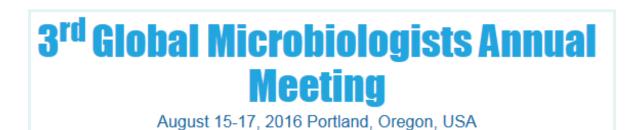
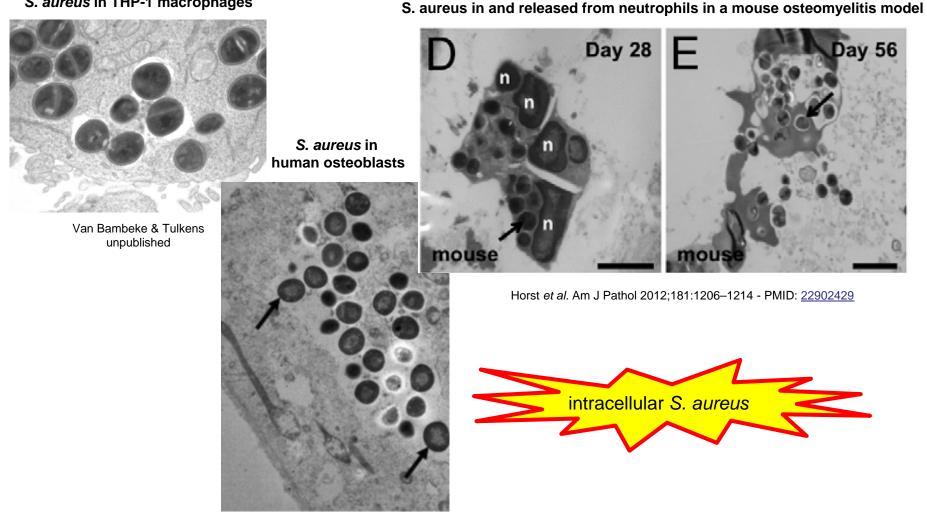
How active are antibiotics when directed towards bacteria hiding intracellularly?

Do accumulation and subcellular disposition matter?


Paul M. Tulkens, MD, PhD *

Cellular and Molecular Pharmacology Louvain Drug Research Institute Health Science Sector Université catholique de Louvain Brussels, Belgium



Work made in collaboration with Françoise Van Bambeke and many doctoral and postdoctoral fellows (see last slide)

Why intracellular bacteria ?

S. aureus in THP-1 macrophages

Kalinka et al., Int J Med Microbiol. 2014; 304:1038-49 - PMID: 25129555

And more ...

B. Löffler et al. / International Journal of Medical Microbiology 304 (2014) 170-176

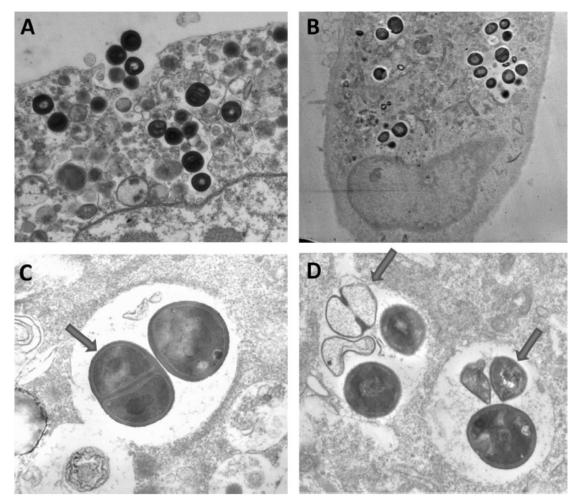
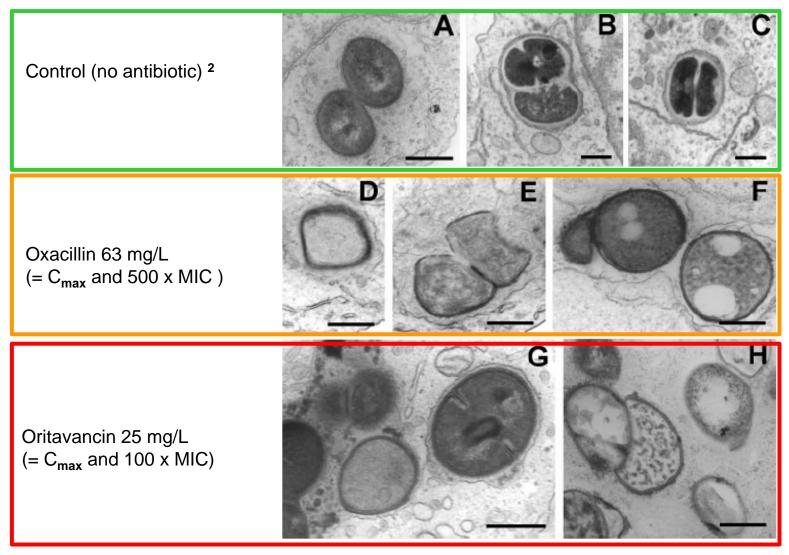



Fig. 1. Electron micrographs of different types of infected host cells. Adherence and uptake of *S. aureus* in epithelial A549 cells (A). Intracellular location of *S. aureus* after infection of primary osteoblasts (B). Dividing figure of *S. aureus* within an intracellular phagosome (C) and intracellular bacterial degradation (D) 24 h after infection of endothelial cells (HUVEC).

