressed in the same units as the 
X-axis (concentration). When the drug concentration equals Kd, half the binding sites are 
occupied at equilibrium. 

Note: In this equation, Y should be the specific binding, not the total binding. 
To learn how Prism analyzes saturation binding curves, see “Analyzing 
saturation radioligand binding data” on page 199. 

This equation also describes the activity of an enzyme as a function of substrate 
concentration. In this case, the variable labeled Bmax is really Vmax, the maximum enzyme 
activity, and the parameter labeled Kd is really KM, the Michaelis-Menten constant. 

See also "Analyzing saturation radioligand binding data" on page 199, and "How to 
determine Vmax and KM" on page 248. 
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Two site binding 
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This equation is an extension of the one site binding curve. It shows the binding of a 
ligand to two receptors with different affinities (different Kd values). It also describes the 
enzyme activity as a function of substrate concentration when two isozymes are present. 
The curve in the example has Kd values that differ by a factor of ten, with equal Bmax 
values. Even with such a large difference between Kd values, the curve is not obviously 
biphasic.  

See "Determining Kd and Bmax for two classes of binding sites" on page 204. 

One site competition 

( )
X-LogEC50

Top-Bottom
Y=Bottom+

1+10
 

This equation describes the competition of a ligand for receptor binding. It is identical to 
the sigmoid dose-response curve with a Hill slope of -1.  

The parameter LogEC50 is the concentration of the competitor required to compete for 
half the specific binding. This is also referred to as LogIC50, the “I” denoting that the 
curve is inhibitory. 

Usually the Y values are total binding. If you enter specific binding instead, fix Bottom to 
have a constant value of zero. If you enter percent specific binding, also set Top to be a 
constant equal to 100. 
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See "Competitive binding data with one class of receptors" on page 213. 

Tip: If you have subtracted away any nonspecific binding, then you know the 
curve must plateau at zero. In this case, be sure to set the parameter Bottom to 
be a constant value equal to zero. If you transformed your data to percent of 
control binding, then also set the parameter Top to be a constant equal to 1.0. 

 

Two site competition 
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This equation describes the competition of a ligand for two types of receptors. The 
radioligand has identical affinities for both receptors, but the competitor has a different 
affinity for each. 

Y is binding (total or specific) and X is the logarithm of the concentration of the unlabeled 
ligand. Fraction1 is the fraction of the receptors that have an affinity described by 
LogEC501. The remainder of the receptors have an affinity described by LogEC502. If 
LogEC501 is smaller than LogEC502, then Fraction1 is the fraction of high affinity sites. 
If LogEC501 is larger than LogEC502, then Fraction1 is the fraction of low affinity sites.  

Tip: If you have subtracted away any nonspecific binding, then you know the 
curve must plateau at zero. In this case, be sure to set the parameter Bottom to 
be a constant value equal to zero. If you transformed your data to percent of 
control binding, then also set the parameter Top to be a constant equal to 1.0. 
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Dose-response 

Sigmoidal dose-response 
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This is a general equation for a dose-response curve. It shows response as a function of 
the logarithm of concentration. X is the logarithm of agonist concentration and Y is the 
response. This equation is also called a three-parameter logistic equation. 

The parameter Bottoms the Y value at the bottom plateau; Top is the Y value at the top 
plateau, and LogEC50 is the X value when the response is halfway between Bottom and 
Top. LogEC50 is the logarithm of the EC50 (effective concentration, 50%). This parameter 
is sometimes called ED50 (effective dose, 50%), or IC50 (inhibitory concentration, 50%, 
used when the curve goes downhill). 

This equation assumes a standard midpoint slope (i.e., 1 for a rectangular hyperbola), 
where the response goes from 10% to 90% of maximal as X increases over about two log 
units. The next equation allows for a variable slope. 

This book has four chapters on analyzing dose-response curves. See "Introduction to 
dose-response curves" on page 256. 

Tip: If you have subtracted away any nonspecific or blank signal, then you know 
the curve must plateau at zero. In this case, be sure to set the parameter Bottom 
to be a constant value equal to zero. If you transformed your data to percent of 
control response, then also set the parameter Top to be a constant equal to 1.0. 

Sigmoidal dose-response (variable slope) 

( )
( )LogEC50-X HillSlope

Top-Bottom
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This equation extends the previous equation, but allows for a variable slope. This equation 
is also called a four-parameter logistic equation or the Hill equation. 

The parameter Bottom is the Y value at the bottom plateau; Top is the Y value at the top 
plateau, and LogEC50 is the X value when the response is halfway between Bottom and 
Top. With different kinds of variables, this variable is sometimes called ED50 (effective 
dose, 50%), or IC50 (inhibitory concentration, 50%, used when the curve goes downhill). 

The parameter Hillslope (called the Hill slope, the slope factor, or the Hill coefficient) 
describes the steepness of the curve. . If it is positive, the curve rises as X increases. If it is 
negative, the curve falls as X increases. A standard sigmoid dose-response curve (previous 
equation) has a Hill slope of 1.0. When the Hill slope is less than 1.0, the curve is more 
shallow. When the Hill slope is greater than 1.0, the curve is steeper. The Hill slope has no 
units. 

This book has four chapters on analyzing dose-response curves. See "Introduction to 
dose-response curves" on page 256. 

Tip: If you have subtracted away any nonspecific or blank signal, then you know 
the curve must plateau at zero. In this case, be sure to set the parameter Bottom 
to be a constant value equal to zero. If you transformed your data to percent of 
control response, then also set the parameter Top to be a constant equal to 1.0. 

Boltzmann sigmoid 

( )Top-Bottom
Y=Bottom+

V50-X1+exp
Slope
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 This equation describes voltage-dependent activation of ion channels. It describes 
conductance (Y) as a function of the membrane potential (X). Conductance varies from 
Bottom to Top. V50 is the potential at which conductance is halfway between Bottom and 
Top. Slope describes the steepness of the curve, with a larger value denoting a shallow 
curve. The slope is expressed in units of potential, usually mV, and is positive for channels 
that activate upon depolarization.  

Under appropriate experimental conditions, you can use the slope to calculate the valence 
(charge) of the ion moving across the channel. The slope equals RT/zF where R is the 
universal gas constant, T is temperature in °K, F is the Faraday constant, and z is the 
valence. Since RT/F ≈ -26 mV at 25°C, z = -26/slope. 

