

CLouvain

14/04/2019

THINKING OUT OF THE BOX TO BEAT BIOFILMS

Activity of drug combinations against staphylococcal biofilms

Françoise Van Bambeke, PharmD, PhD, ESCMID fellow

Pharmacologie cellulaire et moléculaire Louvain Drug Research Institute <www.facm.ucl.ac.be>

Disclosures

- Research grants for studies on biofilms (last 5 years) : Cempra, Melinta therapeutics
- Common research programs with OneLife, subsidized by the *Region Wallonne*, Belgium
- Research grants for studies on other topics (last 5 years): Debiopharm, GSK, Merlion pharmaceuticals, SMB
- Advisory board: Bayer

14/04/2019

Staphylococcal biofilms

Staphylococcal biofilmsa new point of view on how to cure them

Staphylococcal biofilms and human infections

Staphylococcal biofilms: why do they cause persistent infections ? (1/2)

Staphylococcal biofilms: why do they cause persistent infections ? (2/2)

14/04/2019

ECCMID 2019

Staphylococcal biofilms: strategies currently under investigation

Staphylococcal biofilms: strategies currently under investigation

MBEC (Calgary device)

MBEC - checkerboard

Metabolically

- inactive
- active

drug B

MBEC - checkerboard

	MIC (mg L^{-1})	MBEC (mg L^{-1})
Vancomycin	2	>2048
Daptomycin	0.38	1024
Linezolid	1	>1024
Tigecyline	0.25	1024
Rifampicin	0.008	N/A
Dicloxacillin	0.125ª	512

	Rifampicin (10 mg L ⁻¹)	Vancomycin (25 mg L ⁻¹)	Daptomycin (130 mg L ⁻¹)	Linezolid (10 mg L ⁻¹)
Vancomycin (mg L ⁻¹)	256	*	256	512
Daptomycin (mg L ⁻¹)	1024	>2048	*	>2048
Linezolid (mg L ⁻¹)	>1024	>1024	>1024	*
Tigecycline (mg L ⁻¹)	8	N/A	N/A	N/A

But still >> clinically achievable concentrations !

Antibiotic combinations: from in vitro to in vivo models

Combinations do not seem more efficacious in vivo than drugs alone ...

ECCMID 2019

Jorgensen et al, Path Dis, 2016;74: ftw019

Combinations in microplates at fixed concentrations (free human C_{max})

concentrations

UCLouvain ______

ECCMID 2019

Siala et al, Antimicrob Agents Chemother. 2018;62:pii: e00598-18

FUS + DAP at fCmin FUS + VAN at fCmin FUS + LZD at fCmin 140 140 140 120. 120 120-100 100 100 Combined drug at *f*Cmin alone % control value control value control value 80. 80 80 60 60-FUS alone [variable conc.] 60· * 40-40. FUS FUS 20-FUS 20-20. DAP (f Cmin) VAN (f Cmin) LZD (f Cmin) Combined drug at *f*Cmin FUS + DAP (f Cmin) FUS + VAN (f Cmin FUS + LZD (f Cmin) + FUS [variable conc.] CT -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 CT -1.0 -0.5 0.0 0.5 1.0 2.0 1.5 0.5 -0.5 0.0 1.0 1.5 CT -1.0 2.0 FUS log₁₀ concentration (mg/L) FUS log₁₀ concentration (mg/L) FUS log₁₀ concentration (mg/L) FUS + DAP at fC_{max} FUS + LZD at fCmax FUS + VAN at fCmax 140 140 140 120-120 120 100 100 value % control value % control value Combined drug at *f*Cmax alone 80 80 control FUS alone [variable conc.] 60 60 % 40-* FUS FUS FUS 20-20. 20-Combined drug at *f*Cmax LZD (f C_{max}) VAN (f C_{max}) DAP (f C_{max}) FUS + DAP (f Cmax) FUS + VAN (f C_{max}) FUS + LZD (f C_{max}) + FUS [variable conc.] 0.0 0.5 1.0 CT -1.0 -0.5 1.5 2.0 -0.5 0.0 0.5 1.0 CT -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 CT -1.0 1.5 2.0 FUS log₁₀ concentration (mg/L) FUS log₁₀ concentration (mg/L) FUS log₁₀ concentration (mg/L) **Combinations more effective** Siala et al, Antimicrob Agents Chemother. 2018;62:pii: e00598-18

Combinations in microplates at variable concentrations

14/04/2019

UCLouvain

Combinations in CDC bioreactor (mimicking human PK)

16

Combinations of FUS + LZD and DAP still more effective ...but not combinations with VAN ?