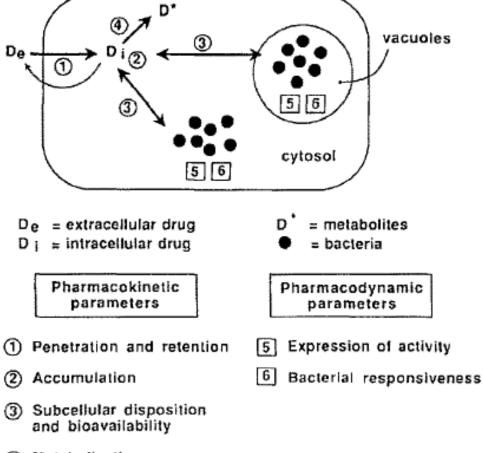
Why do we wish to look at intracellular activity of antibiotics ?

- Beyond truly obligate intracellular parasites (e.g., Legionella, Chlamydia, Mycobacteriae, ...many more "common" bacteria are facultative (e.g. Listeria) or occasional (e.g. Staphylococci, Pseudomonas...) intracellular parasites ...
- These bacteria form a **reservoir** from where bacteria may escape causing **relapses** and **recurrences** of the infection...
- Natural defenses often restrict their growth and decrease their persistence, but not always...
- You may need to help host defenses with **antibiotics**

Are antibiotics active at all in cells ? 1

¹ THP1 monocytes model – 24 h incubation. See Barcia-Macay et al. Antimicrob Agents Chemother 2006;50:841-851 – PMID: <u>1649524</u> ² gentamicin added at 1 x MIC to prevent extracellular growth

Intracellular activity of antibiotics


- What has been know for long about pharmacokinetics...
- What has surprised us ...
- Adding pharmacodynamics ...
- A renewed model ?

Intracellular activity of antibiotics

- What has been know for long about pharmacokinetics...
- What has surprised us ...
- Adding pharmacodynamics ...
- A renewed model ?

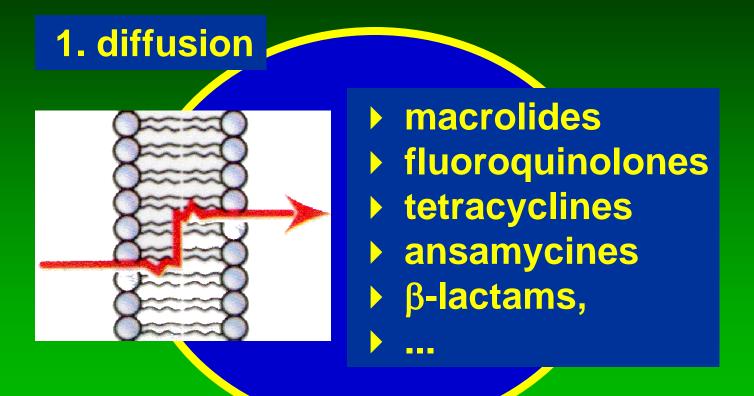
FACTORS AFFECTING THE ACTIVITY OF ANTIMICROBIALS AGAINST INTRACELLULAR BACTERIA

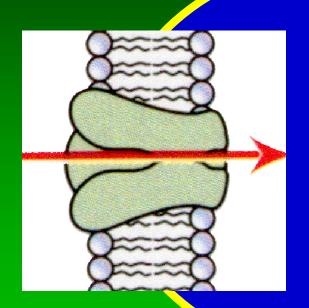
A simple view in 1991

④ Metabolisation and inactivation

Figure 1: Pharmacokinetic and pharmacodynamic parameters involved in the activity of antimicrobial drugs against intracellular microorganisms.

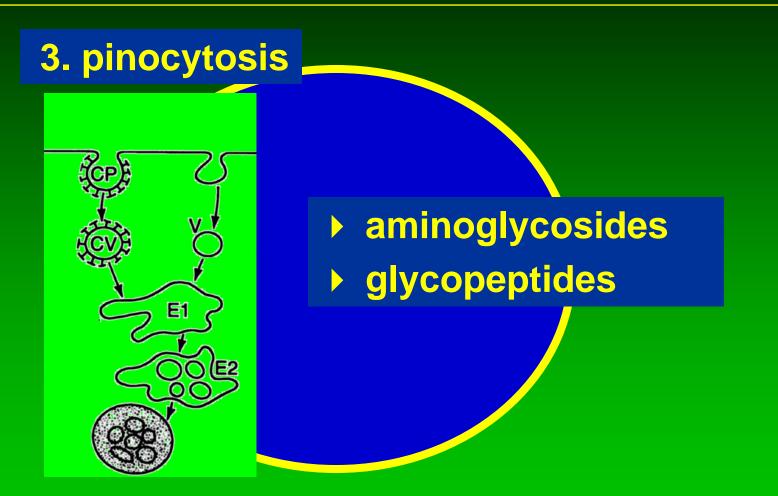
Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991 10:100-6. PubMed PMID: <u>1864271</u>.

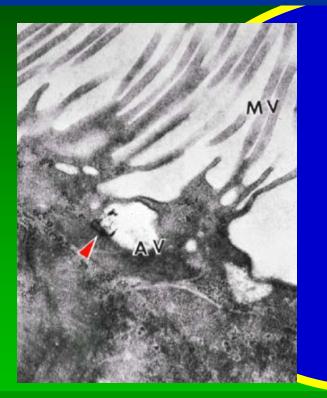

Which antibiotics accumulate in cells ?