Bottom is commonly made a constant equal to 0.0. If you also make Top a constant equal 
to 1.0, then Y can be viewed as the fraction of channels that are activated. 

Exponential 

One phase exponential decay 
-K XY=Span e +Plateau⋅⋅  
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t1/2
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 This equation describes the kinetics such as the decay of radioactive isotopes, the 
elimination of drugs, and the dissociation of a ligand from a receptor. 

X is time, and Y may be concentration, binding, or response. Y starts out equal to Span + 
Plateau and decreases to Plateau with a rate constant K. The half-life of the decay is 
0.693/K. Span and Plateau are expressed in the same units as the Y axis. K is expressed in 
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the inverse of the units used by the X axis. In many circumstances, the plateau equals 
zero. When fitting data to this equation, consider fixing the plateau to zero. 

Tip: If you have subtracted away any nonspecific binding, then you know the 
curve must plateau at zero. In this case, be sure to set the parameter Plateau to 
be a constant value equal to zero. 

Two phase exponential decay 
1 2-K X -K XY=Span1 e +Span2 e +Plateau⋅ ⋅⋅ ⋅  

Plateau

Half-lives
Time

   Span1
+ Span2
+ Plateau

  

This equation describes a two phase exponential decay. Y starts out equal to Span1 + 
Span2 + Plateau and decays to Plateau with fast and slow components. The two half-lives 
are 0.693/K1 and 0.693/K2. In the figure, the two rate constants differ tenfold, but the 
spans were equal. The curve is not obviously biphasic, and it takes a very practiced eye to 
see that the curve does not follow a single phase model.  

Tip: If you have subtracted away any nonspecific binding, then you know the 
curve must plateau at zero. In this case, be sure to set the parameter Plateau to 
be a constant value equal to zero. 

One phase exponential association 

( )-K X
maxY=Y 1-e ⋅⋅  

Ymax
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  Y
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This equation describes the pseudo-first order association kinetics of the interaction 
between a ligand and its receptor, or a substrate and an enzyme. Y is either binding or 
enzyme activity. X is time. See "Association binding experiments" on page 234. 

Y starts out equal to zero and increases to a maximum plateau (at equilibrium) equal to 
Ymax. When X equals 0.693/K, Y equals 0.5*Ymax. 

Two phase exponential association 

( ) ( )1 2-K X -K X
max1 max2Y=Y 1-e +Y 1-e⋅ ⋅⋅ ⋅  

This is an extension of the exponential association to two phases, corresponding to a 
radioligand binding to two independent sites. 

Exponential growth 
K XY=Start e ⋅⋅  

Start
Time

 Y

 

This describes an exponential growth curve. Y is population size (perhaps cell number) 
and X is time. At X=0, Y equals Start. Y increases geometrically with a doubling time 
equal to 0.693/K. 

It is often difficult to fit this equation with nonlinear regression, because a tiny change in 
the initial values will drastically alter the sum-of-squares.  

Before fitting data to the exponential growth equation, consider converting your Y values 
to logarithms. With exponential growth data, the experimental error sometimes increases 
dramatically as Y gets bigger. If you transform to logarithms, the resulting values may 
have a more uniform and Gaussian error than the raw data. If so, fit the transformed data 
with linear regression. The Y intercept represents the Y value at time zero (Start) and the 
slope is the rate constant (k). 

Other classic equations 

Power series 
This versatile equation has many uses. 

B DY=A×X +C×X  

Fitting data to a power series model can be difficult. The initial values generated 
automatically by Prism are not very helpful (all four parameters are set to 1.0). You'll 
probably need to enter better initial values in order to fit this equation to data. The initial 
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values of B and D are important, because small changes in those values can make a huge 
change in Y.  

The equation is not defined, and leads to a floating point error, if X equals zero and B or D 
are negative numbers, or if X is negative and B or D are between 0.0 and 1.0. 

Polynomial (linear) equations 
Prism offers first, second, third and fourth order polynomial equations. Although few 
chemical or pharmacological models are described by polynomial equations, these 
equations are often used to fit standard curves. The higher order equations have more 
inflection points.  

Unlike all other equations, you don’t have to worry about initial values when fitting data 
to polynomial equations. You will get exactly the same answer no matter what the initial 
values are. 

The "order" of a polynomial equation tells you how many terms are in the equation.  

Order Equation 

First Y=A+B X⋅  

Second 2Y=A+B X+C X⋅ ⋅  

Third 2 3Y=A+B X+C X +D X⋅ ⋅ ⋅  

Fourth 2 3 4Y=A+B X+C X +D X +E X⋅ ⋅ ⋅ ⋅  

 

You can enter a higher-order equation (up to 14th order) as a user-defined equation (or 
select one from the equation library). 

Note: The parameters A, B and C in the second order polynomial equation are 
in a different order than you usually see in algebra texts. 

Sine wave 

( )Y=Baseline+Amplitude sin Frequency X+Offset⋅ ⋅  

Baseline

Amplitude

2π
frequency

  

X is in radians. In most cases, you'll want to fix Baseline to a constant value of zero. 
Amplitude is the maximum height of the curve away from the baseline. Frequency is the 
number of complete oscillations per 1 X unit. 
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Gaussian distribution 
21 X-Mean-

2 SDAREAY= e
SD 2π

 ⋅  ⋅  

-3SD -2SD -1SD Mean 1SD 2SD 3SD
  

This equation defines the cumulative probability distribution of a Gaussian bell-shaped 
distribution with specified mean and SD. The area under the entire curve is Area. A 
standard probability distribution is scaled so that Area equals 1.0. The units of the Y-axis 
are arbitrary, determined by your choice of Area. 
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49. Importing equations and equation libraries 

Selecting from the equation library 

If the equation you want is not one of the classic equations built-in to Prism, look in 
Prism’s equation library. To choose an equation from a library, click More equations 
(from the parameters dialog for nonlinear regression), then choose to select from the 
equation library.  

On the Equation Selection dialog, choose a library file (left panel) then choose an 
equation (right panel). Confirm your choice with the preview on the bottom of the dialog. 

 

When you select an equation from the library, you transfer it from the library file to your 
own list of equations. You can then edit that copy of the equation without affecting the 
library. Prism stores the equation with every file that uses it, and also places the equation 
in your list of user-defined equations (the list you see when you choose "more equations"). 
Prism does not remember that the equation came from a library. 

