Fluoroquinolones: Parenteral use

Paul M. Tulkens, MD, PhD

Cellular and Molecular Pharmacology Louvain Drug Research Institute Université catholique de Louvain Brussels, Belgium

Middle East Anti-Infectives Forum Yas Island, Abu Dhabi, U.A.E 10-11 November 2017

With approval of the Belgian Common Ethical Health Platform – visa no. 17/V1/10411/093945

Disclosures and slides availability

- Research grants
 - Theravance, Astellas, Targanta, Cerexa/Forest, AstraZeneca, Bayer, GSK, Trius, Rib-X, Eumedica
 - Belgian Science Foundation (*F.R.S.-FNRS*), Ministry of Health (*SPF*), and Walloon and Brussels Regions
- Speaking fees
 - Bayer, GSK, Sanofi, Johnson & Johnson, OM-Pharma
- Decision-making and consultation bodies
 - General Assembly and steering committee of EUCAST
 - European Medicines Agency (external expert)
 - US National Institutes of Health (grant reviewing)

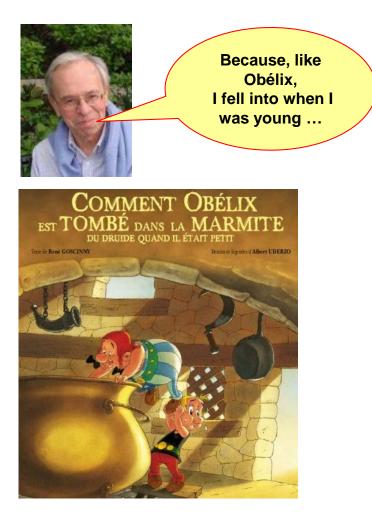
Slides: http://www.facm.ucl.ac.be → Lectures

What do we do ?

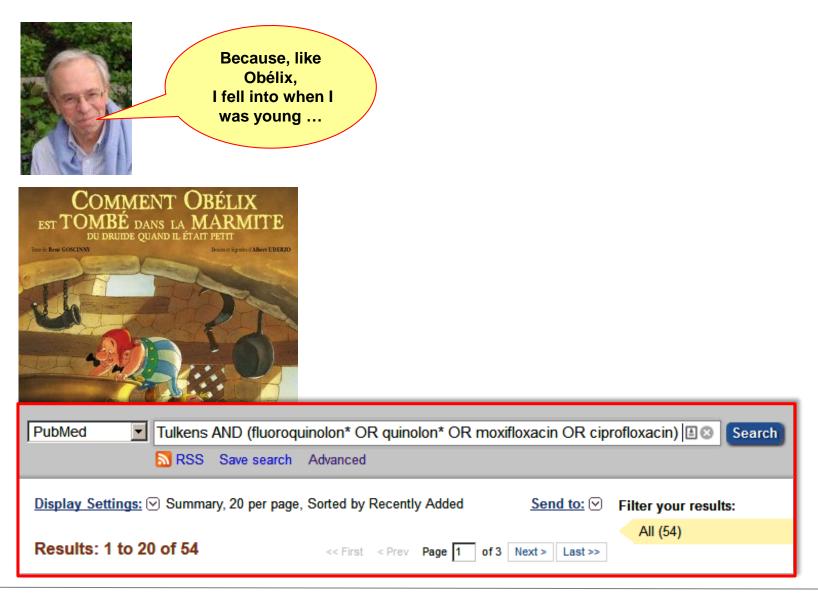
- Teaching of Pharmacology and Pharmacotherapy
- Post-graduate training on Drug Development
- Launching of Clinical Pharmacy in Europe
- Web-based courses on anti-infective
 Pharmacology
- 30 graduating students, doctoral fellows and post-graduate fellows working on antiinfective therapy (laboratory and clinical applications)

A partial view of our University Clinic (900 beds) and the Education and Research buildings (5,000 students), in the outskirts of Brussels, Belgium

- Toxicity, medicinal chemistry, and improved schedules of aminoglycosides
- novel antibiotics (and last studied)
 - beta-lactams (ceftaroline...)
 - fluoroquinolones (finafloxacine...)
 - kétolides (solithromycin...)
 - oxazolidinones (tedizolid ...)


www.facm.ucl.ac.be

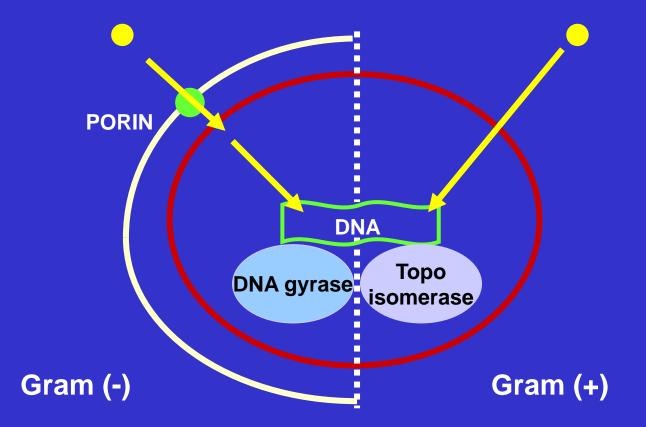
- Editorial board of AAC and IJAA
- Member of the General Committee of EUCAST (for ISC) and of its Steering committee (2008-10)
- Member of the Belgian Antibiotic Policy Coordination Committee
- Founder and Past President of the International Society of Antiinfective Pharmacology (ISAP)

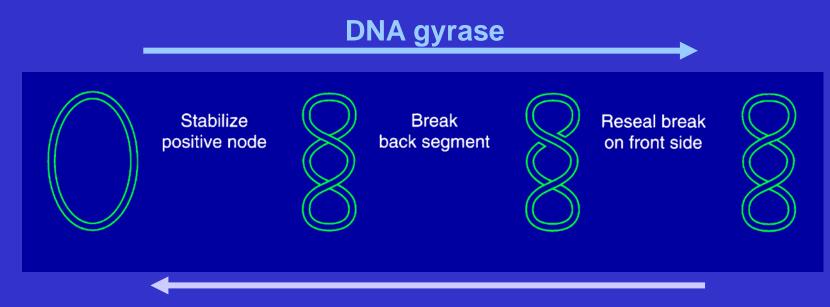


10-11 Nov 2017

Why do I have an interest in fluoroquinolones ?

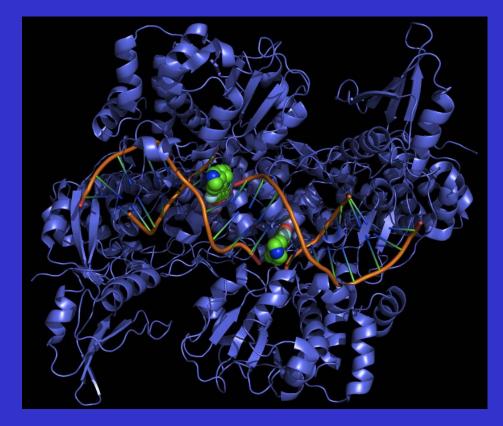
Why do I have an interest in fluoroquinolones ?

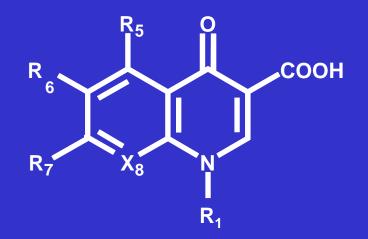

Why do I have an interest in fluoroquinolones ?


What shall we discuss ?

- The basics: are quinolones different by design ?
- When should they be given IV ?
- Indications and experience of moxifloxacin IV
- The fights against resistance: the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?

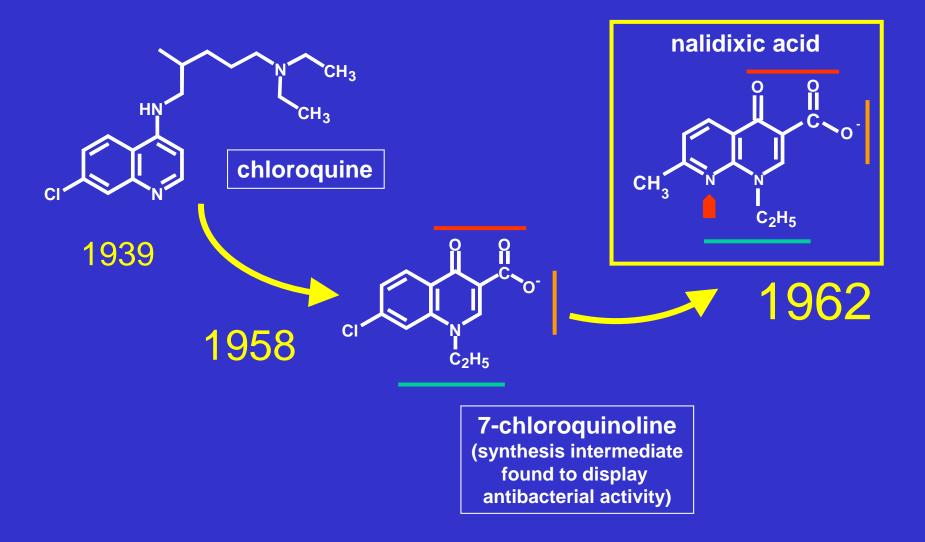
Mechanism of action of fluoroquinolones: the basics...


2 key enzymes in DNA replication:

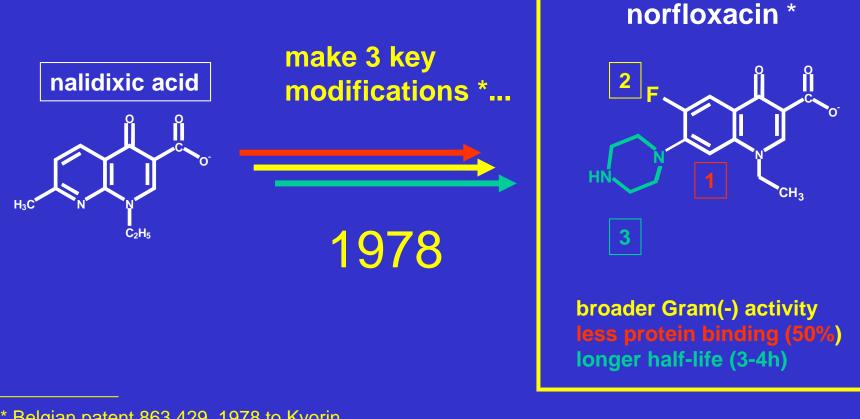

topoisomerase IV

bacterial DNA is supercoiled

Ternary complex DNA - enzyme - fluoroquinolone

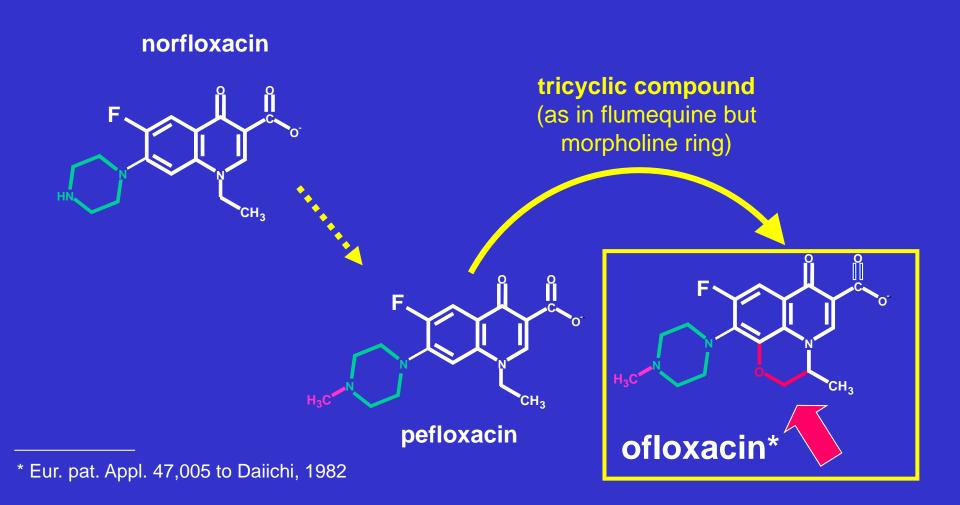


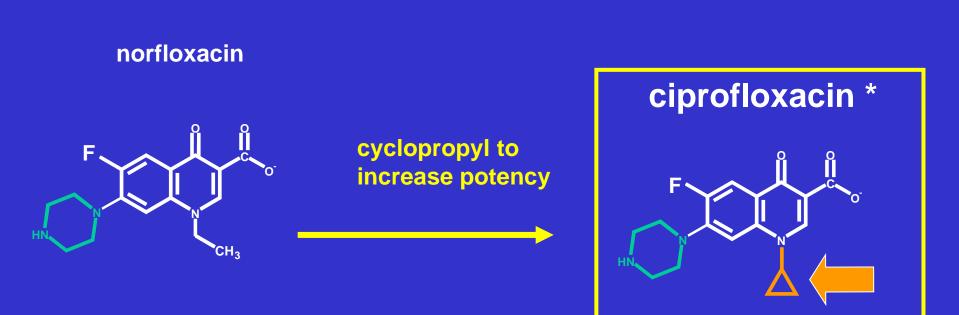
"GyraseCiproTop" by Fdardel - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:GyraseCiproTop.png#mediaviewer/File:GyraseCiproTop.png Last accessed: 8/2/2015 Fluoroquinolones are the first entirely man-made antibiotics: do we understand our molecule ?



Don't panic, we will travel together....

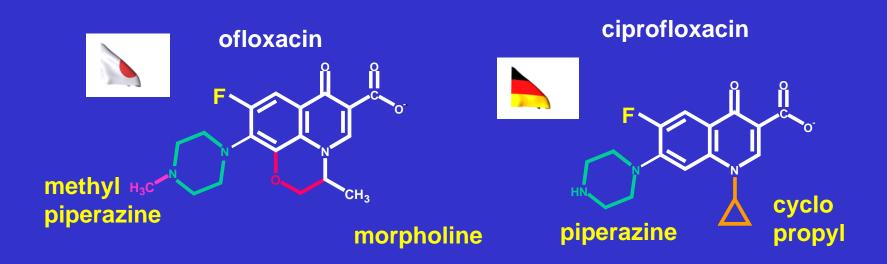
From chloroquine to nalidixic acid...


From nalidixic acid to the **1st fluoroquinolone**

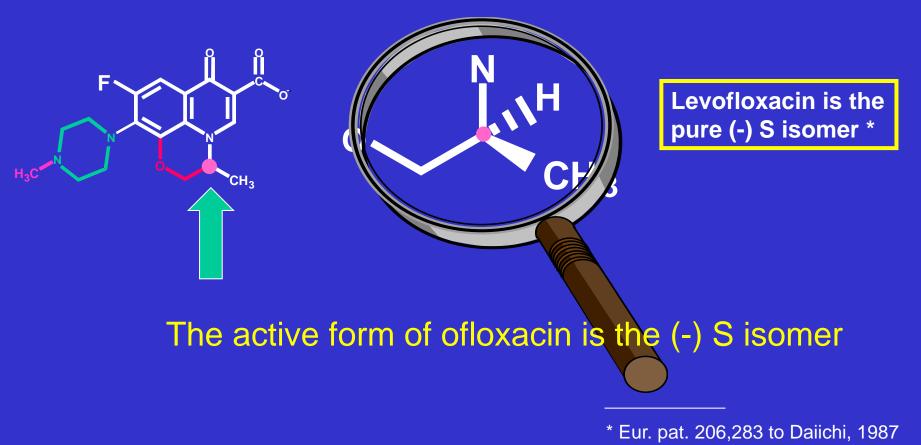

* Belgian patent 863,429, 1978 to Kyorin

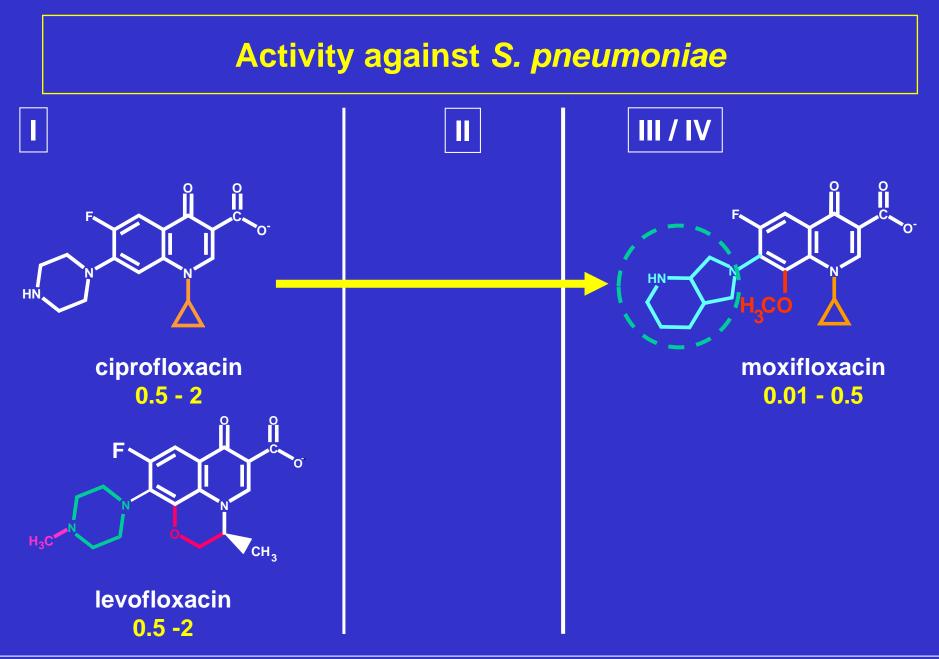
* 6-fluoro-7-pyrimidino-quinoleine

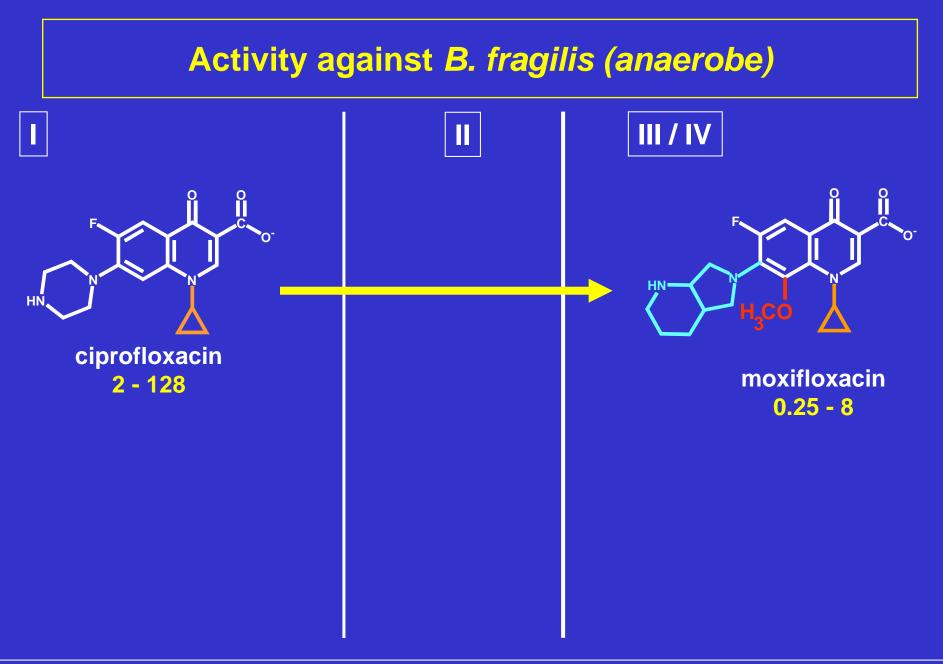
From norfloxacin to ofloxacin via pefloxacin



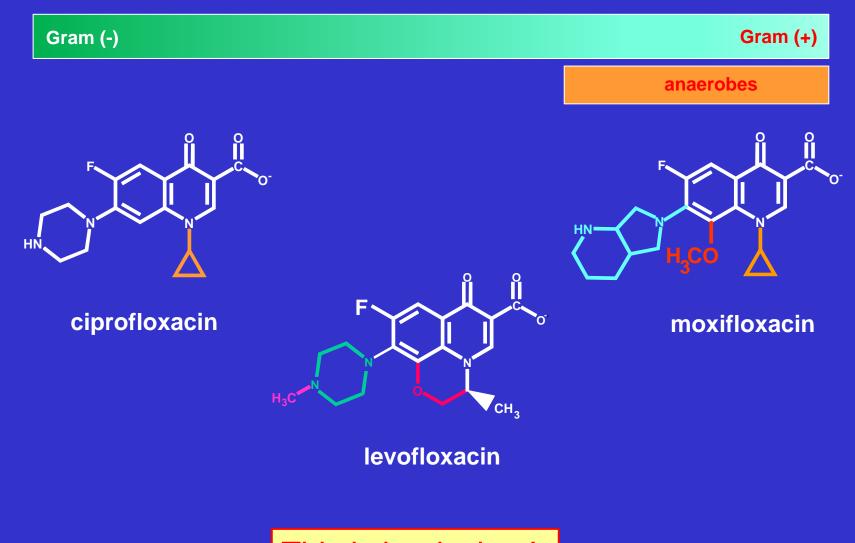
From norfloxacin to ciprofloxacin


* Ger. pat. 3,142,854 to Bayer AG, 1983


"1st generation" fluoroquinolones



From ofloxacin to levofloxacin...


Ofloxacin is a racemic mixture

At this point ...

This is by design !

A unbiased estimation of antibiotic activity (in the absence of resistance)

EUCAST EUCAST UNCODE AN COMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

European Society of Clinical Microbiology and Infectious Diseases

Organization

EUCAST News

Clinical breakpoints

Expert rules

Resistance mechanisms

MIC distributions & ECOFFs

Zone distributions & ECOFFs

AST of bacteria

Antifungal susceptibility testing (AFST)

AST of veterinary pathogens

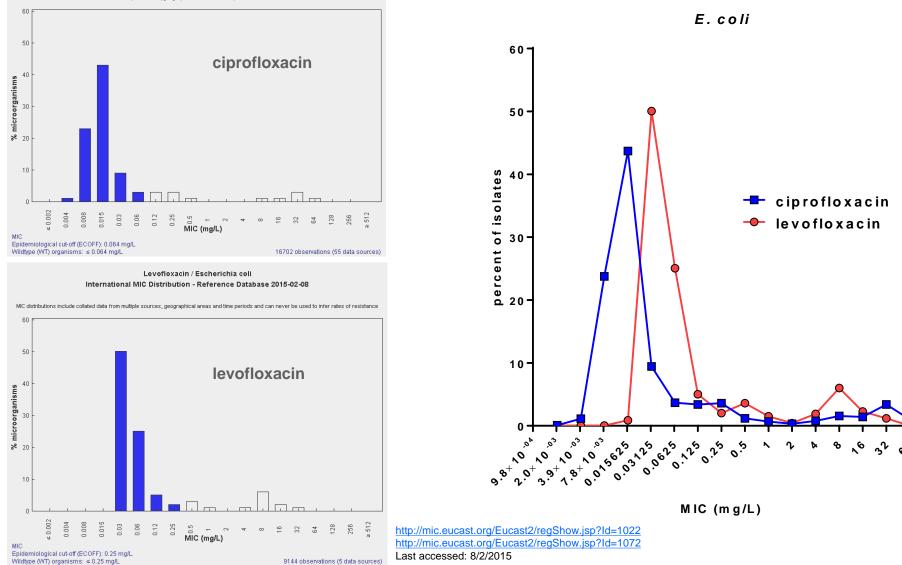
Frequently Asked Questions (FAQ)