- aminoglycosides: <1 to 2 x
- ansamycins: 2-3 x
- tetracyclines: 2-4 x
- fluoroquinolones: 5 20 x
- macrolides: 4 to > 100 x *
- glycopeptides: 1 to 400 x !! **

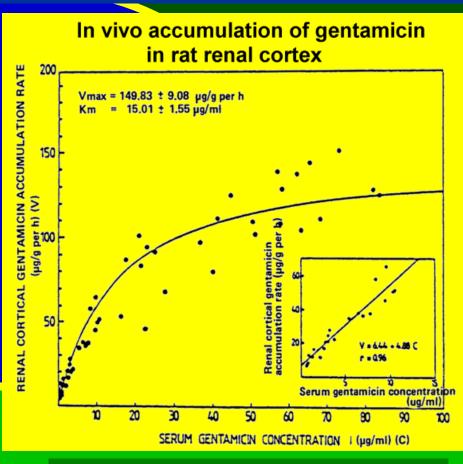
azithromycin, ketolides

* oritavancin



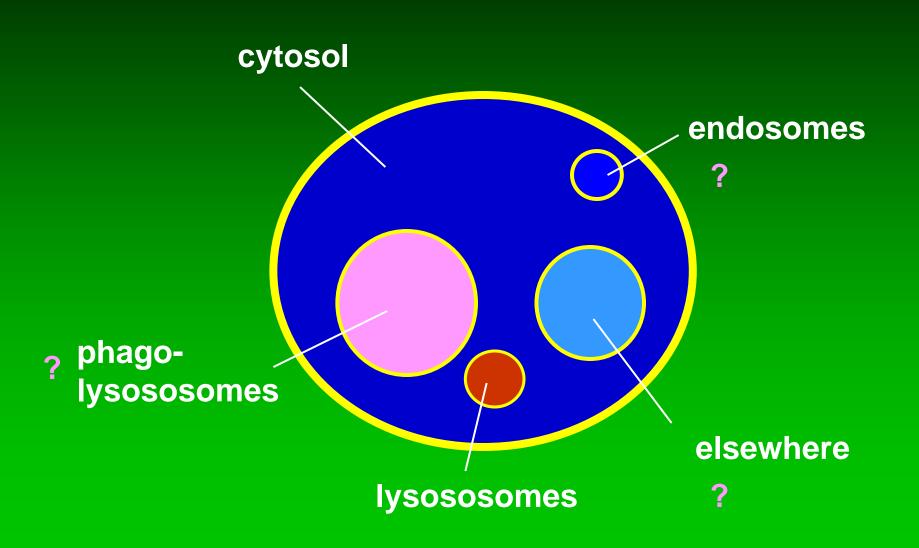


specific structure
(some energy-dependent)
saturable
competition by analogues

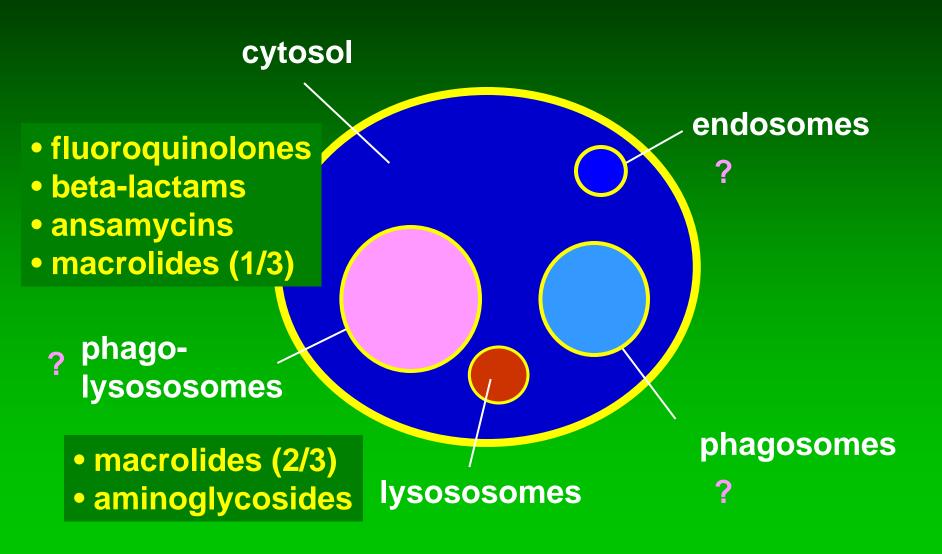

> highly variable rom on cell type to another

receptor-mediated pinocytosis in kidney cortex


Binding to megalin and acidic phospholipids Silverblatt & Kuehn C. Kidney Int. 1979;15:335-45 - PMID: <u>510498</u> Moestrup *et al.* J Clin Invest. 1995;96:1404-13 – PMID: <u>7544804</u> Sastrasinh et al. J Pharmacol Exp Ther 1982;222:350-8 - PMID: 7097555

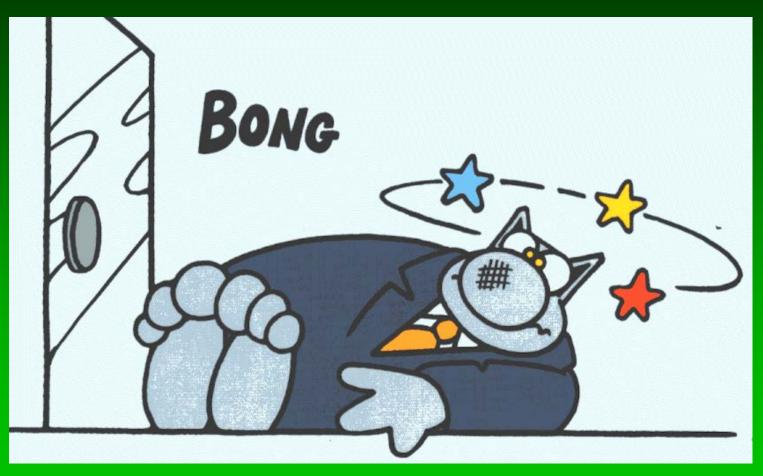

Giuliano et al. J Pharmacol Exp Ther 1986;236:470-5 - PMID: <u>3944768</u>

membrane binding and uptake of lipoglycopeptides



But once in cells, where are the drugs ?