Adding equations to the equation library 
Add to the library by following these steps: 

1. Create a new Prism project. Use the Simulate theoretical curve analysis and enter 
a new equation. Pick reasonable values for the minimum and maximum X values of 
the curve. 

2. Customize the graph so it will be clear when seen as a preview (test this by looking 
at the graph gallery). 

3. Repeat with any number of related equations that you want to store in one file. 

4. Save the file into the “Equations” folder within the Prism program folder.  

5. If you are creating an equation file that will be used by others, consider creating a 
help file that explains the equations. Using any help compiler, create a help file 
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with the same name as the file containing the equations, but with the extension 
“hlp”. Place the help file in the same folder with the equation file.   

Importing equations  
You can import any equation from any project. From the parameters dialog for nonlinear 
regression, click More equations.  Then choose to import an equation, select a file and 
select the equation.  

When you import an equation, you transfer it to your own list of equations (the list you 
see when you choose More equations). Prism does not store any sort of link back to the 
file the equation was imported from. 
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50. Writing user-defined models in Prism 

What kinds of equations can you enter? 
You are not limited to the equations (models) that we provide with Prism. You can enter 
your own equations, subject to these limitations: 

Limitation Explanation 

No implicit equations.  Y must be defined as a function of X and one or more 
parameters. The variable Y can only appear once, on 
the left side of the last line of the equation. If Y also 
appears on the right side of the equation, you have 
an implicit equation, which Prism cannot handle. In 
many cases, you'll be able to algebraically rearrange 
the equation. 

No differential equations.  You must define Y as a function of X and one or more 
variables. It is not sufficient to define the derivatives. 

No equations with more than 
one X variable.  

Prism does not calculate multiple regression, so 
cannot fit models with two or more independent (X) 
variables. But note that you can define a parameter 
to be a column constant, in which case its value 
comes from the column titles. In some cases, you can 
think of these column constants as being a second 
independent variable. See page 301. 

No discontinuous equations.  If you enter a discontinuous equation (where an 
infinitesimal change in X can create a huge change in 
Y) the results of nonlinear regression may not be 
reliable.  

The equation must define Y as a 
function of X. 

The independent variable must be X. The dependent 
variable must be Y. For example, if you measure a 
voltage as a function of time, you cannot enter an 
equation that defines V as a function of t. It must 
define Y as a function of X. 

Equation syntax 
At the top of the parameters dialog for nonlinear regression (or simulate curve) select 
More equations. Then select Enter your own equation to bring up the User-
defined Equation dialog. 

First enter a name for the equation, which will then appear on the More equations list 
in the nonlinear regression dialog. 

Then enter the equation itself, follow these guidelines: 

• Variable and parameter names must not be longer than 13 characters. If you 
want to use two words to name a variable, separate with the underscore 
character, for example Half_Life. Don’t use a space, hyphen or period.  
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• Prism does not distinguish between upper and lower case letters in variable, 
parameter or function names. 

• Use an asterisk (*) to indicate multiplication. Prism does not always recognize 
implied multiplication. To multiply A times B, enter “A*B” and not “AB”. 

• Use a caret (^) to indicate power.  For example, "A^B" is A to the B power.   

• Use parentheses as necessary to show the order of operations. To increase 
readability, substitute brackets [like this] or braces {like this}. Prism interprets 
parentheses, brackets, and braces identically.  

• Use a single equals sign to assign a value to a variable.  

• You don't need any special punctuation at the end of a statement. 

• To enter a long line, type a backslash (\) at the end of the first line, then press 
Return and continue. Prism treats the two lines as one. 

• To enter a comment, type a semicolon (;) and then the text. Comments can begin 
anywhere on a line.  

Here are three examples of one-line equations: 

 Y=Bmax*X/(Kd + X) 

 

 Y=A*(X+1) 

 

 Y=Start*exp[(-0.693/Half_Life)*K] 

 

You don't have to write your equation on one line. Use intermediate variables to simplify 
longer equations. Prism automatically distinguishes between intermediate variables and 
equation parameters that you can fit. If a variable is used first on the left side of an equals 
sign, then it is an intermediate variable. If a variable is used first on the right side of an 
equals sign, then it is an equation parameter. 

Below is an example of a longer equation. Because K is used first on the left of the equals 
sign, Prism recognizes that it is an intermediate variable rather than a parameter to be fit 
by nonlinear regression. When you fit data to this equation, you’ll find the best-fit value of 
the parameter HalfLife, not K. Note two comments, one on a line by itself and the other on 
the same line with equation code. 

; One-phase exponential decay 
K=0.693/HalfLife ;rate constant 
Y=Start*exp(-K*X) 

Available functions for user-defined equations 
When you enter your equations, you can use any of the functions listed below.  
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Function Explanation Excel equivalent 

abs(k) Absolute value. If k is negative, 
multiply by -1. 

abs(k) 

arccos(k) Arccosine. Result is in radians.  acos(k) 

arccosh(k) Hyperbolic arc cosine. acosh(k) 

arcsin(k) Arcsine. Result is in radians.  asin(k) 

arcsinh(k) Hyperbolic arcsin. Result in 
radians. 

asinh(k) 

arctan(k) Arctangent. Result is in radians. atan(k) 

arctanh(k) Hyperbolic tangent. K is in 
radians. 

atanh(k) 

artctan2(x,y) Artangent of y/x. Result is in 
radians. 

atan2(x,y) 

besselj(n,x)  Integer Order J Bessel, N=0,1,2… besselj(x,n) 

bessely(n,x) Integer Order Y Bessel, N=0,1,2… bessely(x,n) 

besseli(n,x) Integer Order I Modified Bessel, 
 N=0, 1, 2… 

besseli(x,n) 

besselk(n,x) Integer Order K Modified Bessel,  
N=0, 1 ,2… 

besselk(x,n) 

beta(j,k) Beta function. exp(gammaln(j) 
+gammaln(k) 
-gammaln(j+k)) 

binomial(k,n,p) Binomial. Probability of k or more 
“successes” in n trials, when each 
trial has a probability p of 
“success”. 

binomdist(k,n,p,false) 

chidist(x2,v) P value for chi square equals x2 
with v degrees of freedom 

chidist(x2,v) 

ceil(k) Nearest integer not smaller than k.  
Ceil (2.5)=3.0. 
Ceil(-2.5)=2.0. 