Meetings

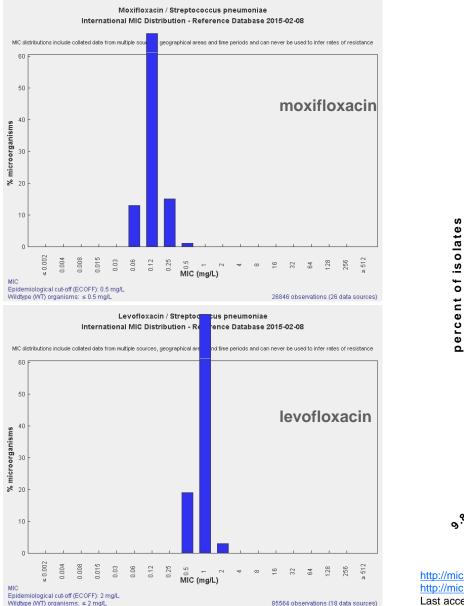
EUCAST Presentations

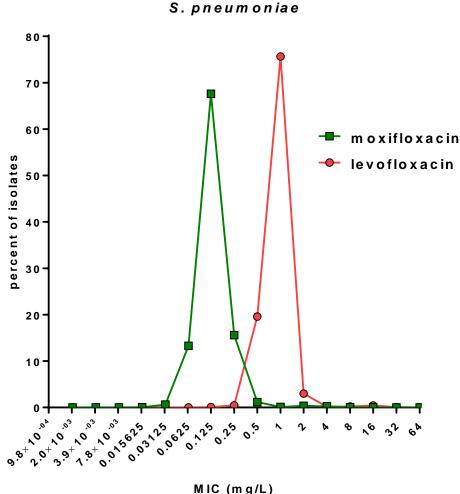
Documents

The European Committee on Antimicrobial Susceptibility Testing - EUCAST


EUCAST is a standing committee jointly organized by ESCMID, ECDC and European national breakpoint committees. EUCAST deals with breakpoints and technical aspects of phenotypic in vitro antimicrobial susceptibility testing and functions as the breakpoint committee of EMA and ECDC. EUCAST does not deal with antibiotic policies, surveillance or containment of resistance or infection control. The Steering Committee is the decision making body. It is supported by a General Committee with representatives from European and other countries, FESCI and ISC. The Steering Committee also consults on EUCAST proposals with experts within the fields of infectious diseases and microbiology, pharmaceutical companies and susceptibility testing device manufacturers.

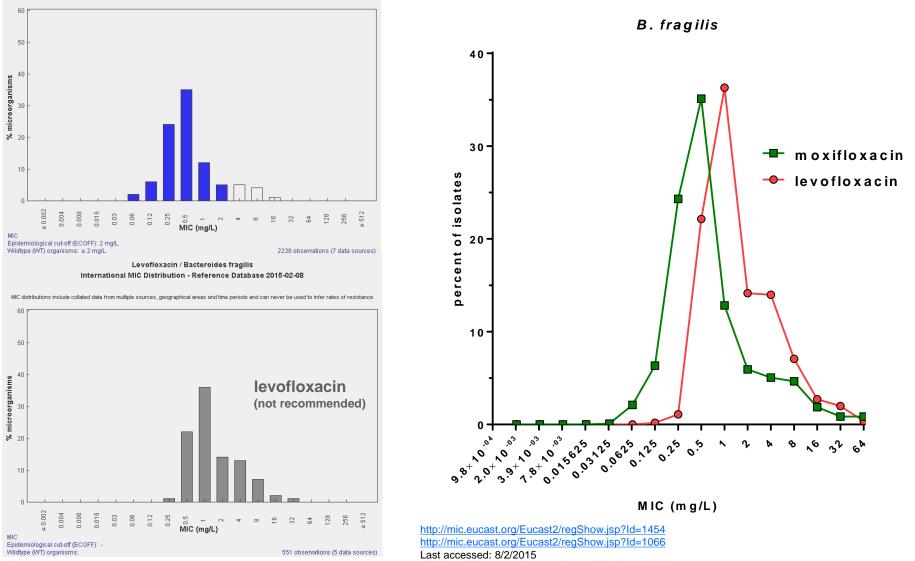
MIC distributions and epidemiologic al cut-off


Gram negative: E. coli


Ciprofloxacin / Escherichia coli International MIC Distribution - Reference Database 2015-02-08

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

Gram positive: S. pneumoniae



http://mic.eucast.org/Eucast2/regShow.jsp?ld=1099 http://mic.eucast.org/Eucast2/regShow.jsp?ld=1310 Last accessed: 8/2/2015

Anaerobes: B. fragilis

Moxifloxacin / Bacteroides fragilis International MIC Distribution - Reference Database 2015-02-08

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

What shall we discuss ?

- The basics: are quinolones different by design ?
- When should they be given IV ?
- Indications and experience of moxifloxacin IV
- The fights against resistance: the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?

When should a fluoroquinolone be given IV ?

- Firsts, they should not in many cases because mots have a good oral bioavailability (70 to 90%)
- BUT the **patient** may require an IV treatment:
 - difficulties to swallow (consciousness, ...)
 - vomiting
 - GIT disease
 - hemodynamic instability
 - risk of poor compliance (!)
- and the doctor may be more comfortable:
 - more reliable peak levels and AUC
 - better organ penetration ...

What shall we discuss ?

- The basics: are quinolones different by design ?
- When should they be given IV
- Indications and experience of moxifloxacin IV
- The fights against resistance: the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?

Moxifloxacin IV indications

----DOSAGE AND ADMINISTRATION-----

Type of Infection	Dose Every 24 hours	Duration (days)
Community Acquired Pneumonia (1.1)	400 mg	7–14
Uncomplicated Skin and Skin Structure		
Infections (SSSI) (1.2)	400 mg	7
Complicated SSSI (1.3)	400 mg	7–21
Complicated Intra-Abdominal Infections (1.4)	400 mg	5-14
Plague (1.5)	400 mg	10-14
Acute Bacterial Sinusitis (1.6)	400 mg	10
Acute Bacterial Exacerbation of Chronic		
Bronchitis (1.7)	400 mg	5

- No dosage adjustment in patients with renal or hepatic impairment. (8.6, 8.7)
- AVELOX Injection: Slow intravenous infusion over 60 minutes. Avoid rapid or bolus intravenous injection. (2.2)
- Do not mix with other medications in intravenous bag or in an intravenous line. (2.3)

-----DOSAGE FORMS AND STRENGTHS-----

- Tablets: Moxifloxacin hydrochloride (equivalent to 400 mg moxifloxacin) (3.1)
- Injection: Moxifloxacin hydrochloride (equivalent to 400 mg moxifloxacin) in 0.8% sodium chloride solution in a 250 mL flexibag (3.2)

A comprehensive meta-analysis of moxifloxacin IV in skin and skin structures infections

A Meta-analysis of Sequential Intravenous/Oral Moxifloxacin Monotherapy for Treatment of Skin and Skin Structure Infections

Affiliations

¹ Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China ² College of Pharmaceutical Science, China Medical University, Shenyang, China ³ Department of Pharmacy, Dalian Medical University, Dalian, China

Chu et al. Drug Res (Stuttg). 2015;65:650-7 - PMID: 26070015.

A comprehensive meta-analysis of moxifloxacin IV in skin and skin structures infections

	moxifloxacin		other antibiotics		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% C		M-H. Fixe	d. 95% CI	
Benjamin A. Lipsky2007	25	37	25	41	8.2%	1.33 [0.53, 3.38]	í.	-	-	
Cao Yu-chun 2002	37	40	30	42	2.3%	4.93 [1.27, 19.10]	ľ.		.	_
Inge C. Gyssens 2011	320	361	275	307	35.9%	0.91 [0.56, 1.48]	Č.		-	
Parish LC 2000	163	180	155	171	15.9%	0.99 [0.48, 2.03]	í.	_		
Philip Giordano 2005	143	180	153	187	32.8%	0.86 [0.51, 1.44]	ť.	-	_	
Wang Ai-ping2003	33	39	34	49	4.9%	2.43 [0.84, 7.01]	ĺ.	1		
Total (95% Cl)		837		797	100.0%	1.11 [0.84, 1.46]			•	
Total events	721		672							
Heterogeneity: Chi ² = 8.58	, df = 5 (P	= 0.13);	12 = 42%					, ,		~~~
Test for overall effect: Z =							0.01	0.1 1	10	10
	12412-1400						Favou	s experimental	Favours of	control

Fig. 2 The clinical cure rates comparing moxifloxacin with other antibiotics.

	moxifloxacin other antibioti			piotics		Odds Ratio	Odds	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% C	M-H. Fixe	d. 95% CI		
Benjamin A. Lipsky2007	20	29	21	32	8.2%	1.16 [0.40, 3.40]				
Cao Yu-chun 2002	40	40	39	42	0.6%	7.18 [0.36, 143.50]				
nge C. Gyssens 2011	432	497	370	429	68.8%	1.06 [0.73, 1.55]		ł		
Parish LC 2000	57	62	50	54	5.7%	0.91 [0.23, 3.58]				
Philip Giordano 2005	50	64	47	59	14.2%	0.91 [0.38, 2.17]		_		
Wang Ai-ping2003	37	39	38	40	2.5%	0.97 [0.13, 7.28]				
lotal (95% CI)		731		656	100.0%	1.07 [0.79, 1.47]		•		
Total events	636		565							
leterogeneity: Chi ² = 1.77	. df = 5 (P	= 0.88);	I* = 0%				\mapsto			
Test for overall effect: Z =	0.45 (P = 0).65)					0.01 0.1 1 Favours experimental	10 Favours cont	10 trol	

Fig. 3 The bacteriological success rates comparing moxifloxacin with other antibiotics.

Chu et al. Drug Res (Stuttg). 2015;65:650-7 - PMID: 26070015.

A Met

Moxif

Skin S

Authors Affiliations

Tissue penetration: abdominal abscesses

ORIGINAL RESEARCH ARTICLE

Clin Drug Invest 2008; 28 (2): 71-79 1173-2563/08/0002-0071/\$48.00/0

© 2008 Adis Data Information BV. All rights reserved.

Pharmacokinetics and Tissue Penetration of Moxifloxacin in Intervention Therapy for Intra-Abdominal Abscess

Andreas D. Rink,¹ Heino Stass,² Heinz Delesen,² Dagmar Kubitza² and Karl-Heinz Vestweber¹

1 Department of General Surgery, Leverkusen General Hospital, Leverkusen, Germany

2 Institute of Clinical Pharmacology, Bayer HealthCare AG, Wuppertal, Germany

Rink et al. Clin Drug Investig. 2008;28:71-9. PMID: 18211115

Tissue penetration: abdominal abscesses

ORIGINAL RESEARCH ARTICLE

Pharmacokinetics and Tissue Penetration of Moxifloxacin in Intervention Therapy for Intra-Abdominal Abscess

Andreas D. Rink,¹ Heino Stass,² Heinz Delesen,² Dagmar Kubitza Heinz Vestweber¹

- 1 Department of General Surgery, Leverkusen General Hospital, Leverk
- 2 Institute of Clinical Pharmacology, Bayer HealthCare AG, Wuppertal,

Rink et al. Clin Drug Investig. 2008;28:71-9. PMID: 18211115

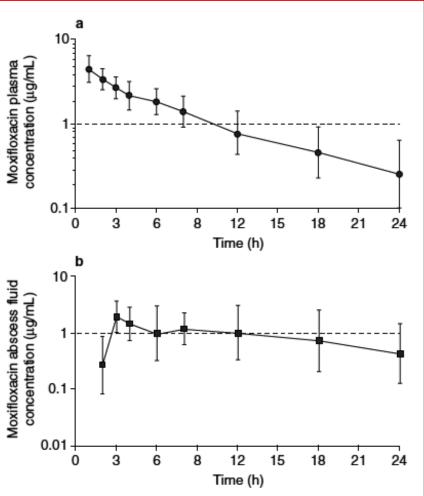


Fig. 1. Concentrations of moxifloxacin in plasma (a) and abscess fluid (b) following a single 400-mg dose administered by 1-hour intravenous infusion. Results are presented as geometric means with SDs (n = 8).