Subcellular localization: a quick answer ?

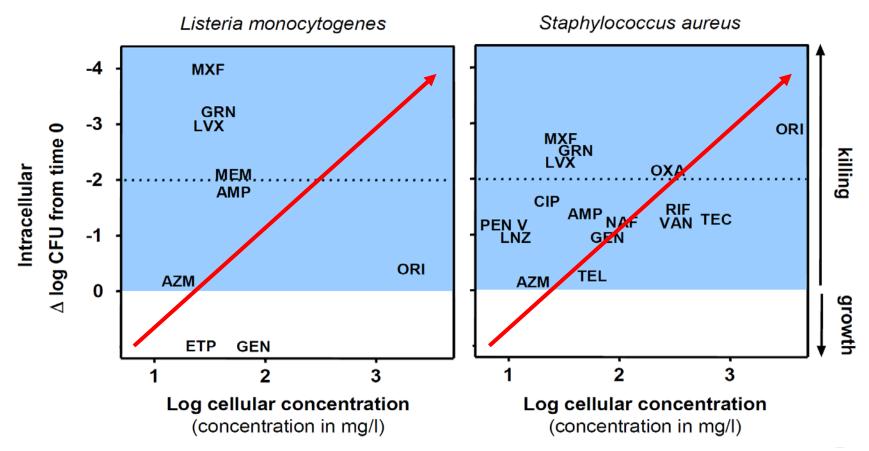


So, what we know in a nutshell ...

Pharmacochemical class	Antibiotic	Accumulation level at equilibrium $(C_c/C_E)^a$	Cellular concentration at equilibrium (mg/l) ^b	Time to equilibrium	Predominant subcellular localization
β-Lactams	All	< 1	~ 20 to 50	Fast	Cytosol
Macrolides	Erythromycin	4 to 10	~ 40 to 150	Moderate	2/3 Lysosomes
	Clarithromycin Roxithromycin Telithromycin	10 to 50	~ 20 to 400	(a few hours)	1/3 Cytosol
	Azithromycin	40 to 300	~ 16 to 120		
Fluoroquinolones	Ciprofloxacin Levofloxacin Grepafloxacin	4 to 10	~ 16 to 40	Fast (< 1 h) to very fast (< 5 min)	Cytosol
	Moxifloxacin Garenoxacin Gemifloxacin	10 to 20	~ 40 to 80		
Aminoglycosides	All	2 to 4 (after several days)	~ 40 to 80	Slow (several days)	Lysosomes
Lincosamides	Clindamycin	5 to 20	~ 50 to 200	Fast	Unknown
	Lincomycin	1 to 4	~ 15 to 60		
Tetracyclines	Probably all	1 to 4	~ 2 to 12	Unknown	Unknown
Ansamycins	Rifampin	2 to 10	~ 36 to 180	Unknown	Unknown
(rifamycins)	Rifapentine	60 to 80	~ 1200 to 1600	Unknown	
Glycopeptides	Vancomycin	8 (after 24 h)	~ 400	Slow	Lysosomes (in kidney)
	Teicoplanin	60	~ 6000	(several hours)	Unknown
	Oritavancin	150 to 300 (after 24 h)	~ 3750 to 7500		Lysosomes
	Telavancin	50 (after 24 h)	~ 4500		Lysosomes
Oxazolidinones	Linezolid	~ 1	~ 20	Unknown	Unknown

Adapted from Van Bambeke et al., Curr Opin Drug Discov Devel 2006;9:218-230 - PMID: 16566292

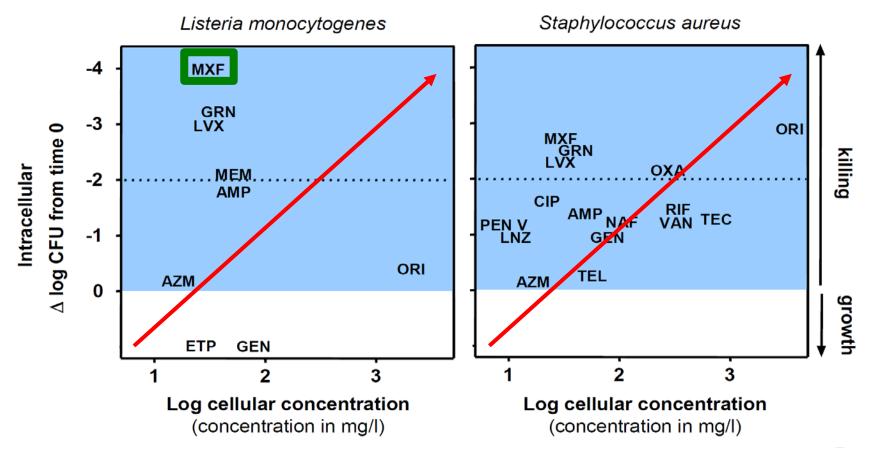
But where does this lead us for activity ?


