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Why modelling ?

• to move from mere description to underlying 
phenomena…
– nature can often be better explained in terms of equations than 

mere description

– this has been essential in physics (think about gravity law, 
radioactive decay, study of electromagnetic field and optics, … 
up to the equivalence of mass and energy…)

• to allow predictions over and beyond what is immediately 
accessible by the experience…

• to generate rules that can be applied widely…
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In vitro studies
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Response to an antimicrobial
an example with ceftobiprole and S. aureus (one strain) 
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Response to an antimicrobial
an example with ceftobiprole and S. aureus (2 strains) 

Effect-over-time
(2 strains)
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Response to an antimicrobial: the model
an example with ceftobiprole and S. aureus (2 strains)
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Response to an antimicrobial: the model
an example with ceftobiprole and S. aureus (multiple strains)
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Analyses

Equation for Prism

Equation:Sigmoidal dose-response
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50 -X)))

;X is the logarithm of concentration. Y is the 
response
;Y starts at Bottom and goes to Top with a sigmoid 
shape

Sigmoidal dose-response: 

also called "4-parameters logistic equation", i.e.
• bottom (Emin )
• Top (Emax)
• EC50
• Hill slope

Sigmoid dose-response
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Analyses
Equation

Equation:Sigmoidal dose-response
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50 -X)))

;X is the logarithm of concentration. Y is the 
response
;Y starts at Bottom and goes to Top with a sigmoid 
shape
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Type of functions

how would 
you fit those 

data

Do not forget to use the appropriate axes !
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Type of functions

This would 
be a good 

model
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Run statistics
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Run tests
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Two examples
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Impact of MIC on the response of 
intracellular bacteria to moxifloxacin
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Lemaire et al. Journal of Antimicrobial Chemotherapy (2011) 66:596-607 
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Colistin and inoculum effect

colistin concentration (mg/L)

low inoculum (

 

in vitro testing)

high inoculum (

 

in vivo

The extent and rate of killing of P. aeruginosa by colistin were markedly 
decreased at high CFUo compared to those at low CFUo. 
Bulita et al. Antimicrob. Agents Chemother. (2010) 54:2051-2062 
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In search of models with Prism
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In search of models (including your own)
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In search of models (including your own)
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And here you are …
azithromycin
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telithromycin

-5 -4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2

Cmax
1 mg/L

MIC, 0.008 mg/L
Cs, 0.04 mg/L

Log concentration (mg/L)


 lo

g 
cf

u 
fr

om
 ti

m
e 

0 
(4

8 
h)

ciprofloxacin

-5 -4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2

Cmax
4 mg/L

MIC, 0.01 mg/L
Cs, 0.002 mg/L

Log concentration (mg/L)


 lo

g 
cf

u 
fr

om
 ti

m
e 

0 
(4

8 
h)

moxifloxacin

-5 -4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2

Cmax
4 mg/L

MIC, 0.01 mg/L
Cs, 0.001 mg/L

Log concentration (mg/L)


 lo

g 
cf

u 
fr

om
 ti

m
e 

0 
(4

8 
h)

finafloxacin

-5 -4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2

Cmax
12 mg/L

MIC, 0.01 mg/L
Cs, 0.05 mg/L

Log concentration (mg/L)


 lo

g 
cf

u 
fr

om
 ti

m
e 

0 
(4

8 
h)



Oct. 2011 HUP - Hanoi, Vietnam

In vivo pharmacokinetics
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What is PK analysis and modeling ?

• Noncompartmental analysis 
Noncompartmental PK analysis examines total drug 
exposure and looks for function(s) fitting the change 
of concentration over time without reference to where 
the drug may distribute.  

Analysis is simple and does not imply anything 
concerning the actual fate of the drug. 

The results are purely descriptive and non-predictive 
unless the function selected is linked to physical 
phenomena (e.g. 1st order kinetics).  
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What is PK analysis and modeling ?
• Compartmental analysis 

Describes and predicts the concentration-time 
curve based on the movements of the drug 
between compartments (kinetic or physiological 
model) 

Once the model is indentified, it can be used to 
predict the concentration at any time. 

The model may be (very) difficult to develop 

The simplest PK compartmental model is the one- 
compartmental PK model with IV bolus administration and 
first-order elimination. 

The most complex PK models rely on the use of 
physiological information to ease development and 
validation.
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What is PK analysis and modeling ?

• Compartmental analysis 

The simplest PK compartmental model is the one- 
compartmental PK model with IV bolus administration and 
first-order kinetic elimination 

This can be developed with simple software accessible to lay 
users such as Prism (with some sophistication sometimes) 

More complex PK models rely on the use of physiological 
information to ease development and validation. 

This requires "high capacity" software that is often impossible 
to use without serious introduction



Oct. 2011 HUP - Hanoi, Vietnam

Simple compartmental models
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Integrating … (calculus)
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From model to data and finding "best parameters" with 
a computer (curve fitting) 

• choose (or enter) your equation
• enter your data
• enter initial parameter values 

(best estimate; optional but useful)
• the computer will then

– compare equation-based curve to actual data
– modify parameters by successive iterations 

until a "best" fit is obtained …
– the limit is the number of iterations  

numerical 
integration
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From data to model with a computer (no calculus)
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Example of monocopartmental analysis … (*)

equation: C = C0 .e-kt

theoretical curve

Exponential-decay (1 compartment)
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* this analysis and the following ones concern ceftazidime IV
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Fitting to ideal population data (*)
Ceftazidime: ideal patients
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* data from a few volunteers 
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Ideal population: tests for 95 % CI
Ceftazidime: ideal patients
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Ideal population: residuals

ideal-valuesNonlin fit of ideal-valuesData Table-1:Residuals

0 1 2 3 4 5 6 7
-7

-5

-3

-1

1

3

5

time (h)

why are they 
much larger 

here ?
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Real population (*)
ceftazidime: real population
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* data from several patients 
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Real population: 95 % CI 
ceftazidime: real population
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Real population: residuals
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More complex models: accumulation / decay 

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

theoretical curve

Bateman function
(applied to ceftazidime)
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In search of more complex models with Prism
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 Ceftazidime with Bateman function
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38

Accumulation / decay with Prism … (*)

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

real data

R2 = 0.57
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Examples d'analyse monocompartimentale … (*)

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

 Ceftazidime with Bateman
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Prism has 
a problem 

here !
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When the data become really too complex…
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The Mixed non-lin approaches

Different softwares, but alll working by numerical 
integration based on pre-defined models
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The Monlolix project

http://www.monolix.org
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The Monlolix project
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The Monlolix software
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Temocillin project (full)
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Projet temocillin (simplified)
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Outputs: individual curves
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Outputs: spaghetti plot (*)
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Total number of subjects:      4
Average number of doses per subject:      1
Total/Average/Min/Max numbers of observations:       15     3.75        3        4

* not noodles !
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Outputs: population curves
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Outputs: population
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Outputs: observations vs. predictions
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Outputs: residuals
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