Tissue penetration: abdominal abscesses

ORIGINAL RESEARCH ARTICLE

Clin Drug Invest 2008; 28 (2): 71-79 1173-2563/08/0002-0071/\$48.00/0

© 2008 Adis Data Information BV. All rights reserved.

Pharmacokinetics and Tissue Penetration of Moxi in Intervention Thei Intra-Abdominal Ab

Andreas D. Rink,¹ Heino Stass,² Heinz Delese Heinz Vestweber¹

1 Department of General Surgery, Leverkusen Ge

2 Institute of Clinical Pharmacology, Bayer Healt

Rink et al. Clin Drug Investig. 2008;28:71-9

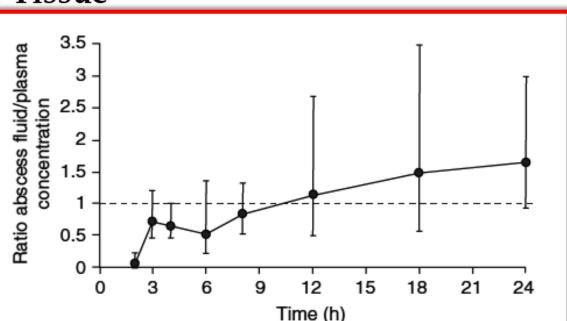


Fig. 2. Abscess fluid/plasma concentration ratio following administration of a single 400-mg dose administered by 1-hour intravenous infusion. Results are presented as geometric means with SDs (n = 8).

Fluid penetration: CSF

Contents lists available at ScienceDirect

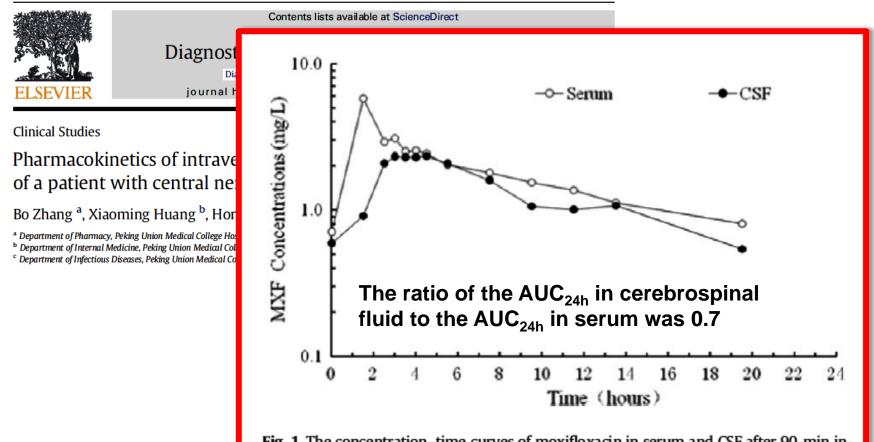
Diagnostic Microbiology and Infectious Disease

Diagnostic Microbiology and Infectious Disease 84 (2016) 249-251

journal homepage: www.elsevier.com/locate/diagmicrobio

Clinical Studies

Pharmacokinetics of intravenous moxifloxacin in the cerebrospinal fluid of a patient with central nervous system shunt infection *


Bo Zhang ^a, Xiaoming Huang ^b, Hongwei Fan ^c, Xuejun Zeng ^b, Dan Mei ^a, Qiang Fu ^{a,*}

^a Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

^b Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

^c Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Fluid penetration: CSF

Fig. 1. The concentration–time curves of moxifloxacin in serum and CSF after 90-min infusion administration of 400 mg moxifloxacin at steady state in a patient with CNS shunt infection.

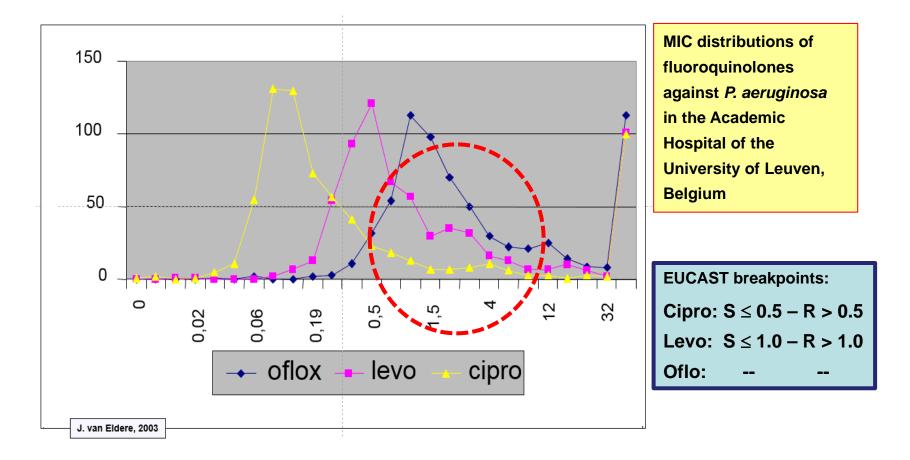
Penetration in other tissues and effectiveness

- cancellous and cortical bone: 53.86 and 41.59% of the plasma concentration ¹
 - \rightarrow much above the MIC90s for common susceptible pathogens
 - \rightarrow suitable for treatment of osteomyelitis.
- body and manubrium of the sternal bone after IV administration: 1.65 g/g and 1.64 g/g at 2 h and 1.4 g/g and 1.45 g/g at 5 h²
 → considered for the treatment of osteomyelitis.
- prophylactic treatment of post-endoscopic retrograde cholangiopancreatography cholangitis and cholangitis-associated morbidity ³

 \rightarrow moxifloxacin IV not inferior to ceftriaxone.

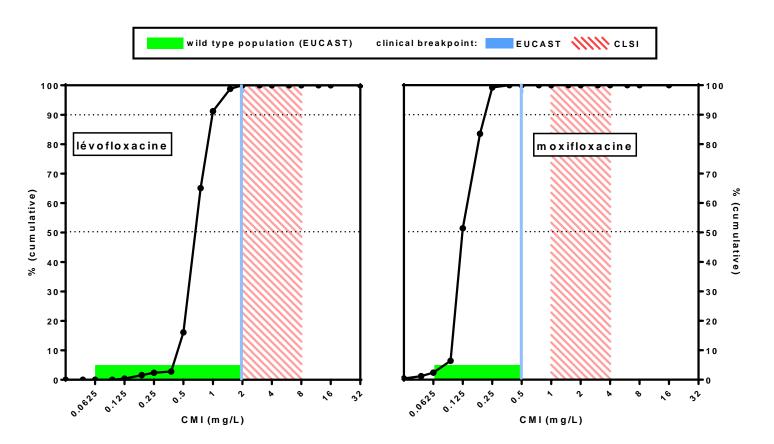
1 Metallidis et al. J Chemother. 2007;19:682-7 - PMID: 18230551

2 Metallidis et al. Int J Antimicrob Agents. 2006;28:428-32 - PMID: 17034992.


3 Kim e al. Hepatobiliary Pancreat Dis Int. 2017;16:512-518 - PMID: 28992884.

What shall we discuss ?

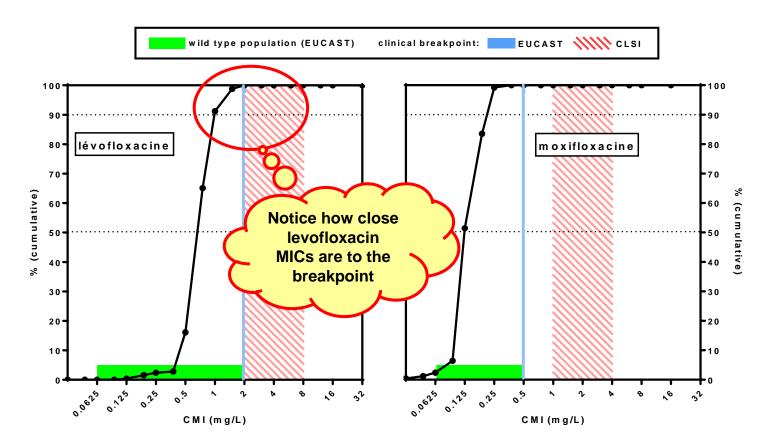
- The basics: are quinolones different by design ?
- When should they be given IV
- Indications and experience of moxifloxacin IV
- The fights against resistance and the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?


Resistance must first be assessed by MIC distributions

 Resistance of Gram-negative (ciprofloxacin/levofloxacin) is widespread and must be assessed locally (often ward by ward)

Resistance must first be assessed by MIC distributions

- Conversely, resistance of Gram-positive is variable
 - High for MRSA (co-resistance frequent)
 - Low for S. pneumonia (especially for moxifloxacin; close to breakpoint for levofloxacin)



MIC distributions of S. pneumonia in Belgium for CAP (n=249)

Lismond et al. Int J Antimicrob Agents. 2012 Mar;39(3):208-16.

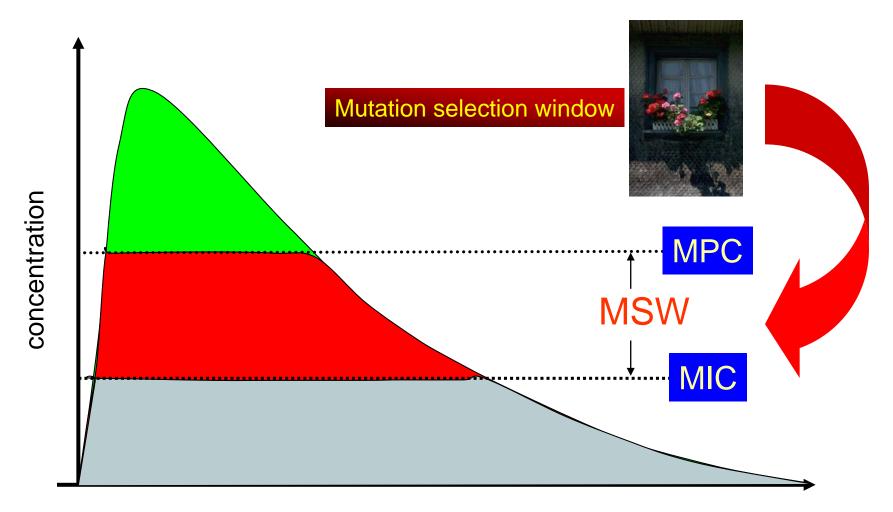
Resistance must first be assessed by MIC distributions

- Conversely, resistance of Gram-positive is variable
 - High for MRSA (co-resistance frequent)
 - Low for S. pneumonia (especially for moxifloxacin; close to breakpoint for levofloxacin)

MIC distributions of S. pneumonia in Belgium for CAP (n=249)

Lismond et al. Int J Antimicrob Agents. 2012 Mar;39(3):208-16.

C_{max} and "Mutant Prevention Concentration" (MPC) ...