Ph. Geluck, with permission

* taken from a slide presented at ECCMID in 2002

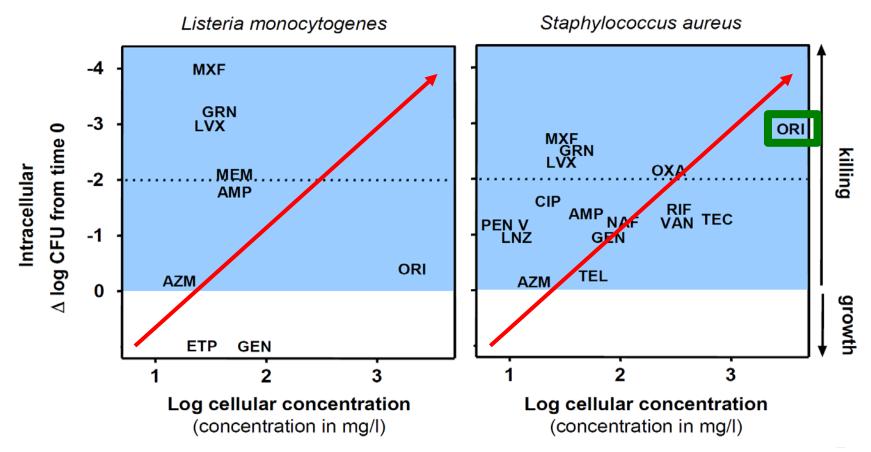
Intracellular activity of antibiotics

- What has been know for long about pharmacokinetics...
- What has surprised us ...
- Adding pharmacodynamics ...
- A renewed model ?


Intracellular activity is not directly correlated to accumulation

AMP=ampicillin; AZM=azithromycin; CIP=ciprofloxacin; ETP=ertapenem; GEN=gentamicin; GRN=garenoxacin; LNZ=linezolid; LVX=levofloxacin; MEM=meropenem; MXF=moxifloxacin; NAF=nafcillin; ORI=oritavancin; OXA=oxacillin; PEN V=penicillin V; RIF=rifampicin; TEC=teicoplanin; TEL=telithromycin; VAN=vancomycin

Adapted from Van Bambeke et al., Curr Opin Drug Discov Devel 2006;9:218-230 – PMID: 16566292


Intracellular activity is not directly correlated to accumulation

AMP=ampicillin; AZM=azithromycin; CIP=ciprofloxacin; ETP=ertapenem; GEN=gentamicin; GRN=garenoxacin; LNZ=linezolid; LVX=levofloxacin; MEM=meropenem; MXF=moxifloxacin; NAF=nafcillin; ORI=oritavancin; OXA=oxacillin; PEN V=penicillin V; RIF=rifampicin; TEC=teicoplanin; TEL=telithromycin; VAN=vancomycin

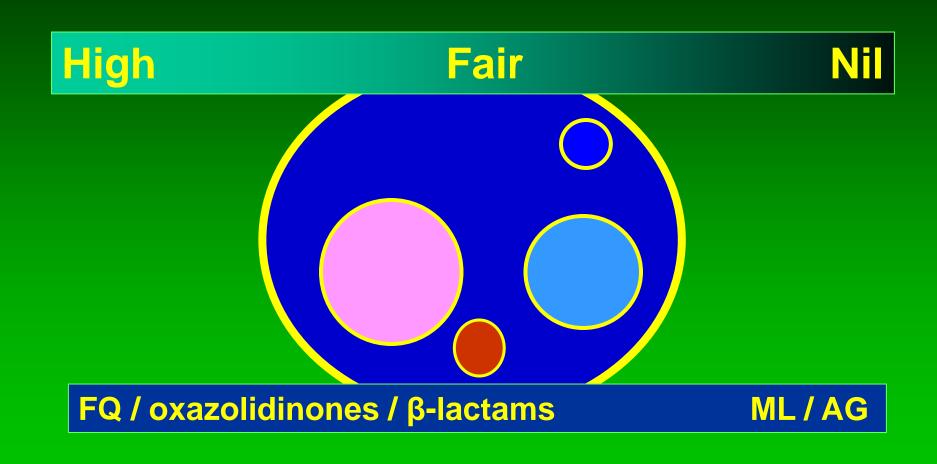
Adapted from Van Bambeke et al., Curr Opin Drug Discov Devel 2006;9:218-230 – PMID: 16566292

Intracellular activity is not directly correlated to accumulation

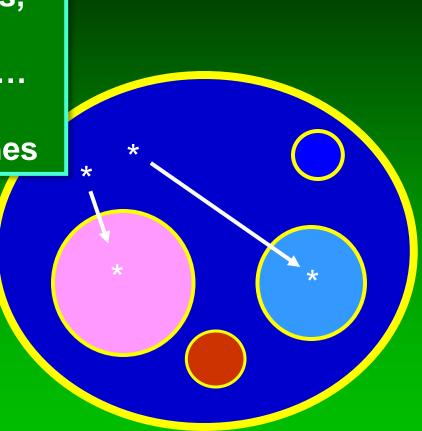
AMP=ampicillin; AZM=azithromycin; CIP=ciprofloxacin; ETP=ertapenem; GEN=gentamicin; GRN=garenoxacin; LNZ=linezolid; LVX=levofloxacin; MEM=meropenem; MXF=moxifloxacin; NAF=nafcillin; ORI=oritavancin; OXA=oxacillin; PEN V=penicillin V; RIF=rifampicin; TEC=teicoplanin; TEL=telithromycin; VAN=vancomycin

Adapted from Van Bambeke et al., Curr Opin Drug Discov Devel 2006;9:218-230 – PMID: 16566292