(no equivalent) 

cos(k) Cosine. K is in radians. cos(k) 

cosh(k) Hyperbolic cosine. K is in radians. cosh(k) 

deg(k) Converts k radians to degrees. degrees(k) 

erf(k) Error function. 2*normsdist(k*sqrt(2))-1 

erfc(k) Error function, complement. 2-2*normsdist(k*sqrt(2)) 

exp(k) e to the kth power. exp(k) 

floor(k) Next integer below k. 
Floor(2.5)=2.0. Floor(-2.5)=-3.0. 

(no equivalent) 

fdist(f,v1,v2) 
 

P value for F distribution with V1 
degrees of freedom in the 
numerator and V2 in the 
denominator. 

fdist(f,v1,v2)  

gamma(k) Gamma function. exp(gammaln(k)) 

gammaln(k) Natural log of gamma function. gammaln(k) 
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Function Explanation Excel equivalent 

hypgeometricm(a,b,x) Hypergeometric M. (no equivalent) 

hypgeometricu(a,b,x) Hypergeometric U. (no equivalent) 

hypgeometricf(a,b,c,x) Hypergeometric F. (no equivalent) 

ibeta(j,k,m) Incomplete beta. (no equivalent) 

if(condition, j, k) If the condition is true, then the 
result is j. Otherwise the result is 
k. See next section below. 

(similar in excel) 

igamma(j,k) Incomplete gamma. (no equivalent) 

igammac(j,k) Incomplete gamma, complement (no equivalent) 

int(k) Truncate fraction. INT(3.5)=3  
INT(-2.3) = -2 

trunc() 

ln(k) Natural logarithm. ln(k) 

log(k) Log base 10. log10(k) 

max(j,k) Maximum of two values.  max(j,k) 

min(j,k) Minimum of two values. min(j,k) 

j mod k  The remainder (modulus) after 
dividing j by k. 

mod(j,k) 

psi(k) Psi (digamma) function. 
Derivative of the gamma function. 

(no equivalent) 

rad(k) Converts k degrees to radians. radians(k) 

sgn(k) Sign of k.  
If k>0, sgn(k)=1. 
If k<0, sgn(k)= -1.  
If k=0, sgn(k)=0. 

sign(k) 

sin(k) Sine. K is in radians. sin(k) 

sinh(k) Hyperbolic sine. K is in radians.  sinh(k) 

sqr(k) Square. k*k 

sqrt(k) Square root. sqrt(k) 

tan(k) Tangent. K is in radians. tan(k) 

tanh(k) Hyperbolic tangent. K is n radians tanh(k) 

tdist(t,v) P value (one-tailed) corresponding 
to specified value of t with v 
degrees of freedom. T distribution. 

tdist(t,v,1) 

zdist(z) P value (one-tailed) corresponding 
to specified value of z. Gaussian 
distribution. 

normsdist(z) 
 

 

Tip: Don't use any of these function names for your variables or parameters. 
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Using the IF function 
Prism allows you to introduce some branching logic through use of the IF function. The 
syntax is: 

IF (conditional expression, value if true, value if false) 

You can precede a conditional expression with NOT, and can connect two conditional 
expressions with AND or OR. Examples of conditional expressions: 

MAX>100 
Ymax=Constraint 
(A<B or A<C) 
NOT(A<B AND A<C) 
FRACTION<>1.0   
X<=A and X>=B     

 

Note: "<>" means not equal to, "<=" means less than or equal to, and ">=" 
means greater than or equal to. 

Here is an example. 

 Y= IF (X<X0, Plateau, Plateau*exp(-K*X))  

 

If X is less than X0, then Y is set equal to Plateau. Otherwise Y is computed as 
Plateau*exp(-K*X). 

You may also insert a conditional expression anywhere in an equation, apart from an IF 
function. A conditional expression evaluates as 1.0 if true and 0.0 if false. Example: 

 Y=(X<4)*1 + (X>=4)*10  

 

When X is less than 4, this evaluates to 1*1 + 0*10=1. When X is greater than 4, this 
evaluates to 0*1+1*10=10. 

Here is a function that returns Y is Y is negative, but otherwise leaves the results blank. In 
other words, it removes all negative values. The way to leave a result blank is to do an 
impossible mathematical transform such as dividing by zero. 

Y = IF (Y<0, Y/0, Y) 

How to fit different portions of the data to different equations  
In some situations you may wish to fit different models to different portions of your data. 
This often occurs in kinetic experiments where you add a drug or otherwise perform some 
sort of intervention while recording data. The values collected before the intervention 
follow a different model than those collected afterwards.  

Although Prism has no built-in way to fit different equations to different portions of the 
data, you can achieve that effect using a user-defined equation containing the IF function.  
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Example 1. Plateau followed by exponential association 
In this example, you collected data that established a baseline early in the experiment, up 
to "Start". You then added a drug, and followed the outcome (Y) as it increased toward a 
plateau. Prior to the injection the data followed a horizontal line; after the injection the 
data formed an exponential association curve.  

START

BASELINE

SPAN

Time

Y

 

Y1=BASELINE 
Y2=BASELINE + SPAN*(1-exp(-K*(X-START))) 
Y=IF[(X<START),Y1,Y2) 

 

It is easiest to understand this equation by reading the bottom line first. For X values less 
than START, Y equals Y1, which is the baseline. Otherwise, Y equals Y2, which is defined 
by the exponential association equation.  

This equation has two intermediate variables (Y1 and Y2). Prism can fit the four true 
parameters: START, SPAN, K, and BASELINE.  

In many cases, you’ll make START a constant equal to the time of the experimental 
intervention.   

Example 2. Two linear regression segments  
This equation fits two linear regression lines, ensuring that they intersect at X=X0.   

Y1 = intercept1 + slope1*X   
YatX0 = slope1*X0 + intercept1 
Y2 = YatX0 + slope2*(X – X0) 
Y = IF(X<X0, Y1, Y2) 

 

The first line of the equation defines the first line segment from its intercept and slope.  

The second line of the equation computes the Y value of the first regression at the right 
end of that segment, when X=X0.  

The third line of the equation computes the second regression segment. Since we want a 
continuous line, the Y value at the left end of the second segment must equal the Y value 
at the right end of the first segment (YatX0). The Y value at any other position along the 
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second segment equals YatX0 plus the increase due to the second regression line. That 
increase equals the slope of the second segment (slope2) times the distance from X to X0.   

The final line defines Y for all values of X. If X is less than X0 then Y is set equal to Y1. 
Otherwise Y is set equal to Y2. 