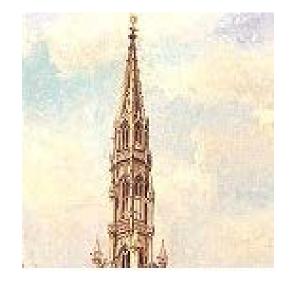


Dong et al: AAC 1999; 43:1756-1758

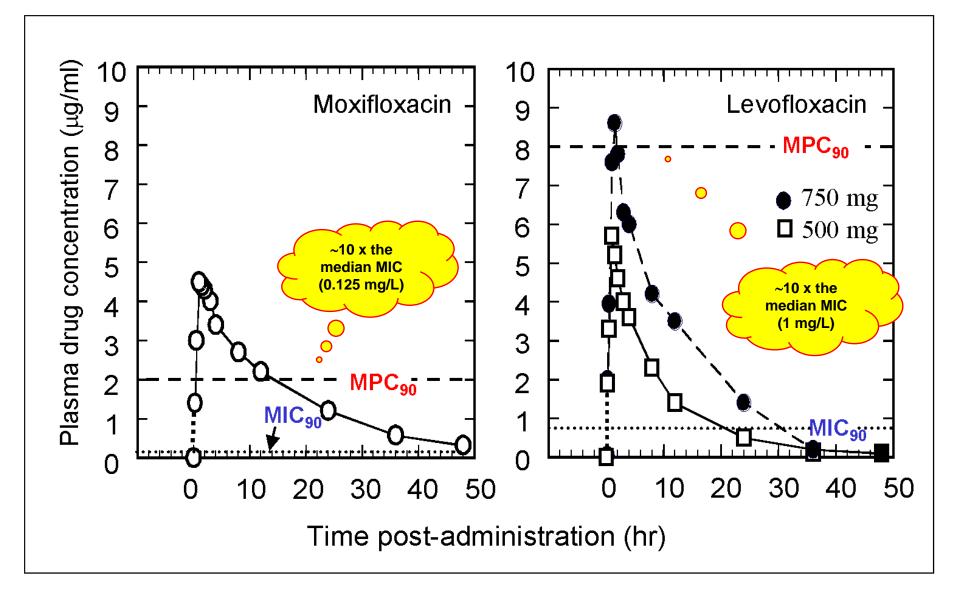
"Mutant Prevention Concentration ..." Concentration that 1 MIC ₉₉ = **0.8** inhibits the majority of the organisms 10⁻² Surviving bacteria 10⁻⁴ 10⁻⁶ 10⁻⁸ **Concentration** needed to prevent 10⁻¹⁰1 MPC ₁₀ = 9 the selection of resistant organisms (about 10 x the MIC) 0.01 0.10 1.00 10.00 concentration

Dong et al; AAC 43:1756-1758

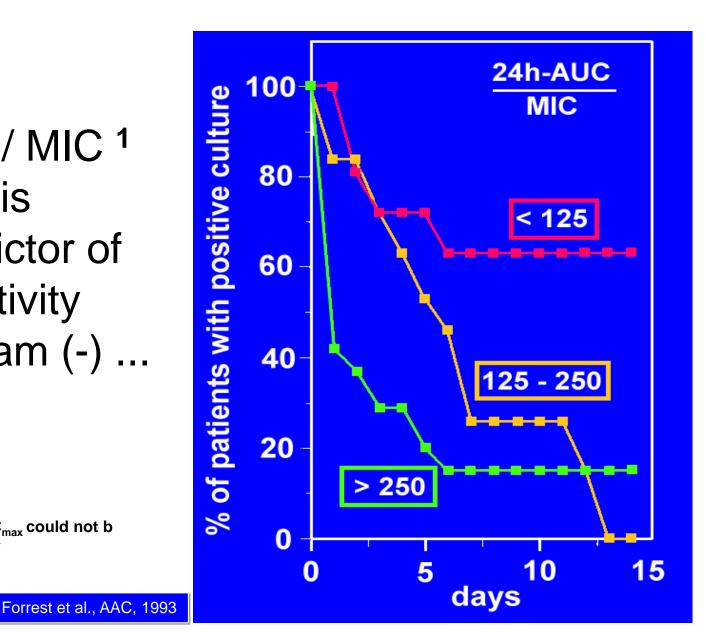
The risk for resistance to fluoroquinolones is to be "within the mutation selection window" ...

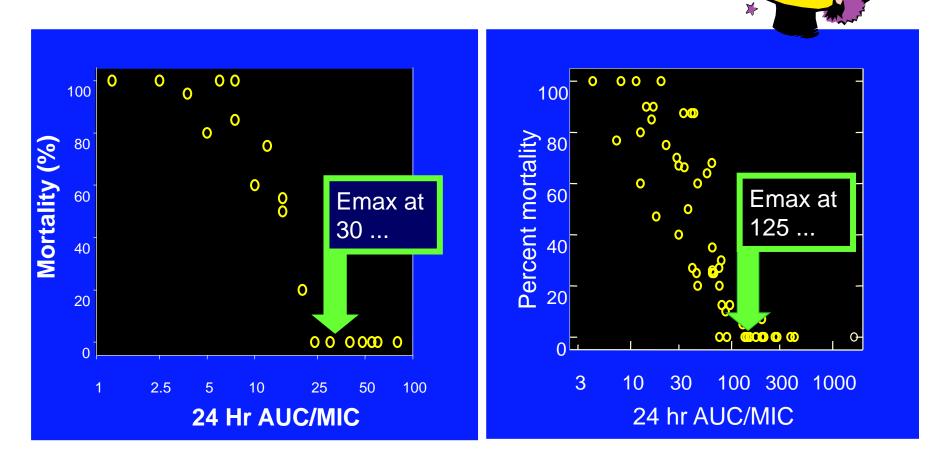

Time after administration

concept from Drlica & Zhao, Rev. Med. Microbiol. 2004, 15:73-80


So, what should you do with a fluoroquinolone to avoid emergence of resistance

If you wish to get a faster eradication and reduce mergence of resistant


MPC: moxifloxacin vs levofloxacin



The saga of the AUC / MIC vs C_{max} / MIC ratio for fluoroquinolones ...

AUC / MIC¹ IS predictor of activity for Gram (-) ...

1 The impact of the C_{max} could not b tested in this study

Is 125 good for all ??

The saga of *S. pneumoniae* ...

non-neutropenic mice

neutropenic mice

21

Conditions That Predispose to Pneumococcal Infection

Defective antibody formation

PrimaryCongenital agammaglobulinemia

Common variable (acquired) hypogammaglobulinemia

Selective IgG subclass deficiency

SecondaryMultiple myeloma

Chronic lymphocytic leukemiaLymphoma

HIV infection

Defective complement (primary or secondary)

Decreased or absent C1, C2, C3, C4

Insufficient numbers of PMNs

PrimaryCyclic neutropenia

SecondaryDrug-induced neutropenia

Aplastic anemia

Poorly functioning PMNs

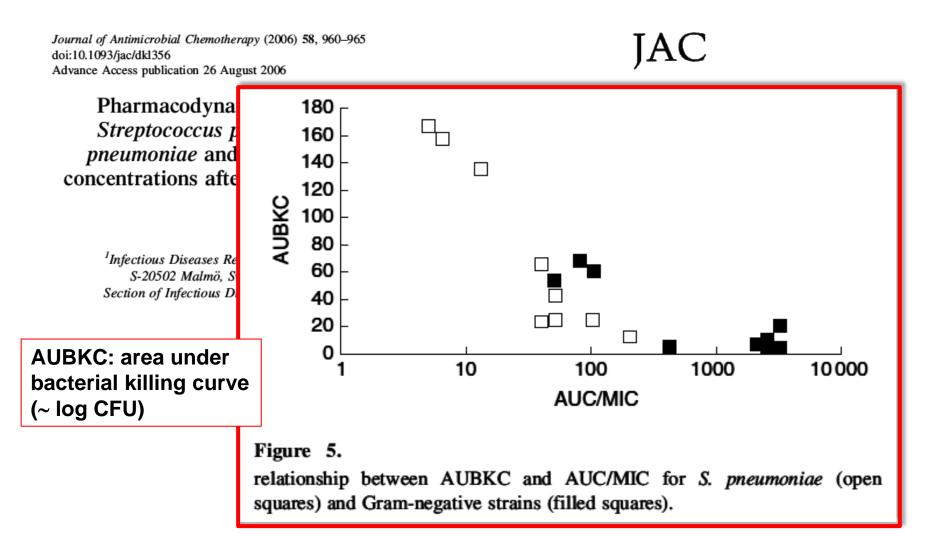
Alcoholism Cirrhosis of the liver

Browse Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases

So, an AUC/MIC = 125 may be good even for *S. pneumoniae*

AUC/MIC: modelling the clinical use

Journal of Antimicrobial Chemotherapy (2006) 58, 960–965 doi:10.1093/jac/dkl356 Advance Access publication 26 August 2006

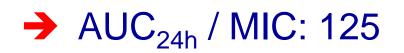

Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an *in vitro* kinetic model

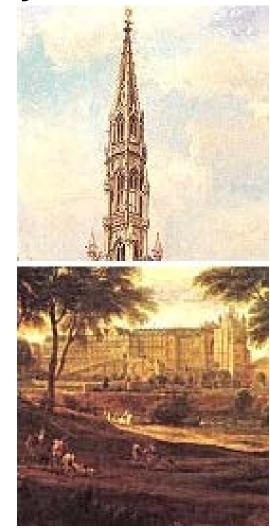
Inga Odenholt^{1,2}* and Otto Cars²

¹Infectious Diseases Research Unit, Department of Clinical Sciences Malmö, Lunds University, S-20502 Malmö, Sweden; ²Antibiotic Research Unit, Department of Medical Sciences, Section of Infectious Diseases and Clinical Microbiology, Uppsala University, Uppsala, Sweden

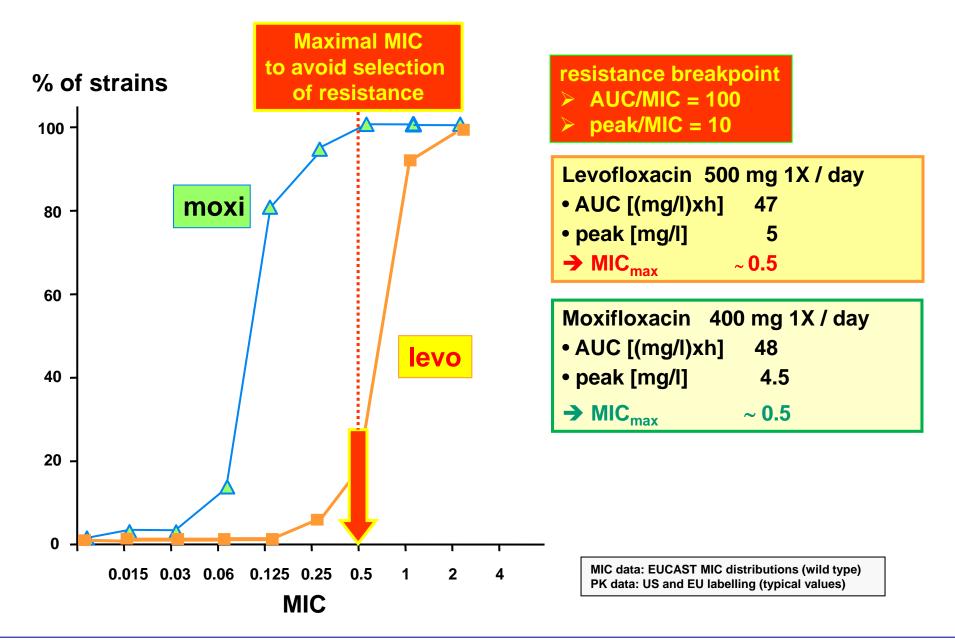
Odenholt & Cars J Antimicrob Chemother. 2006;58:960-5 - PMID: 16936293.