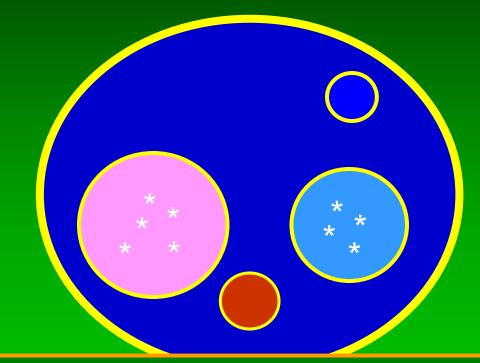
Thus, there is now an obvious conclusion


"Accumulation only" may not be the key property

One size does not fill all


Each class of antibiotic / bacteria combination may need to be examined separately

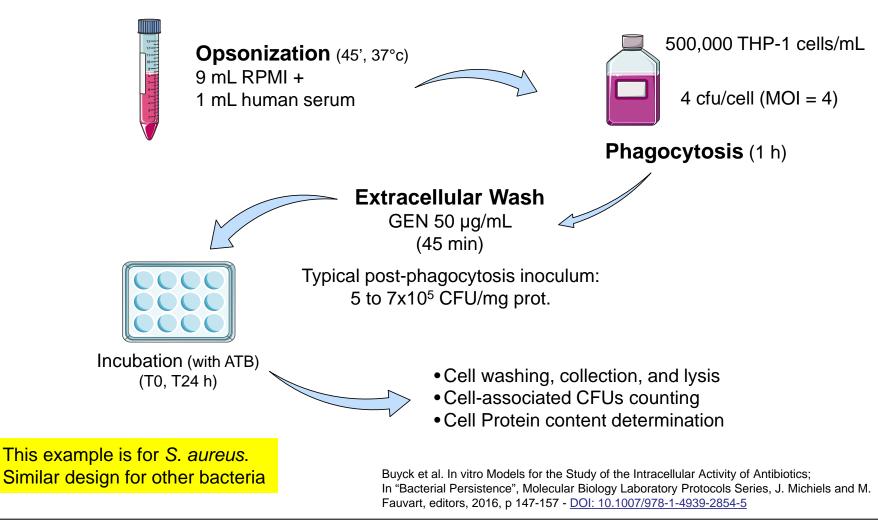
Subcellular bioavailability of antibiotics ?



Subcellular bioavailability of antibiotics ?

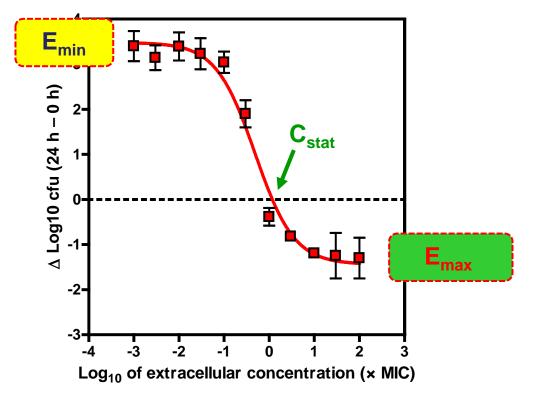
Fluoroquinolones, β-lactams, oxazolidinones, ... may move easily across membranes

Subcellular bioavailability of antibiotics ?


Conversely, poorly diffusible antibiotics (aminoglycosides, oritavancin, e.g.) or subjected to proton-trapping sequestration (macrolides, e.g.), may remained confined where they are ...

Intracellular activity of antibiotics

- What has been know for long about pharmacokinetics...
- What has surprised us ...
- Adding pharmacodynamics ...
- A renewed model ?


24h pharmacodynamic dose-effect model

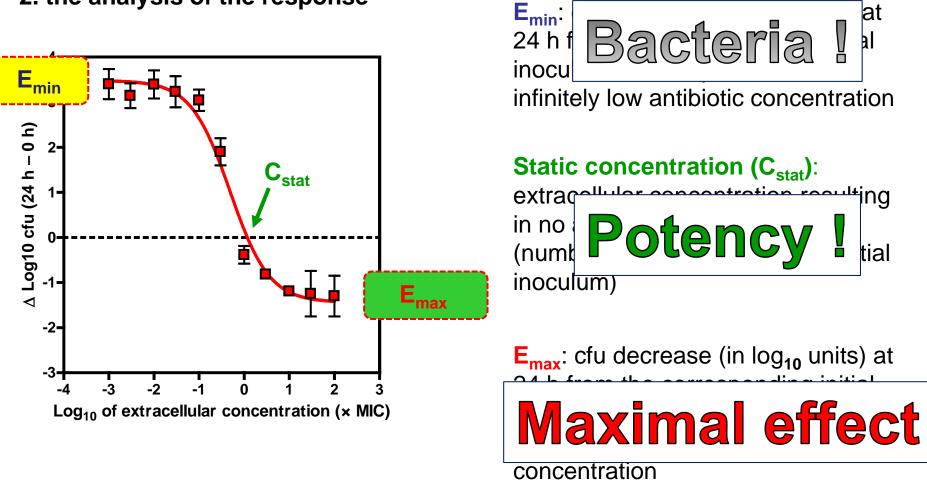
1. Cell exposure to a <u>a wide range of extracellular concentrations of the antibiotic</u>

Interpretation of the results of the 24h dose-effect model

2. Analysis of the response

 E_{min} : cfu increase (in log_{10} units) at 24 h from the corresponding initial inoculum as extrapolated for an infinitely low antibiotic concentration

