PK-PD analysis and modelling

Paul M. Tulkens

Cellular and Molecular Pharmacology & Center for Clinical Pharmacy Louvain Drug Research Institute Université catholique de Louvain, Brussels, Belgium

http://www.facm.ucl.ac.be

With the support of Wallonie-Bruxelles-International

Why modelling ?

- to move from mere description to underlying phenomena...
 - nature can often be better explained in terms of equations than mere description
 - this has been essential in physics (think about gravity law, radioactive decay, study of electromagnetic field and optics, ... up to the equivalence of mass and energy...)
- to allow predictions over and beyond what is immediately accessible by the experience...
- to generate rules that can be applied widely...

In vitro studies

Response to an antimicrobial

an example with ceftobiprole and S. aureus (one strain)

Response to an antimicrobial

an example with ceftobiprole and S. aureus (2 strains)

Response to an antimicrobial: the model

an example with ceftobiprole and *S. aureus* (2 strains)

Response to an antimicrobial: the model

an example with ceftobiprole and S. aureus (multiple strains)

Analyses

also called "4-parameters logistic equation", i.e.

- bottom (E_{min})
- Top (Emax)
- EC₅₀
- Hill slope

Sigmoid dose-response

Equation for Prism

Equation:Sigmoidal dose-response Y=Bottom + (Top-Bottom)/(1+10^((LogEC₅₀-X)))

;X is the logarithm of concentration. Y is the response

;Y starts at Bottom and goes to Top with a sigmoid shape

Analyses

		MSSA	HA-MRSA	CA-MRSA
Equation		Y	Y	Y
	Sigmoidal dose-response			
Equation:Sigmoidal dose-	Best-fit values			
Y=Bottom + (Top-Bottom)/	воттом	-1.042	-0.9878	-1.006
	ТОР	3.063	2.596	2.741
;X is the logarithm of conc	LOGEC50	-0.6931	-0.5582	-0.4805
response	EC50	0.2027	0.2766	0.3307
;Y starts at Bottom and go	Std. Error			
shape	BOTTOM	0.1109	0.1087	0.1346
	TOP	0.2756	0.2025	0.2325
	LOGEC50	0.1134	0.1069	0.1148
	95% Confidence Intervals			
	BOTTOM	-1.273 to -0.8117	-1.207 to -0.7684	-1.278 to -0.7347
	TOP	2.490 to 3.637	2.187 to 3.005	2.271 to 3.210
	LOGEC50	-0.9291 to -0.4572	-0.7739 to -0.3425	-0.7122 to -0.2489
	EC50	0.1177 to 0.3490	0.1683 to 0.4544	0.1940 to 0.5637
	Goodness of Fit			
	Degrees of Freedom	21	43	43
	R²	0.9296	0.8795	0.8499
	Absolute Sum of Squares	3.232	10.99	15.35
	Sy.x	0.3923	0.5056	0.5974
	Data			
	Number of X values	32	98	164
	Number of Y replicates	1	1	1
	Total number of values	24	46	46
	Number of missing values	8	52	118

Type of functions

Type of functions

Run statistics

Run tests

Two examples

Impact of MIC on the response of intracellular bacteria to moxifloxacin

Lemaire et al. Journal of Antimicrobial Chemotherapy (2011) 66:596-607

Colistin and inoculum effect

The extent and rate of killing of *P. aeruginosa* by colistin were markedly decreased at high CFUo compared to those at low CFUo. Bulita et al. Antimicrob. Agents Chemother. (2010) 54:2051-2062

In search of models with Prism

Parameters: Nonlinear Regression (Curve Fit)	×
Equation Comparison Constraints Initial values Weighting Output Range	
Choose an equation Classic equations Classic equations Classic equations Choose an equation Classic equations Classic equations Competition Sigmoidal dose-response Sigmoidal dose-response (variable slope) One site competition Two site competition Boltzmann sigmoidal One phase exponential decay Two phase exponential decay Two phase exponential association Two phase exponential association Exponential growth Power series: Y=A*X^B + C*X^D Polynomial: First Order (straight line) Polynomial: Second Order (Y=A + B*X + C*X^2) Choose an equations View Equation View Equation Delete View Equation Delete Move Up Move Up Move Down	
Also calculate Show the 95% confidence band of the best-fit curve Unknowns from standard curve Runs test Residuals Dose-ratios for Schild plot Ki from IC50. Kd= [ligand]=	
Help Me Decide Cancel OK	

In search of models (including your own)