AUC/MIC: modelling the clinical use

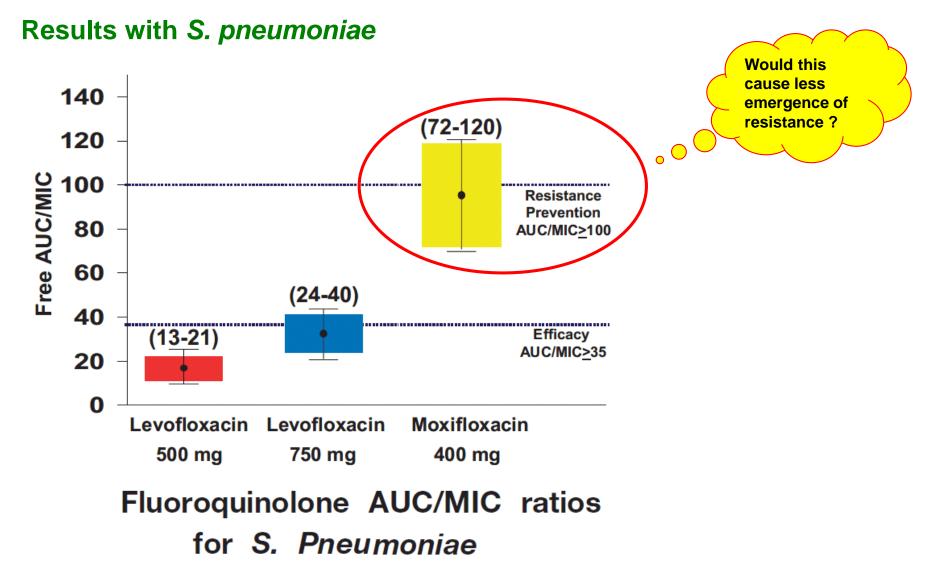

Odenholt & Cars J Antimicrob Chemother. 2006;58:960-5 - PMID: 16936293.


So, what should you do with a fluoroquinolone to avoid emergence of resistance and be optimal for activity ...

If you wish to get a faster eradication and reduce mergence of resistant



If you are interested in global effect ...



Pharmacokinetics and "resistance" breakpoint vs. MIC



What differentiates fluoroquinolones ?

Is there a molecular basis for a lesser emergence of resistance with moxifloxacin ?

A C8-methoxy group lowers the MPC for an N-1-cyclopropyl-f luoroquinolone"

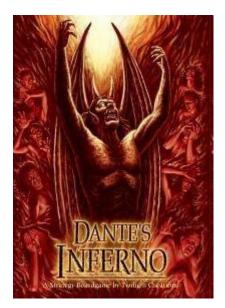
FULL PRESCRIBING INFORMATION

The bactericidal action of moxifloxacin results from inhibition of the topoisomerase II (DNA gyrase) and topoisomerase IV required for bacterial DNA replication, transcription, repair, and recombination. It appears that the C8-methoxy moiety contributes to enhanced activity and lower selection of resistant mutants of Gram-positive bacteria compared to the C8-H moiety. The presence of the bulky bicycloamine substituent at the C-7 position prevents active efflux, associated with the *NorA* or *pmrA* genes seen in certain Gram-positive bacteria.

https://www.merck.com/product/usa/pi_circulars/a/avelox/avelox_pi.pdf Last accessed: 8/2/2015

What shall we discuss ?

- The basics: are quinolones different by design ?
- When should they be given IV
- Indications and experience of moxifloxacin IV
- The fights against resistance and the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?


We all agree about efficacy, but what about side effects...

side effects ?

All antimicrobials have associated risks *

Class	Drugs	Frequent or serious side effects
fluoroquinolones	levofloxacin	 Anaphylactic reactions and allergic skin reactions Clostridium difficile-associated colitis Hematologic toxicity Hepatotoxicity (ALT-AST elevation [common]) Central nervous system effects: headache, insomnia, dizziness, convulsions Musculoskeletal: tendinopathies Peripheral neuropathy Prolongation of the QTc interval (cardiac disorders [rare]) Hypoglycaemia (rare) Digestive tract: nausea, diarrhoea
	moxifloxacin	 Anaphylactic reactions and allergic skin reactions Clostridium difficile-associated colitis Hepatotoxicity (ALT-AST elevation [common]) Musculoskeletal: Tendinopathies Peripheral neuropathy Prolongation of the QT interval (cardiac disorders [rare]) Central nervous system effects: headache, insomnia, dizziness, convulsions Digestive tract: nausea, diarrhoea

* based on an analysis of the current respective labelling (European SmPC)

- common: 1/10 to 1/100

- rare: 1/1000-1/10000

Note: the current EU SmPCs of levofloxacin (TAVANIC®) and of moxifloxacin state:

- For [community-acquired pneumonia], TAVANICc should be used only when it is considered inappropriate to use antibacterial agents that are commonly recommended for the initial treatment of these infections.
- Moxifloxacin should be used only when it is considered inappropriate to use antibacterial agents that are commonly recommended for the initial treatment of these infections.

ORIGINAL RESEARCH ARTICLE

Drugs R D 2012; 12 (2): 71-100 1179-6901/12/0002-0071

Adis © 2012 Tulkens et al., publisher and licensee Springer International Publishing AG. This is an open access article published under the terms of the Creative Commons License "Attribution-NonCommercial-NoDerivative 3.0" (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits non-commercial use, distribution, and reproduction, provided the original work is properly cited and not altered.

Moxifloxacin Safety An Analysis of 14 Years of Clinical Data

Paul M. Tulkens,¹ Pierre Arvis² and Frank Kruesmann³

- 1 Pharmacologie cellulaire et moléculaire & Centre de Pharmacie clinique, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- 2 Bayer Santé SAS, Loos, France
- 3 Bayer Pharma AG, Wuppertal, Germany

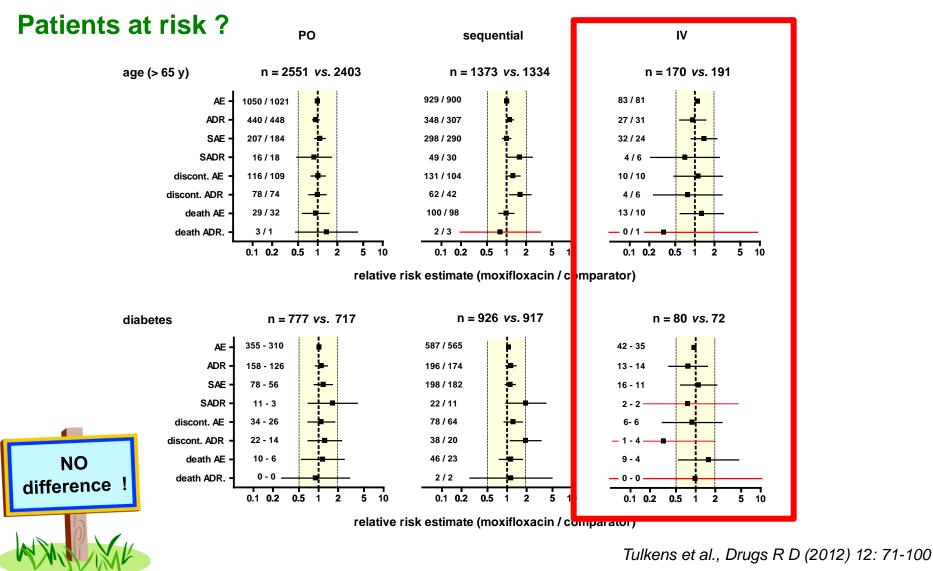
Based on the analysis of 14,681 patients treated with moxifloxacin vs. 15,023 patients treated with comparators

Distribution of patients valid for the safety analysis, stratified by route of administration (oral only; intravenous followed by oral [sequential]; intravenous only) and by comparator

Study design and	Treatment route [n]						
COMP	PO [n=21 298]		IV/PO [n=6846]		IV only [n=1860]		
	MXF [n=10613]	COMP [n=10685]	MXF [n=3431]	COMP [n=3415]	MXF [n=937]	COMP [n=923]	
Double-blind studies							
β-lactam	2391	2104	1077	1034	408	390	
β -lactam + macrolide	274	155	0	0	0	0	
Fluoroquinolone	2246	2287 ^a	444	457 ^b	0	0	
Macrolide	3659	2929	0	0	0	0	
Other	1230	1168 ^c	368	365 ^d	180	181 ^e	
Total	8822 ^f	8643	1889	1856	588	571	
Open-label studies							
β-lactam	1318	1301	554	547	0	0	
β -lactam + macrolide	186	190	0	0	0	0	
β -lactam \pm macrolide	0	0	532	549	0	0	
Fluoroquinolone	263	270 ^g	0	0	349	352 ⁹	
Macrolide	287	281	0	0	0	0	
Other	0	0	456	463 ^h	0	0	
Total	1791 ^f	2042	1542	1559	349	352	

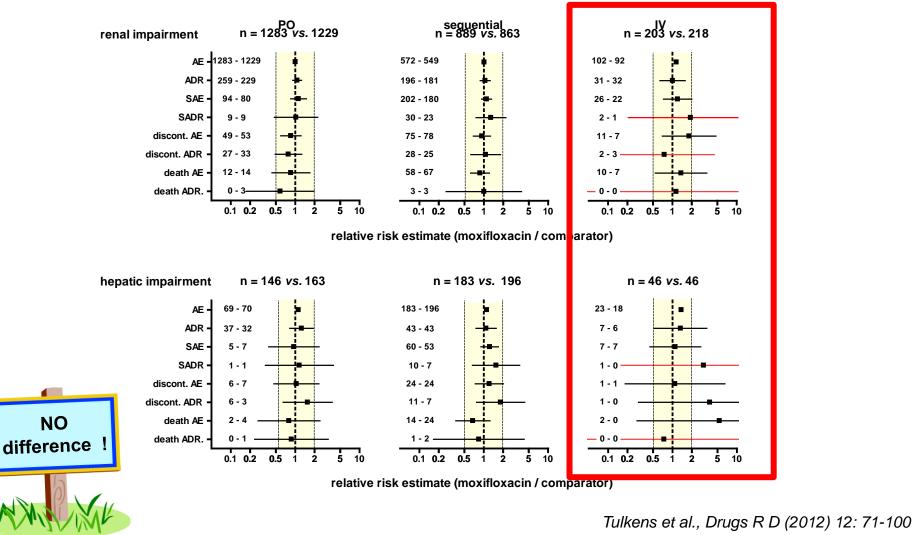
PO= oral

IV = intravenous


MXF: moxifloxacin

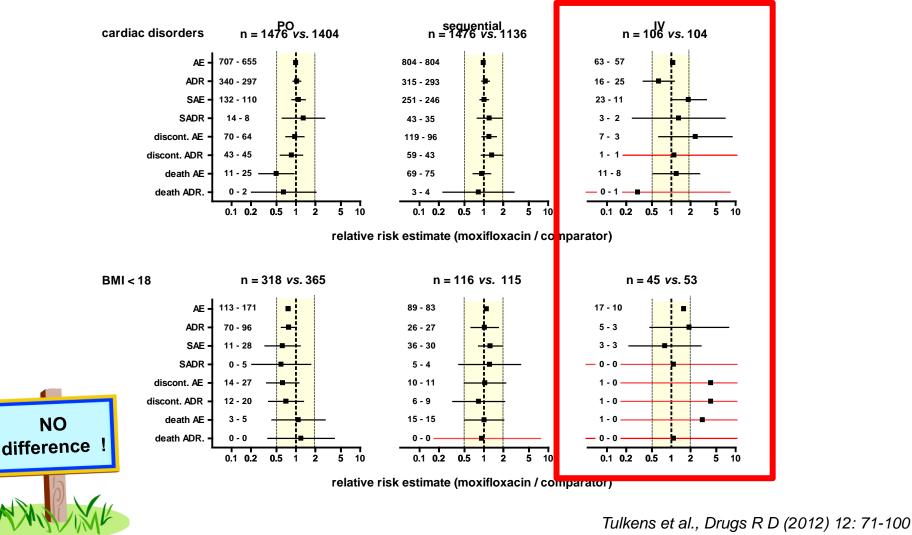
COMP = comparator (see left column)

Tulkens et al., Drugs R D (2012) 12: 71-100



10-11 Nov 2017

Patients at risk ?