Static concentration (C_{stat}):

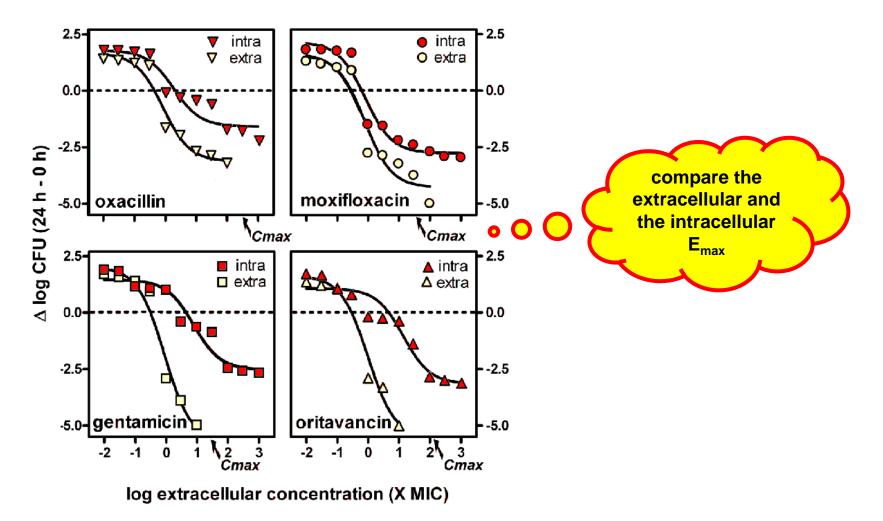

extracellular concentration resulting in no apparent bacterial growth (number of cfu identical to the initial inoculum)

E_{max}: cfu decrease (in log₁₀ units) at 24 h from the corresponding initial inoculum <u>as extrapolated from</u> <u>infinitely large antibiotic</u> <u>concentration</u>

<u>Reference:</u> Barcia-Macay M, Seral C, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F.

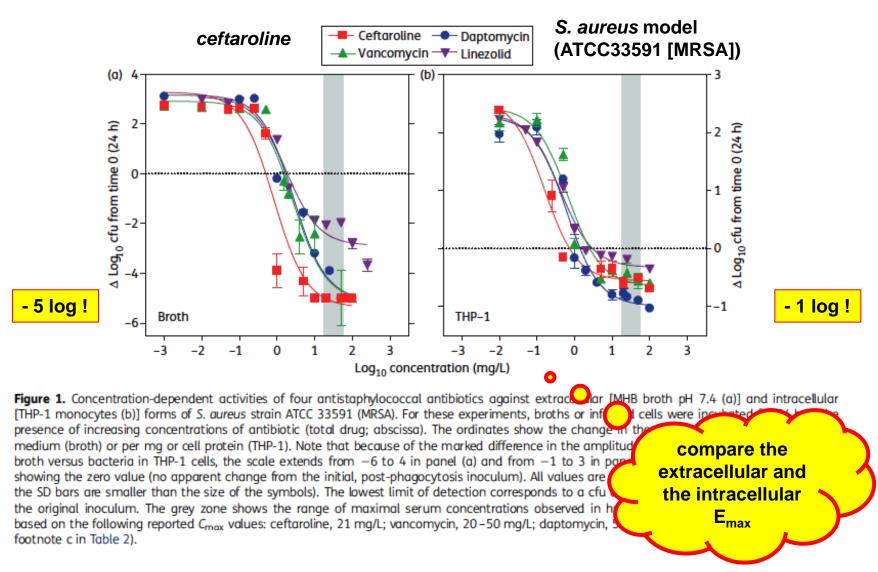
Pharmacodynamic evaluation of the intracellular activity of antibiotics against *Staphylococcus aureus* in a model of THP-1 macrophages. Antimicrobial Agents and Chemotherapy (2006) 50:841-851 – PMID: <u>16495241</u>

Interpretation of the results of the 24h dose-effect model

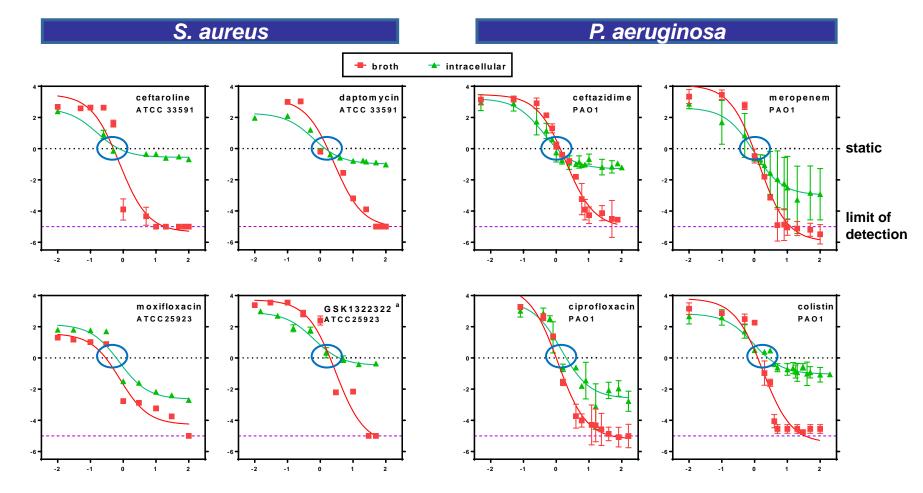

2. the analysis of the response

Reference: Barcia-Macay M, Seral C, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F.