Parameters: Nonlinear Regression (Curve Fit)		x
Equation Comparison Constraints Initial values Weighting Output	Range	1
Choose an equation Classic equations Classic equations (Enter your own equation.) [Select an equation from the Prism equation library.] [Import an equation from a Prism file or template.] total 0 to 100, standard slope natural ligand 100 agonisme-antagonisme concentration-vs-Vd-Cl double sigmoid decay accumulation accumulation decay accumulation-decay accumulation-decay [2]	Edit Equation Delete Move Up Move Down	
 Show the 95% confidence band of the best-fit curve Unknowns from standard curve Runs test Residuals Dose-ratios for Schild plot Ki from IC50. Kd= [ligand]= 	 Fit a curve with nonlinear regression. Don't fit (Plot the curve defined by the initial values.) 	
Help Me Decide	Cancel OK]

In search of models (including your own)

User-defined Equation	X
Enter Equation Rules for Initial Values Default Constraints	
Name: double sigmoid	_
Equation	
Y=((Bottoml + (Topl-Bottoml)/(1+10^((LogEC501-X)*HillSlopel))) + (Bottom2 + (Top2-Bottom2)/(1+10^((LogEC502-X)*HillSlope2))) + 0.5) ;X is the logarithm of concentration. Y is the response ;Y starts at Bottom and goes to Top with a sigmoid shape. ;This is identical to the "four parameter logistic equation"	
Copy <u>All</u> <u>C</u> opy Cut <u>P</u> aste	
Calculate derivatives with faster (less accurate) method	

And here you are ...

In vivo pharmacokinetics

What is PK analysis and modeling ?

• Noncompartmental analysis Noncompartmental PK analysis examines total drug exposure and looks for function(s) fitting the change of concentration over time without reference to where the drug may distribute.

Analysis is simple and does not imply anything concerning the actual fate of the drug.

The results are purely descriptive and non-predictive unless the function selected is linked to physical phenomena (e.g. 1st order kinetics).

What is PK analysis and modeling ?

Compartmental analysis

Describes and predicts the concentration-time curve based on the movements of the drug between compartments (kinetic or physiological model)

- Once the model is indentified, it can be used to predict the concentration at any time.
- •••
- The model may be (very) difficult to develop

The simplest PK compartmental model is the onecompartmental PK model with IV bolus administration and first-order elimination.

The most complex PK models rely on the use of physiological information to ease development and validation.

What is PK analysis and modeling ?

Compartmental analysis

The simplest PK compartmental model is the onecompartmental PK model with IV bolus administration and first-order kinetic elimination

This can be developed with simple software accessible to lay users such as Prism (with some sophistication sometimes)

More complex PK models rely on the use of physiological information to ease development and validation.

This requires "high capacity" software that is often impossible to use without serious introduction

Simple compartmental models

Integrating ... (calculus)

Integrating a differential equation

Using calculus, you (or someone you delegate this job to) can integrate the equation to form a standard model that defines Y as a function of t:

$$Y_t = Y_0 \cdot e^{-\frac{Clearance}{V_D}t} = Y_0 \cdot exp(-Clearance \cdot t/V_D)$$

At time zero, the concentration of drug (Y_o) equals the dose you injected (D in mg) divided by the volume of distribution (V_o in mL). So the equation can be rewritten like this:

From model to data and finding "best parameters" with a computer (curve fitting)

- choose (or enter) your equation
- enter your data
- enter initial parameter values (best estimate; optional but useful)
- the computer will then
 - compare equation-based curve to actual data
 - modify parameters by successive iterations until a "best" fit is obtained ...
 - the limit is the number of iterations

numerical integration

From data to model with a computer (no calculus)

Parameters: Nonlinear Regression (Curve Fit)	X
Equation Comparison Constraints Initial values Weighting Output	Range
Choose an equation Classic equations More equations One site binding (hyperbola) Two site binding (hyperbola) Sigmoidal dose-response Sigmoidal dose-response (variable slope) One site competition Two site competition Boltzmann sigmoidal One phase exponential decay Two phase exponential decay One phase exponential decay One phase exponential association Two phase exponential association Exponential growth Power series: Y=A*X^B + C*X^D Polynomial: First Order (straight line) Polynomial: Second Order (Y=A + B*X + C*X^2)	View Equation Delete Move Up Move Down
Also calculate Show the 95% confidence band of the best-fit curve Unknowns from standard curve Runs test Residuals Dose-ratios for Schild plot Ki from 1050. Kd= [ligand]=	Fit ? Fit a curve with nonlinear regression. Don't fit (Plot the curve defined by the initial values.)
Help Me Decide	Cancel OK

Example of monocopartmental analysis ... (*)

Exponential-decay (1 compartment)

* this analysis and the following ones concern ceftazidime IV

Fitting to ideal population data (*)