10-11 Nov 2017

Patients at risk ?

10-11 Nov 2017

Hepatotoxicity

Crude incidence rates of acute liver injury caused by antibiotics

		Incidence			
Antibiotic	population	per 100,000 users	per 100,000 prescriptions	endpoint	Ref.
fluoroquinolones (w/o moxifloxacin)	Outpatient clinic, Sweden (1995-2005)	0.7 (0.5-1.1)		International consensus	[1]
moxifloxacin	Outpatient clinic, Sweden (1995-2005)	0.08 (0.0-0.5)		International consensus	[1]
cotrimoxazole	Saskatchewan Health Plan, Canada (1982-1986)	1.0 (0.2-5.7)	4.9 (0.9-27.6)	International consensus, hospitalisation	[2]
erythromycin	Saskatchewan Health Plan, Canada (1982-1986)	2.0 (0.7-5.9)	14.0 (4.8-41.2)	International consensus, hospitalisation	[2]
amoxicillin- clavulanic acid	General practice research database, United Kingdom (1991-1992)	22.5 (14.7-34.4)	17.4 (11.4-26.5)	International consensus	[3]

1. De Valle et al. Aliment Pharmacol Ther 2006 Oct 15; 24(8): 1187-95

2. Perez et al. Epidemiology 1993 Nov; 4(6): 496-501

3. Garcia-Rodriguez et al. Arch Intern Med 1996 Jun 24; 156(12): 1327-32

Van Bambeke & Tulkens, Drug Safety (2009) 32:359-78

Hepatotoxicity

Hepatotoxicity risk of antibiotics

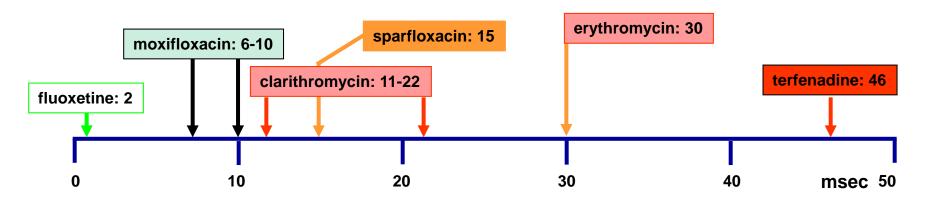
(percentage of prescriptions for antibiotics with main indications for use in the community setting)

Ciprofloxacin, levofloxacin and moxifloxacin	Tetracycline	Erythromycin, clarithromycin and penicillins	Co-trimoxazole an amoxicillin/ clavulanate	d Telithromycin and trovafloxacin	
Isolated cases and ≤0.00007	≤0.0002	≤0.004	≤0.02	Acute liver failure, high mortality 2	
			[: Withdrawal or severe restriction does not allow calculating true incidences	

Andrade & Tulkens, JAC (2011) 66: 1431-46

EMA position

INTERVAL PROLONGA


November 2005 CHMP/ICH/2/04

THE CLINICAL EVALUATION OF QT/QTc ND PROARRHYTHMIC POTENTIAL FOR NON-

ANTIARRHYTHMIC DRUGS (CHMP/ICH/2/04)

... the risk of arrhythmias appears to increase with the extent of QT/QTc prolongation.

- Drugs [with] QT/QTc interval by around 5 ms or less do not appear to cause TdP.
- ...data on drugs [with] QT/QTc interval by... 5 to < 20 ms are inconclusive, but some of these compounds have been associated with proarrhythmic risk.*

... decisions about [drug] development and approval will depend upon the **morbidity** and mortality associated with the untreated disease or disorder and the demonstrated clinical benefits of the drug, especially as they compare with available therapeutic modalities.

^{*} this includes erythromycin and clarithromycin (Balardinelli et al, TIPS (2003) 24:619-625)

QTcB prolongation after IV use

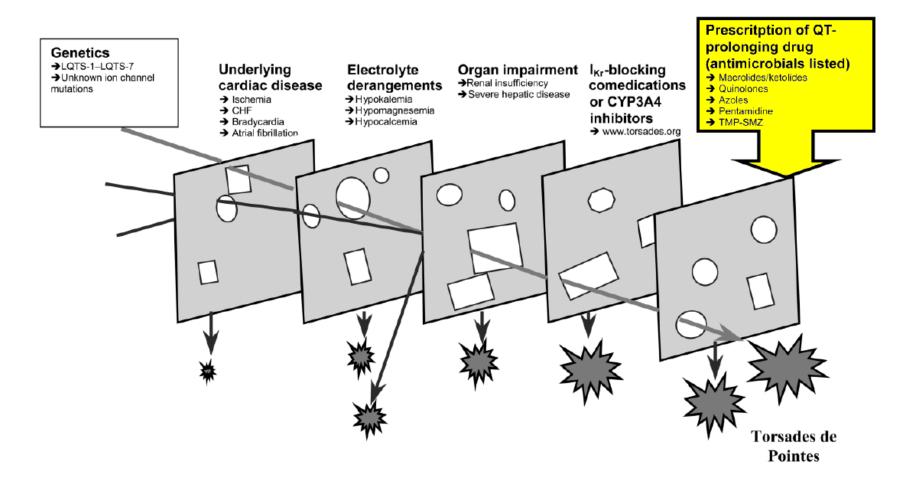
Current Drug Safety, 2012, 7, 149-163

Update on the Cardiac Safety of Moxifloxacin

Wilhelm Haverkamp^{*,1}, Frank Kruesmann², Anna Fritsch², David van Veenhuyzen³ and Pierre Arvis⁴

¹Department of Cardiology, Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany ²Bayer Pharma AG, Wuppertal, Germany ³Bayer HealthCare, Montville, NJ, USA ⁴Bayer HealthCare, Loos, France


Haverkamp et al. Curr Drug Saf. 2012;7:149-63. PMID 22873499


QTcB prolongation after IV use

IV/PO cSSSI Update on the Cardi 600 QTcB: QT interval corrected for heart Wilhelm Haverkamp^{*,1}, Frank rate and calculated according to Bazett's formula 550 ¹Department of Cardiology, Campi × ²Bayer Pharma AG, Wuppertal, Ge 500 ³Bayer HealthCare, Montville, NJ, ⁴Bayer HealthCare, Loos, France 450 QTcB (ms) 400 350 × ž × 300 250 Baseline Baseline Day 1 Day 3 Day 1 Day 3 Moxifloxacin Comparators

Haverkamp et al. Curr Drug Saf. 2012;7:149-63. PMID 22873499

QTc prolongation

Owens & Ambrose CID (2005) 41:S144-157

Torsade de pointe: comparison of risk

reporting rate of *Torsades de pointe* induced by antibiotics

drug	No. of U.S. Cases Reported to the FDA	No. of Estimated Total U.S. Prescriptions (millions)	No. of Cases /10 Millions Prescriptions (95% CI)	used as
moxifloxacin	0	1.4	0 (0-26)	negative control
ciprofloxacin	2	66	0.3 (0.0-1.1)	in RCT
ofloxacin	2	9.5	2.1 (0.3-7.6)	
levofloxacin	13	24	5.4 (2.9-9.3)	
gatifloxacin	8	3	27 (12-53)	
erythromycin	11 –17	151	0.7 -1.1	
clarithromycin	16 –31	90	1.8 -3.4	FDA warning
azithromycin	7 –10	124	0.6–1	March 12,2013
cefuroxime	1 -1	42	0.2 –1	

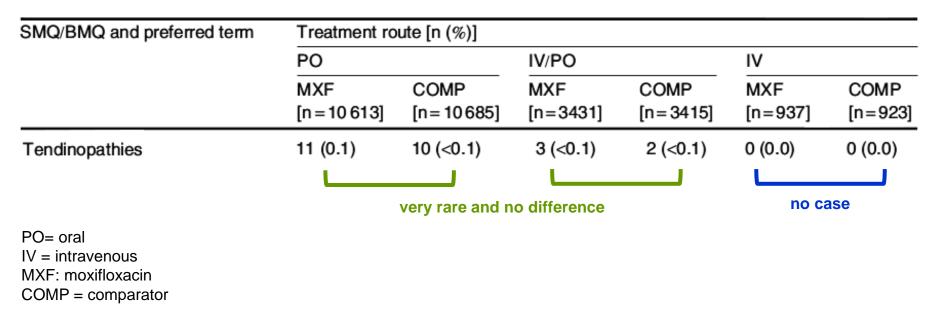
Van Bambeke & Tulkens, Drug Safety (2009) 32:359-78

Tendinopathies: main features and incidence...

TABLE 1. Characteristic features of fluorog	uinolone-induced tendinopathy/tendon rupture		
FEATURE	OBSERVATIONS/FINDINGS 2010		
Causative quinolones reported ^{6.9,10}	Ciprofloxacin (most commonly reported), norfloxacin, pefloxacin, ofloxacin, levofloxacin		
Associated risk factors ^{11,31,33–37}	Age >60 years, corticosteroid therapy, renal failure, diabetes mellitus, history of tendon rupture		
Relative risk of tendon disorders ^{3,16,31}	 1.7-fold increase for all tendinopathies 1.3-fold increase for tendon rupture 4.1-fold increase of Achilles tendon rupture 46-fold increase of tendon rupture with concurrent corticosteroid exposure 1.5-fold increase in tendon disorders if age >60 years 2.7-fold increase in tendon rupture if age >60 years 		
Affected tendons ^{11,33,44}	Achilles tendon most commonly affected (89.8% of cases) Multiple other tendons reported Up to 50% of cases with bilateral involvement Symptoms of tendinitis often precede tendon rupture by up to 2 weeks		
Latency period of tendinopathy ^{3,4,6,15} Median onset of 6 days (85% of cases within first month) Up to 50% of cases after fluoroquinolone discontinued			

Kim & Del Rosso, J Clin Aesthet Dermatol. 2010; 3:49-54.

Tendinopathies...


• In 2005, all fluoroquinolones marketed in the US have received a black box label about tendinopathies

WARNING: Fluoroquinolones, including LEVAQUIN[®], are associated Fluoroquinolones, including AVELOX[®], are associated with an With an increased risk of tendinitis and tendon rupture in increased risk of tendinitis and tendon rupture in all ages. This r further increased in older patients usually over 60 years of age all ages. This risk is further increased in older patients patients taking corticosteroid drugs, and in patients with kidy WARNING: usually over 60 years of age, in patients taking panents taking corticosteroite unugs, and in panents with or lung transplants. [see Warnings and Precautions (5.1)] usually over ou years or age, in Parients values corticosteroid drugs, and in patients with kidney, heart or or ung transplants. [See marnings and Frecultions (3.1]] Fluoroquinolones, including AVELOX, may exacerbate n lung transplants [See Warnings ruoroquinoiones, including Aveluo, may exacervate n weakness in persons with myasthenia gravis. Avoid AVF patients with known history of myasthenia gravis [see Warn recautions (5.1)]. Precautions (5.2).] (NORFLOXACIN) TABLETS WARNING: Fluoroquinolones, including Noroxin, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants (see WARNINGS). Fluoroquinolones, including Noroxin, may exacerbate muscle weakness in persons with myasthenia gravis. Avoid Noroxin in patients with known history of myasthenia gravis (see WARNINGS).