Here are the results with sample data. The program found that the best-fit value of X0 
was 5.00, and the two lines meet at that X value.  
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Use segmental linear regression cautiously 
Segmental linear regression is useful when something happens at X0 to change the slope 
of the line. For example, use segmental linear regression if X is time, and you added a 
drug (or changed a voltage) at time X0. 

If you didn’t perform an intervention at X0, segmental linear regression is probably not 
the analysis of choice. Instead, you probably want to fit some sort of curve.  

Tip: Do not use segmental linear regression to analyze a biphasic Scatchard 
plot. A biphasic Scatchard plot does not have an abrupt break point. You should 
fit the original data to a two-site binding curve instead. 

How to define different models for different data sets 
You can define an equation so data set A is fit to one model and data set B to another. 

To specify that a line in an equation should only be used for a particular data set, precede 
the line with the data set identifier in angled brackets. So a line preceded by <A> would 
apply onto to data set A, while a line preceded by <AC> would only apply to data set AC. 
The letters correspond to the labels Prism shows on the data table. 

For example, use this equation to fit a table where column A is nonspecific binding and 
column B is total binding (nonspecific plus specific). To make this work, you also need to 
set the parameter NS to be shared in the constraints tab. This means Prism will fit a single 
value of NS for both data sets. 
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; total and nonspecific binding 
; Define NS to be shared in the constraints tab 
Nonspecific=NS*X 
Specific = Bmax*X(Kd+X) 
<A>Y=Nonspecific 
<B>Y=Nonspecific + Specific  

 

Use the syntax “<~A>” To specify that a line pertains to all data sets except one. For 
example, use this equation to fit a table where column A is nonspecific binding, and 
columns B and C (and maybe others) represent total binding. To make this work, you’d 
also need to define NS to be a shared parameter. 

; total and nonspecific binding 
; Define NS to be shared in the constraints tab 
Nonspecific=NS*X 
Specific = Bmax*X(Kd+X) 
<A>Y=Nonspecific 
<~A>Y=Nonspecific + Specific  

Defining rules for initial values and constraints 

Rules for initial values 
Before it can perform nonlinear regression, Prism must have initial values for each 
parameter. You can define rules for generating the initial values at the time you enter a 
new equation. Then Prism will calculate the initial values automatically. If you don't enter 
rules for initial values, you will need to enter the initial values for every parameter, for 
every data set, every time you fit data.  

To define rules for initial values for user-defined equations: 

1. While entering or editing a user-defined equation, click on the tab labeled Rules 
for Initial Values. 

2. Enter the rule for finding the initial value of each parameter. Enter a number in the 
first column and select a multiplier or divisor from the drop-down list in the 
second column.  

 

All but two choices on the drop-down list are used to multiply or divide the number you 
entered by a value determined from the range of the data (e.g., YMIN, XMAX, XMID, or 
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YMAX-YMIN). The abbreviation YMIN is the minimum value of Y; XMAX is the 
maximum value of X, and XMID is the average of XMIN and XMAX. For example, if you 
enter “0.5” in the first column and select “YMAX” in the second column, Prism sets the 
initial value to half of YMAX (which may differ for each data set). 

The first choice on the drop-down list is (Initial value, to be fit). The value you 
entered will be the initial value for all data sets. 

Note: You won’t always be able find rules that generate useful initial values. For 
some models, you’ll need to enter initial values manually.  

Constraints 
Click the Constraints tab on the User-defined equation dialog (page 306) to define 
constraints that you will want to use almost every time you select the equation. These 
constraints will become the defaults whenever you choose this equation in the future.  

Tip: Use the constraints tab on the User-defined equation dialog to set 
constraints that are part of the model so will be useful almost every time you 
use the equation. Use the constraints tab on the Nonlinear regression 
parameters dialog to set constraints for a particular fit. 

Managing your list of equations 
When you choose More equations from the nonlinear regression parameters dialog, 
Prism shows you a list of equations you have entered or imported. If you don't plan to use 
an equation again, select it and click Delete to erase it from the list. That won't affect any 
files that use the equation you erased. If you open one of these files, and change the 
parameters of the nonlinear regression, Prism will automatically add the equation back to 
your list. 

You can change the order of equations in your list by selecting an equation and then 
clicking Move up or Move down. 

Modifying equations 
You can edit any equation you entered yourself or imported (or chose from the equation 
library). From the nonlinear regression parameters dialog, select the equation from the 
list of "more equations" and then click Edit Eqn. 

Classic equations cannot be modified. But you can create a new user-defined equation 
based on a classic equation.  

To copy and paste a built-in equation: 

1. Start from the Parameters: Nonlinear regression or Simulate Theoretical Curve 
dialog. 

2. Select a built-in classic equation, and click Equation. 

3. Press Copy All. 

4. Cancel from that dialog. 
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5. Select More equations, then Enter your own equation. 

6. Enter an equation name. Then move the insertion point to the Equation block and 
Press Paste. 
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51.  Linear regression with Prism 

Entering data for linear regression 
From the Welcome or New Table dialog, choose any XY graph. Prism will create a data 
table formatted with numbers for the X column. You can choose one of several formats for 
Y columns.   

• If you enter Y values for several groups (into columns A, B, ...) Prism will report 
the results of linear regression of X with each of the Y variables. Prism, however, 
cannot calculate multiple regression. 

• If you format the Y columns for replicates (for example, triplicates), Prism can 
average these and perform all calculations with the means. Or it can treat each 
replicate as a separate value to fit.  

• If you format the Y columns for entry of SD or SEM, Prism analyzes only the 
means and ignores the SD or SEM values. 

• If you format the table to have a subcolumn for X error bars, these will be 
ignored by linear regression. 

Choosing a linear regression analysis 
Start from a data table or graph (see "Entering data for linear regression" on page 334). 
Click on the Analyze button and choose to do built-in analysis. Then select Linear 
regression from the list of curves and regressions. 

 

Force a regression line through the origin (or some other point)? 
 You may force the regression line to go through a particular point such as the origin. In 
this case, Prism will determine only the best-fit slope, as the intercept will be fixed. Use 
this option when scientific theory tells you that the line must go through a particular point 
(usually the origin, X=0, Y=0) and you only want to know the slope. This situation arises 
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rarely, and you should use common sense when making your decision. For example, 
consider a protein assay. You measure optical density (Y) for several known 
concentrations of protein in order to create a standard curve. You then want to interpolate 
unknown protein concentrations from that standard curve. When performing the assay, 
you adjusted the spectrophotometer so that it reads zero with zero protein. Therefore you 
might be tempted to force the regression line through the origin. But this constraint may 
result in a line that doesn't fit the data well. Since you really care that the line fits the 
standards very well near the unknowns, you will probably get a better fit by not 
constraining the line.   