Ceftazidime: ideal patients

Ideal population: tests for 95 % CI

Ceftazidime: ideal patients

Ideal population: residuals

ideal-valuesNonlin fit of ideal-valuesData Table-1:Residuals

Real population (*)

ceftazidime: real population

* data from several patients

Real population: 95 % Cl

ceftazidime: real population

Real population: residuals

More complex models: accumulation / decay

In search of more complex models with Prism

Choose an equation C Classic equations O More equal	tions
[Enter your own equation.] [Select an equation from the Prism equation library.] [Import an equation from a Prism file or template.] log(inhibitor) vs. response	Edit Equation
accumulation-decay accumulation decay Top to zero ALIC/MIC vancomucine Moise-Broder	Move Up
	Iser-defined Equation Enter Equation Rules for Initial Values Default Constraints
	Name: accumulation-decay
Also calculate	Equation
Show the 95% confidence band 💽 of I	$Y = (D/Vd) *ka/(ka-ke) * (e^- (ke*X) - e^ (-ka*X))$
Unknowns from standard curve	
Runs test	
Residuals	
Dose-ratios for Schild plot	
Kritrom IU50, Ka= [[igand]=]	

X

Accumulation / decay with Prism ... (*)

Ceftazidime with Bateman function

Examples d'analyse monocompartimentale ... (*)

Ceftazidime with Bateman

When the data become really too complex...

The Mixed non-lin approaches

Different softwares, but all working by numerical integration based on pre-defined models

Noncompartmental

- Freeware: bear & for R
- Commercial: EquivTest @, Kinetica @, Phoenix/WinNonlin @, PK Solutions @.

Compartment based

- Commercial: Kinetica, Phoenix/WinNonlin, PK Solutions, PottersWheel, SAAM II &.

Physiologically based

- Freeware: MCSim 🔗
- Commercial: GastroPlus &, PK-Sim &, Simcyp &.

Population PK

- Freeware: ADAPT, Boomer Monolix &, PKBugs &.

The MonIolix project

http://www.monolix.org

MONOLIX 3.2 is a free software developed by Inria and dedicated to the analysis of non linear mixed effects models. The objective of this software is to perform:

1) Parameter estimation

- computing the maximum likelihood estimator of the parameters, without any approximation of the model
- computing standard errors for the maximum likelihood estimator,

2) Model selection

- comparing several models using some information criteria (AIC, BIC),
- testing hypotheses using the Likelihood Ratio Test,
- testing parameters using the Wald Test.

3) Goodness of fit plots

4) Data simulation

The MonIolix project

Monolix

Version 3.2

NOVEMBER 2010

A free software for the analysis of nonlinear mixed effects models

Maximum likelihood estimation Model selection Hypothesis testing Graphical analysis Data simulation

The MonIolix software

HUP - Hanoi, Vietnam

Temocillin project (full)

P-807

Population Pharmacokinetics of Temocillin in ICU patients and Monte Carlo Simulations to Evaluate Resistance Breakpoints

A.E. Muller¹, P.F. Laterre³, T. Dugernier³, X. Wittebole³, N. Couwenbergh³, P.M. Tulkens³, S. Carryn³, J.W.Mouton^{2,4} "Basinus Redical Cente Releater, Prathoul University Nimegen Redical Center, Cartistus Villemine Regels, Nimegen, The Netherlands, University Cartolique de Louisin, Brustles, 684000

Projet temocillin (simplified)

Population Pharmacokinetics of <u>Temocillin</u> in ICU patients and Monte Carlo Simulations to Evaluate Resistance Breakpoints			Erasmu University Medica Co	is MC	cvz
A.E. Muller ¹ , P.F. Laterre ³ , T. Dugernier ³ , X. Wittebole ³ , N. Couwenbergh ³ , P.M. Tulkens ³ , S. Carrvn ³ , J.W.Mouton ^{2,4} "Basmus Nedical Cente Rollerian, "Raiboul University Himegen Nedical Cente, Carleks Wilhelmine Hospital, Nimegen, The Netherlands, ² University Carbolique de Louvein, Brussles, Rødøk ID TIME			St Radboud Center for Infectious Diseases	Université catholique de Louvain	
	2 2 2 2 2 2	0 8 16 24 24.5	: : 180.9931	2000	4000 : :
	2 2 3 3	25 26 32 0 8	116.2348 74.32156 29.47129	: 2000	: 4000
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	16 24 24.5 25 26 32	93.14254 84.20551 55.63816 28.52648	· · ·	• • •
	4 4 4 4 4 4	0 8 16 24 24.5 26 32	166.6043 66.90455 34.18707	2000	4000 - - - - -
	5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 8 16 24 24.5 25 26 32	244.0112 155.3705 63.73172 53.71434	2000	4000 - - - - - -

P-807

Outputs: individual curves

Outputs: spaghetti plot (*)

* not noodles !

Outputs: population curves

Outputs: population

Outputs: observations vs. predictions

Outputs: residuals