Tendinopathies...

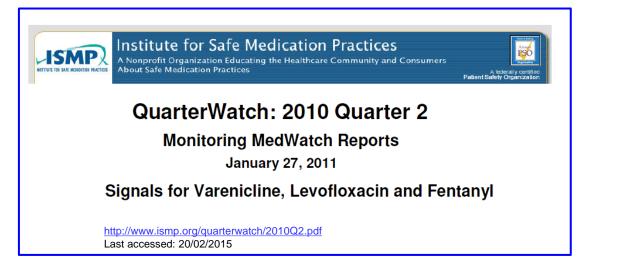

• But this is what we found for moxifloxacin in our survey of the whole clinical trial database

Table VII. Incidence of selected treatment-emergent adverse events presented by Standard MedDRA Queries/ Bayer MedDRA Queries and preferred terms in patients valid for the safety analysis, treated with moxifloxacin or a comparator and stratified by route of administration (oral only; intravenous followed by oral [sequential]; intravenous only).

Tulkens et al., Drugs R D (2012) 12: 71-100

Tendinopathies: incidences (revisited)...

Levofloxacin (LEVAQUIN) Cases Lead Antibiotics

While antibiotics rank among the safest drugs we monitor, <u>levofloxacin</u> (LEVAQUIN) was suspect in more reports of serious injury than any other antibiotic. Most cases involved tendon rupture and other muscle, tendon and ligament injuries. Case reports of this problem substantially outnumbered those for two chemically similar drugs—ciprofloxacin (CIPRO), with greater volume of prescriptions, and moxifloxacin (AVELOX), with somewhat less frequent medical use.

Tendinopathies: incidences (revisited)...

QuarterWatch: 2010 Quar		2,	
Table 2. Tendon disorde	rs for fluoroquir	nolone antibiot	ics 2010q2.
	Levofloxacin	Ciprofloxacin	Moxifloxaci
Total Rx (millions)*	2.1	5.3	1.
Case Reports	246	105	9
% Direct to FDA	52%	71%	429
% Health Professionals	53%	59%	769
Tendon Disorders (HLT)	93	29	1
All Musculoskeletal	156	62	2

What shall we discuss ?

- The basics: are quinolones different by design ?
- When should they be given IV
- Indications and experience of moxifloxacin IV
- The fights against resistance and the saga of the MPC
- Are they toxicity issues ?
- What you can do with an MIC ?

Calculation of the "attainable MIC"

		Typical PK values		Proposed PK/PD upper limit				
		C _{max} in mg∕L	AUC _{24 h}	of sensitiv	of sensitivity (µg/ml) for			
Drug	Typical daily dosage ^a	total/free (dose)	$(mg \times h/L)$ total/free	Efficacy ^b	Prevention of resistance ^c			
Norfloxacin	800 mg	1.4/1.1 (400 mg PO)	14/11	0.1-0.4	0.1			
Ciprofloxacin	1000 mg	2.5/1.75 (500 mg PO)	24/18	0.2–0.8	0.2			
Ofloxacin	400 mg	4/3 (400 mg PO)	40/30	0.3–0.9	0.4			
Levofloxacin	500 mg	4/2.8 (500 mg PO)	40/28	0.3–0.9	0.3			
Moxifloxacin	400 mg	3.1/1.8 (400 mg PO)	35/21	0.2–0.7	0.2			

Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM.

Quinolones in 2005: an update. Clin Microbiol Infect. 2005 Apr;11(4):256-80. PMID: 15760423

Check the EUCAST breakpoints...

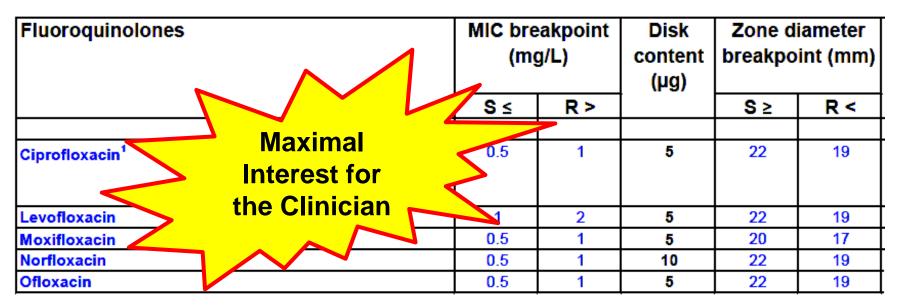
Enterobacteriaceae

Fluoroquinolones	MIC breakpoint (mg/L)		Disk content (µg)	Zone diameter breakpoint (mm)	
	S≤	R >		S≥	R <
Ciprofloxacin ¹	0.5	1	5	22	19
Levofloxacin	1	2	5	22	19
Moxifloxacin	0.5	1	5	20	17
Norfloxacin	0.5	1	10	22	19
Ofloxacin	0.5	1	5	22	19

All EUCAST data are freely available at http://www.eucast.org

Check the EUCAST breakpoints...

Enterobacteriaceae

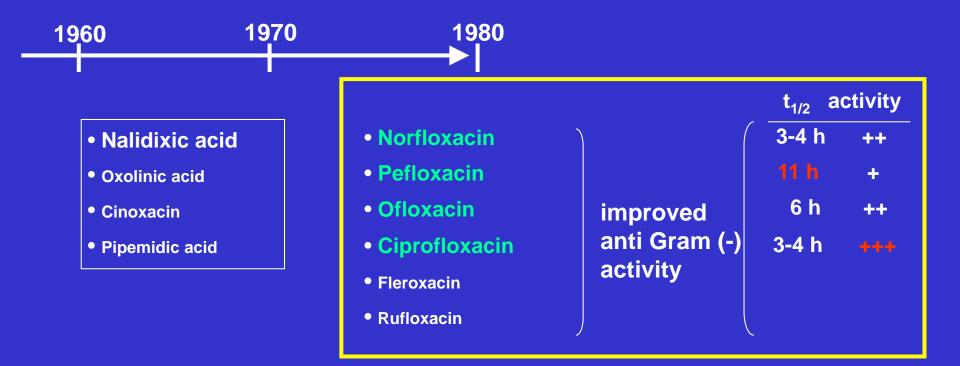

Fluoroquinolones		MIC breakpoint (mg/L)		Zone diameter breakpoint (mm)	
	S ≤	R >	(µg)	S≥	R <
Ciprofloxacin ¹	0.5	1	5	22	19
Levofloxacin	1	2	5	22	19
Moxifloxacin	0.5	1	5	20	17
Norfloxacin	0.5	1	10	22	19
Ofloxacin	0.5	1	5	22	19

Now, if you have an organism with an MIC of

- $0.05 \rightarrow$ easy success for any fluoroquinolone (even oral) !
- 1 \rightarrow borderline for cipro/ moxi / norflo / oflo \rightarrow ensure correct dosage !
- 2 \rightarrow levo BUT with a high dose !
- 4 \rightarrow likely to fail no matter which fluoroqunolone...

Check the EUCAST breakpoints...

Enterobacteriaceae


Now, if you have an organism with an MIC of

- $0.05 \rightarrow$ easy success for any fluoroquinolone (even oral) !
- 1 \rightarrow borderline for cipro/ moxi / norflo / oflo \rightarrow ensure correct dosage !
- 2 \rightarrow levo BUT with a high dose !
- 4 \rightarrow likely to fail no matter which fluoroqunolone...

Thank you for your attention!

The "first generation" of fluoroquinolones

An interesting paper...

International Journal of Antimicrobial Agents 45 (2015) 79-83

Contents lists available at ScienceDirect

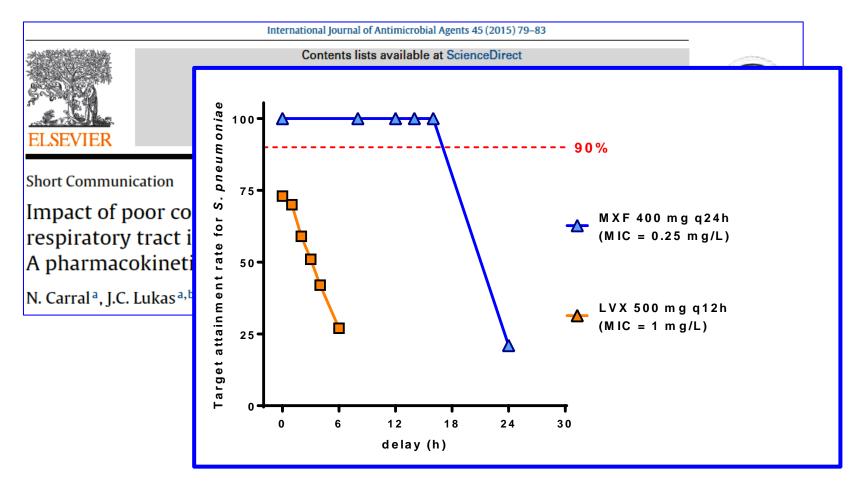
International Journal of Antimicrobial Agents

journal homepage: http://www.elsevier.com/locate/ijantimicag

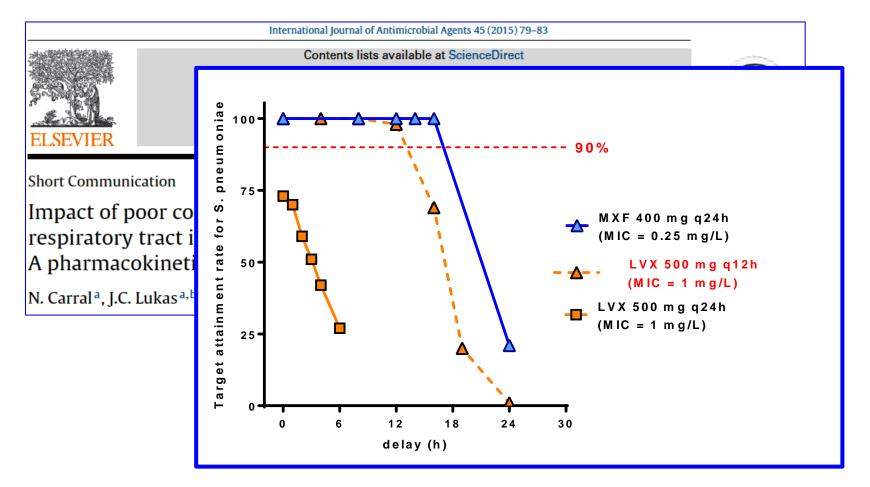
Short Communication

Impact of poor compliance with levofloxacin and moxifloxacin on respiratory tract infection antimicrobial efficacy: A pharmacokinetic/pharmacodynamic simulation study

N. Carral^a, J.C. Lukas^{a,b}, I. Oteo^a, E. Suarez^{a,*}



An interesting paper...


International Journal of Antimicrobial Agents 45 (2015) 79-83

	International Joannal of Antimierobial Agents 45	(2010)70 00			
<u>e Sile</u>	Contents lists available at Science rnational Journal of Antim al homepage: http://www.elsevier.co	icrobial Agents	ISC		
Short Communication Impact of poor compli- respiratory tract infec A pharmacokinetic/ph N. Carral ^a , J.C. Lukas ^{a,b} , I. Ot	atory tract infec rmacokinetic/ph in simulated patients.				
	Parameter	Mean (S.D.)	Range		
	AUC _{0-24h} (mg h/L) LFX 500 mg q24 h LFX 750 mg q24 h LFX 500 mg q12 h MOX 400 mg q24 h	45.78 (3.72) 68.68 (5.58) 91.57 (7.34) 43.63 (8.60)	37.21–57.13 55.82–85.69 77.66–115.48 26.43–72.20		

An interesting paper...

A very recent paper...