Siala et al, Antimicrob Agents Chemother. 2018;62:pii: e00598-18

Combinations in CDC bioreactor (mimicking human PK)

1 Rer vesati rotpropyrer coupon history exposite ware as har O Biobactinoa Tiedrinoiagian hi

El Haj et al, Intern. J. Antimicrob. Ag. 2018;51:854–61

UCLouvain 14/04/2019

Staphylococcal biofilms: strategies currently under investigation

Suresh et al, Int J Med Microbiol. 2019;309:1-12

18

UCLouvain ______

Drug repurposing as a source of potentiators

Gupta et al, Trends Pharmacol Sci. 2013;34:508-17

19

UCLouvain 14/04/2019

Tom Coenve *

ECCMID 2019

Drug repurposing as a source of potentiators: a possibly successful story?

20

14/04/2019

ECCMID 2019

Fibrinolytic agents

Zapotoczna et al., PLoS Pathog. 2016;12:e1005671

UCLouvain 14/04/2019

Fibrin biofilm Zapotoczna et al., PLoS Pathog. 2016;12:e1005671

Hogan et al, Antimicrob Agents Chemother. 2018;62. pii: e02008-17

22

Fibrin

Fibrinolytic agentscatheters in vitro

12 **Treatment of USA300 JE2 biofilm** 10 8 Log10 CFU □ Agent Alone 6 ■ & Vancomycin * * 4 ■ & Rifampin 2 ■ Vancomycin Tryple Streptokinase 🛯 Rifampin Plasmin Natokinase

Fibrin biofilm

^{otilm} Zapotoczna et al., PLoS Pathog. 2016;12:e1005671

Hogan et al, Antimicrob Agents Chemother. 2018;62. pii: e02008-17

UCLouvain 14/04/2019

ECCMID 2019

catheters in vivo

Fibrin biofilm Zapotoczna et al., PLoS Pathog. 2016;12:e1005671

Hogan et al, Antimicrob Agents Chemother. 2018;62. pii: e02008-17

24

UCLouvain 14/04/2019

ECCMID 2019

Combining antibiotics with enzymes destroying the matrix

Staphylococcal biofilms: strategies currently under investigation

Suresh et al, Int J Med Microbiol. 2019;309:1-12

Mode of action of antimicrobial peptides against biofilms

An example with nisin ...

B

untreated

CHL alone

Field et al, Front Microbiol. 2016;7:508

UCLouvain ______

An example with nisin ...

Nisin & derivatives

alone

Field et al, Front Microbiol. 2016;7:508

UCLouvain ______

Nisin & derivatives alone

An example with nisin ...

Nisin & derivatives alone

CHL + Nisin & derivatives

2.0-*** 1.5 0D492 *** 1.0 0.5- $\overline{\nabla}$ 0.0 CHL + Nisin & derivatives

Field et al, Front Microbiol. 2016;7:508

14/04/2019

UCLouvain

2.5

ECCMID 2019

Mode of action of antibodies against biofilms

UCLouvain ______

Raafat et al, Trends Microbiol. 2019;27:303-22

Antibodies against biofilms to destroy the matrix

Dimer of histonelike prot. stabilizing eDNA

Epitope targeted by Ab TRL1068

eDNA

In vitro (PEGs)

Staphylococcus aureus TRL1068: 1.2 μg/mL

Growth Control

Estelles et al, Antimicrob Agents Chemother. 2016;60:2292-301

Xiong et al, Antimicrob Agents Chemother. 2017;60:61:e00904-17

32

UCLouvain 14/04/2019

ECCMID 2019

Staphylococcal biofilms: strategies currently under investigation

Conlon et al, Nature 2013;503: 365-70

S. aureus biofilm

S. aureus cells within extracellular matrix

Biofilms in vivo (thigh deep infection)

ADEPA

ADEPA

Staphylococcal biofilms: which are the best weapons to combine ?

Staphylococcal biofilms: which are the best weapons to combine?

• Antibiotic combinations:

- Useful to prevent resistance
- Frequent synergy in vitro
- Sometimes synergy in vivo

• Repurposed drugs as potentiators:

- May accelerate development
- But consider active concentrations vs. therapeutic concentrations

• Peptides and antibodies:

• Promising, some are in clinical development

rifampicin / other bactericidal drugs?

- But ADME issues
 - Antipersisters:
 - Highly effective
 - Currently only preclinical preliminary data available

Acknowledgments

UCLouvain

Julia Bauer

Wafi Siala Di

Yvan Diaz Iglesias

Sona Kucharíková

Patrick Van Dijck