Tip: Most often, you should let Prism find the best-fit line without any 
constraints. 

Fit linear regression to individual replicates or means? 
If you collected replicate Y values at every value of X, there are two ways Prism can 
calculate linear regression. It can treat each replicate as a separate point, or average the 
replicate Y values and treat the mean as a single point.  

You should choose Treat each replicate Y value as individual data point when 
the sources of experimental error are the same for each data point. If one value happens to 
be a bit high, there is no reason to expect the other replicates to be high as well. The errors 
are independent. 

Choose Average replicate Y values and treat and treat as a single data point 
when the replicates are not independent. For examples, the replicates would not be 
independent if they represent triplicate measurements from the same animal, with a 
different animal used at each value of X (dose).  If one animal happens to respond more 
than the others, that will affect all the replicates. The replicates are not independent. 

This choice will affect the best-fit values of the slope and intercept only if the number of 
replicates varies among data points. However, this choice will alter the SE of the slope and 
intercept and therefore the width of the confidence intervals. 

Additional calculations with linear regression 
Prism offers five optional calculations with linear regression. 

Calculation Description 

Calculate unknowns 
from a standard curve 

After fitting a regression line, Prism will interpolate unknown 
values from that curve.  

Runs test Tests whether the line deviates systematically from your data.  

Residuals Helps you test the assumptions of linear regression.  

Compare whether 
slopes and intercepts 
differ between data sets. 

If you fit two data sets, compare the best-fit values of slope and 
intercept. The results will be in a separate results subpage (also 
called a view). 

Confidence or 
prediction intervals of 
the regression line. 

These show you graphically how certain you can be of the best-fit 
line.  
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Changing where the regression lines starts and stops 
By default Prism draws the regression line from the smallest X value in your data to the 
largest. To change these limits, uncheck Auto (under Output options) and enter a 
new starting or stopping X value. This affects how the line is graphed, but does not affect 
any of the numerical results. 

Default preferences for linear regression 
The linear regression parameters dialog affects one particular linear regression analysis. 
Change settings on the Analysis Options dialog to change default settings for future linear 
regression analyses. To open this dialog, pull down the Edit menu and choose 
Preferences and then go to the Analysis tab. You can change these settings: 

• Report results of runs test of goodness-of-fit. 

• Make table and graph of residuals. 

• Test whether slopes and intercepts differ between data sets. 

• Plot the 95% confidence interval of the best-fit line. 

Note: Changing the analysis options changes the default settings for future 
linear regression analyses. It will not change analyses you have already 
performed. 

Using nonlinear regression to fit linear data 
Since Prism’s nonlinear regression analysis is more versatile than its linear regression 
analysis, it can make sense to fit linear data using a nonlinear regression program. Here 
are several such situations. 

GraphPad note: To fit linear regression using Prism’s nonlinear regression 
analysis, choose the built-in equation called Polynomial: First Order 
(straight line).  

Comparing models 
You might wish to compare an unconstrained linear regression line with one forced 
through the origin (or some other point). Or you might compare a linear model with a 
second-order (quadratic) polynomial model. 

Weighting 
Standard linear (and nonlinear) regression assumes that the scatter of the points around 
the line is (on average) the same all the way along the line. But in many experimental 
situations, the scatter goes up as Y goes up. What is consistent is the scatter as a fraction 
of Y. For example, you might see about a 5% error all the way along the line.  

Prism’s linear regression analysis does not let you choose a weighting scheme. But Prism’s 
nonlinear regression analysis does let you choose weighting schemes. See Chapter 14. By 
weighting the points to minimize the sum of the relative distance squared, rather than the 
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distance squared, you prevent the points with the highest Y value (and thus the highest 
scatter) from having undue influence on the line.  

To choose relative weighting, use Prism’s nonlinear regression analysis and choose 
relative weighting in the Methods tab.   

Sharing parameters between data sets 
Prism’s nonlinear regression analysis (but not linear regression) lets you fit a model to 
several data sets, sharing one or more parameters between data sets. This means you 
could fit a line to several data sets, sharing the slope (so you get one best-fit slope for all 
data sets) but not sharing the intercept.  

To share parameters, use Prism’s nonlinear regression analysis and choose to share a 
parameter on the constraints tab. 

Deming (Model II) linear regression  
Standard linear regression assumes that you know the X values perfectly, and all the 
uncertainty is in Y. If both X and Y variables are subject to error, fit linear regression 
using a method known as Deming, or Model II, regression. For background, see Chapter 
7.  

To do the analysis with Prism, click the analyze button, and then choose Deming (Model 
II) regression from the list of clinical lab analyses. Most often, you’ll X and Y are subject to 
the same average error. 

 

Deming regression can also be used when the X and Y are both subject to error, but the 
errors are not the same. In this case, you must enter the error of each variable, expressed 
as a standard deviation.  

How do you know what values to enter? To assess the uncertainty (error) of a method, 
collect duplicate measurements from a number of samples using that method. Calculate 
the standard deviation of the error using the equation below, where each di is the 
difference between two measurements of the same sample (or subject), and N is the 
number of measurements you made (N equals twice the number of samples, since each 
sample is measured twice).  
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2
i

error

d
SD =

N
∑  

Repeat this for each method or variable (X and Y), enter the two SDerror values into the 
Deming regression analysis dialog, and Prism will fit the line for you. If the X variable has 
a much smaller SD than the Y value, the results will be almost identical to standard linear 
regression. 

If you try to compare Prism’s results with those of another program or book, you may 
encounter the variable λ (lamda), which quantifies the inequality between X and Y errors. 

2

X error

Y error

SDλ=
SD

 
 
 

 

Prism requires you to enter individual SD values, but uses these values only to calculate λ, 
which is then used in the Deming regression calculations.  If you know λ, but not the 
individual SD values, enter the square root of λ as the SD of the X values, and enter 1.0 as 
the SD of the Y error. The calculations will be correct, since Prism uses those two values 
only to compute λ. 

Inverse linear regression with Prism 
Inverse linear regression is used rarely. It is appropriate when you know the variable 
plotted on the Y axis with great precision, and all the error is in the variable plotted on the 
X axis. You might want to plot your data this way if the independent variable is depth, so 
logically belongs on the vertical (Y) axis.  In this case, you want to minimize the sum-of-
squares of the horizontal distances of the points from the line.  

Prism does not have a command or option for inverse linear regression. But you can tweak 
the Deming regression analysis to perform inverse regression. To do this, choose Deming 
regression and enter a tiny value for the SD of the Y variable (say 0.0001) and a huge 
value for the SD of the X variable (say 10000). Since the ratio is so huge, Prism assumes 
that virtually all the error is in X and very little is in Y, so the calculations are the same as 
inverse linear regression. 
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52. Reading unknowns from standard curves 

Introduction to standard curves 
Standard curves are used to determine the concentration of substances. First you perform 
an assay with various known concentrations of a substance you are trying to measure. The 
response might be optical density, luminescence, fluorescence, radioactivity or something 
else. Graph these data to make a standard curve – concentration on the X axis, and assay 
measurement on the Y axis. 

Also perform the same assay with your unknown samples. You want to know the 
concentration of the substance in each of these unknown samples. 

To analyze the data, fit a line or curve through the standards. For each unknown, read 
across the graph from the spot on the Y axis that corresponds to the assay measurement of 
the unknown until you intersect the standard curve. Read down the graph until you 
intersect the X axis. The concentration of substance in the unknown sample is the value 
on the X axis.  

In the example below, the unknown sample had 1208 counts per minute, so the 
concentration of the hormone is 0.236 micromolar. 

10-10 10-9 10-8 10-7 10-6 10-5 10-4

0

1000

2000

3000

Concentration of hormone (molar)

C
PM

 

Prism makes it very easy to fit your standard curve and to read (interpolate) the 
concentration of unknown samples. 

How to fit standard curves 
Before you can read unknown values, you first must fit a line or curve through your 
standard points. Prism lets you fit a standard curve with one of these methods: 

Creating a standard curve with linear regression 
Standard curves are often nearly linear, at least within a certain range of concentrations. 
If you restrict you standard curve values to a linear region, you can analyze the curve with 
linear regression. This will be a useful analysis, even if the overall standard curve is not 
quite straight, so long as you choose a reasonable range. The standard curve should start a 
little below your lowest unknown value and extend to a little beyond your highest 
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unknown value. There is no benefit to continuing the standard curve far above or below 
the range of your unknowns. 

Creating a standard curve with cubic spline (or LOWESS) 
The easiest way to fit a curve is to create a cubic spline or LOWESS curve. They are easier 
than nonlinear regression, because you don't have to choose an equation. Spline and 
LOWESS curves tend to wiggle too much, so are not often used as standard curves. See 
chapter 53. 

Creating a standard curve with polynomial regression 
Polynomial regression is a convenient method to create a smooth curve. With Prism, you 
perform polynomial regression by choosing a polynomial equation from the nonlinear 
regression dialog. Try a second, third or fourth order polynomial equation. Higher order 
polynomial equations generate standard curves with more inflection points.  

Creating a standard curve with nonlinear regression 
Nonlinear regression is often used to fit standard curves generated by radioimmunoassay 
(RIA) or similar assays (ELISA). These assays are based on competitive binding. The 
compound you are assaying competes with a labeled compound for binding to an enzyme 
or antibody. Therefore the standard curve is described by equations for competitive 
binding. Try the one-site competitive binding curve. If that doesn't fit your data well, try 
the sigmoid dose-response curve with variable slope. When fitting sigmoid curves, enter 
the X values as the logarithms of concentrations, not concentrations. 

Ordinarily, the choice of an equation is very important when using nonlinear regression. 
If the equation does not describe a model that makes scientific sense, the results of 
nonlinear regression won’t make sense either. With standard curve calculations, the 
choice of an equation is less important because you are not interested in the best-fit values 
of the variables in the equation. All you have to do is assess visually that the curve nicely 
fits the standard points. 

Determining unknown concentrations from standard curves 
To read values off the standard curve: 

1. Enter the unknown values on the same table as your standard curve. Just below the 
standard curve values, enter your unknowns as Y values without corresponding X 
values. This example shows X and Y values for five standards and Y values for four 
unknowns.  
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2. Click on the Graphs button and look at the graph of your standard curve.  

3. Click the Analyze button and choose how to fit the standard curve. Choose either 
linear or nonlinear regression, or create a LOWESS, spline, or point-to-point curve. 

4. On the Parameters dialog, check the option for Unknowns from standard 
curve.  

5. Go to the Results section to see the tabular results. Choose the subpage with 
interpolated values using either the explorer or the toolbar.  

                

6. Look at the table of X and Y values. The Y column contains values you entered, and 
the X column shows the calculated concentrations in the same units that you used 
for the X axis. 

7. If necessary, transform the results to antilogs. Click the Analyze button. Choose 
to analyze the data you are looking at, then in the Analyze Data dialog, choose 
Transforms from the Data manipulation menu. In Parameters: 
Transforms, choose to transform X using X=10^X. 

Standard curves with replicate unknown values 
Prism’s nonlinear regression analysis can interpolate from a standard curve, even if you 
have replicate unknown values. 

Enter the data with all the replicates as shown below. The top part of the table is the 
standard curve. Below that are the unknown values. The standards and the unknowns do 
not need to have the same number of replicate determinations. 

 

When you fit the standard curve with nonlinear regression, select option to calculate 
unknowns from a standard curve. 

The linear regression only can interpolate the mean of replicates unknown. If you want to 
interpolate individual values, use the nonlinear regression analysis and choose a linear 
(polynomial, first order) model. 
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The interpolated values are shown on two output pages. The subpage labeled 
“Interpolated X mean values”  shows the average of the replicate unknown Y values you 
entered in the Y column, with the corresponding interpolated X values in the X column.  

Each value in “Interpolated X replicates” is a concentration corresponding to one of the 
replicate values you entered, and is expressed in the same units as the X axis of your 
standard curve. Because Prism cannot deal with replicate X values, Prism places these 
unknown X values in a Y column on the results table. Think of them as X values on your 
standard curve. But think of them as Y values when you want to do further analyses (such 
as a transform). 

To calculate the mean and SD (or SEM) of the replicate values, press Analyze and choose 
row statistics.  

Potential problems with standard curves 
Reading unknown values from a curve or line is not always completely straightforward. 

Problems when interpolating within the range of your standards 
If you calculate X from Y, beware of a possible ambiguity. It is possible that two or more 
points on the curve have identical Y values but different X values. In this situation, Prism 
will report the lowest of the X values within the range of the standard curve and will not 
warn you that other answers exist.  

Unknown Y

Reported X
 

Prism defines a curve as a large number of points. To find unknown values, Prism linearly 
interpolates between the two points on either side of the unknown value. If you define the 
curve with more line segments, the interpolation will be more accurate. To increase the 
number of line segments, go to the Output tab on the nonlinear regression parameters 
dialog. 

Problems extrapolating nonlinear regression beyond your standards 
Prism can only read unknowns off standard curves generated by nonlinear regression 
within the range of the standard curve. If you enter an unknown value that is larger than 
the highest standard or smaller than the lowest standard, Prism will not try to determine 
the concentration. You can extend the curve in both directions, to include lower and 
higher X values, by settings on the range tab in the nonlinear regression parameters 
dialog.  

Beware of extrapolation beyond the range of the data. Be especially wary of polynomial 
equations which will sometimes veer far from your data when you go outside the range of 
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your data. The graph below shows the same data shown on the previous page fit to a 
fourth order polynomial equation (dashed curve). The curve fits the data well, but the 
path it takes outside the range of the data is not what you’d expect. Extrapolating beyond 
the range of the standards (the data points) would not yield useful values.   
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Problems extrapolating linear regression beyond your standards 
With linear regression (in contrast to nonlinear regression), Prism will extrapolate the line 
to determine the unknown values, no matter how far they are from the knowns. 

Mark Twain pointed out the folly of extrapolating far beyond your data: 

“In the space of one hundred and seventy six years the Lower Mississippi has 
shortened itself two hundred and forty-two miles. That is an average of a trifle 
over a mile and a third per year. Therefore, any calm person, who is not blind or 
idiotic, can see that in the Old Oölitic Silurian Period, just a million years ago 
next November, the Lower Mississippi was upwards of one million three hundred 
thousand miles long, and stuck out over the Gulf of Mexico like a fishing-pole. 
And by the same token any person can see that seven hundred and forty-two 
years from now the Lower Mississippi will be only a mile and three-quarters long, 
and Cairo [Illinois] and New Orleans will have joined their streets together and 
be plodding comfortably along under a single mayor and a mutual board of 
aldermen. There is something fascinating about science. One gets such wholesale 
returns of conjecture out of such a trifling investment of fact. “ 
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53. Graphing a family of theoretical curves 

Creating a family of theoretical curves 
You’ll often find it useful to graph a theoretical curve, or a a family of theoretical curves, as 
a way to understand the properties of the model. This is sometimes called “plotting a 
function”. This is different from fitting a curve with nonlinear regression. With nonlinear 
regression, you choose the equation and Prism finds the values of the parameters that 
make that equation fit your data the best. When plotting theoretical curves, you choose 
both the equation and the values of the parameters, and Prism graphs the function. You 
don’t need to enter any data, and there is no curve fitting involved. 

This chapter explains a special analysis that Prism offers to graph a family of theoretical 
curves. This is different from checking an option in the nonlinear regression dialog to plot 
the curve defined by the initial values. See page 305. 

To simulate a family of curves, start from any data table or graph and follow these steps. 

1. Click Analyze, select built-in analysis, and then select Create a family of 
theoretical curves from the list entitled "Simulate and generate".  

2. The curve will be defined by a number of line segments. Choose how many 
segments you want. The default value of 150 will suffice for most purposes. 

3. Choose a starting and ending value for X. 

4. Select an equation. 

5. Choose how many curves you wish to generate. All will be generated from the same 
equation, over the same range of X values. You can enter different parameters for 
each. 

6. Enter the parameters for the first data set. 

7. If you are creating more than one curve, go to the next one using the drop one 
(choose Curve B or Curve C …). Click Copy from Previous to copy the 
parameters from the previous curve, then edit as needed.  
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Note: Prism can also generate simulated data sets with random scatter. After 
choosing this "analysis" you'll need to define the arithmetic or geometrical 
series used to generate X, the equation used to generate Y, and the distribution 
used to add random scatter. See Chapter 10 in the User’s Guide (not this book) 
for details. 
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54. Fitting curves without regression 

Introducing spline and lowess 
Prism provides two approaches for fitting a curve without selecting a model. A cubic 
spline curve goes through every data point, bending and twisting as needed. A 
LOWESS curve follows the trend of the data. LOWESS curves can be helpful when the 
data progresses monotonically, but are less helpful when there are peaks or valleys. Prism 
lets you choose between fine, medium and course LOWESS curves. The fine curve reveals 
the fine structure of the data, but tends to wiggle a lot. The coarse curve shows only the 
general trend, but obscures the detail. 

Course Lowess Fine Lowess Cubic Spline

 

Spline and lowess with Prism 
To create a LOWESS or spline curve with Prism, click the Analyze button and choose Fit 
spline/LOWESS from the list of curves and regressions to open the parameters dialog. 

 

A cubic spline curve is a smooth curve that goes through every point. If your data are 
scattered, the spline will wiggle a lot to hit every point.  

Select a LOWESS curve only if you have well over twenty data points. Prism generates 
LOWESS curves using an algorithm adapted from Graphical Methods for Data Analysis, 
John Chambers et. al., Wadsworth and Brooks, 1983. The smoothing window has 5, 10 or 
20 points depending on whether you choose coarse, medium or fine smoothing. 

Prism can also create a point-to-point “curve” -- a series of line segments connecting all 
your data. Don't create a point-to-point curve just so you can connect points with a line on 
the graph. You can do that by checking an option on the Format Symbols & Lines dialog 
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from the Graphs section of your project. Only select the point-to-point analysis if you 
want to use the point-to-point line as a standard curve or to calculate area under the curve 

Prism generates the spline, lowess or point-to-point curve as a series of line segments. 
Enter the number of segments you want, and check the option box if you want to view the 
table with the XY coordinates of each point. 

Consider alternatives since spline curves wiggle so much, and LOWESS curves can be 
jagged. To get a smoother curve, consider using nonlinear regression and pick a model 
empirically. You don’t have to pick an equation that corresponds to a sensible model, and 
don’t have to interpret the best-fit values. Instead, you can use nonlinear regression 
simply as a way to create a smooth curve, rather than as a method to analyze data. 
Polynomial equations are often used for this purpose.   
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