Pharmacodynamic evaluation of the intracellular activity of antibiotics against *Staphylococcus aureus* in a model of THP-1 macrophages. Antimicrobial Agents and Chemotherapy (2006) 50:841-851 – PMID: <u>16495241</u>


Are intracellular and extracellular activities equal ?

S. aureus model (ATCC25223)


Barcia-Macay et al. Antimicrob Agents Chemother (2006) 50:841-851 – PMID: 16495241

Antibiotics have a much lower intracellular E_{max}...

Melard et al. J Antimicrob Chemother (2013) 68: 648-658 - PMID: 23188792

Antibiotics have a much lower intracellular E_{max} ... but also often a similar C_s than in broth

log₁₀ antibiotic concentration (multiples of MIC)

Van Bambeke & Tulkens, ASM Microbe 2016 – poster SARTURDAY 571 – Session 188

 Δ log $_{10}$ cfu from time 0 (24 h)

Numerical values...

antihiatia	otroin	E _{max} (log ₁₀ CFU decr.		C _s (multiple of MIC)	
antibiotic	strain	broth	intracellular	broth	intracellular
S. aureus	S. aureus				
ceftaroline	ATCC33591	-5.3	-0.56	0.5	0.8
	multiple strains	-5.1	-0.58	0.7	3.7
daptomycin	ATCC33591	-5.1	-0.99	0.15	1.4
GSK1322322 ª	ATCC25923	-5.5	-0.48	1.9	3.8
moxifloxacin	ATCC25923	-4.3	-2.7	0.3	0.6
P. aeruginosa					
ceftazidime	PAO1	-5.1	-1.3	1.3	1.0
meropenem	PAO1	-6.0	-3.0	0.9	0.9
colistin	PAO1	-5.4	-1.0	1.2	2.5
ciprofloxacin	PAO1	-5.2	-2.6	1.0	2.0
RX-P853 b	multiple strains	-5.1	-2.4	0.6	1.8

^a a novel peptide deformylase inhibitor with activity against multi-resistant S. aureus

^b a novel inhibitor of bacterial protein synthesis acting a the translation step with broad spectrum activity

Van Bambeke & Tulkens, ASM Microbe 2016 - poster SARTURDAY 571 - Session 188

A few more comparisons of E_{max}... ^a

Antibiotic Class	Molecule *	Emax (∆log ₁₀	Emax (∆log ₁₀ CFU at 24h)		
		Extracellular **	intracellular		
beta-lactams	oxacillin ¹	-3.1	-1.6		
	ceftaroline ²	-5.4	-0.6		
lipopeptides	daptomycin ²	-5.1	-1.0		
fluoroquinolones	moxifloxacin ⁴	-4.8	-2.0		
	ciprofloxacin ⁵	-4.9	-1.6		
pyrrolocytosines	RX-P873 ⁶	-4.2	-0.7		
peptides (defensins)	NZ2114 ⁷	-4.1	-1.5		
deformylase inhibitors	GSK1322322 ³	-4.8	-0.4		
glycopeptides	vancomycin ²	-5.1	-0.6		
lipoglycopeptides	oritavancin ¹	-5.5	-3.1		
oxazolidinones	linezolid ²	-2.9	-0.3		

* all molecules but linezolid are highly bactericidal by conventional MBC/MIC measurements

** limit of detection: -5.5 log10 units

^a Reminder: E_{max} is the maximal reduction of the initial inoculum for an infinitely large drug concentration

A few more comparisons of E_{max} ... ^a

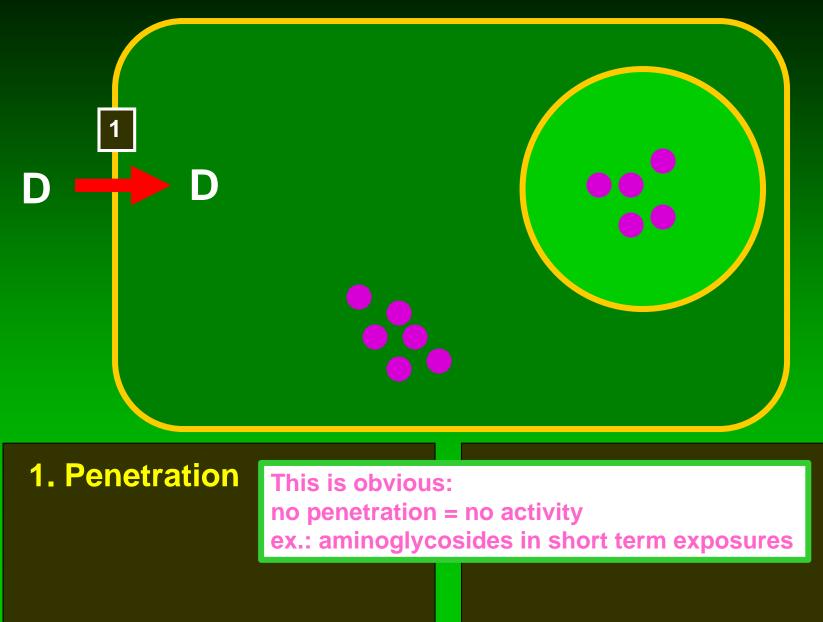
Antibiotic Class	Molecule *	Emax (∆log ₁₀ CFU at 24h)		
	Molecule	Extracellular **	intracellular	
beta-lactams	oxacillin ¹	-3.1	-1.6	
	ceftaroline ²	-5.4	-0.6	
lipopeptides	daptomycin ²	-5.1	-1.0	
fluoroquinolones	xifloxacin	-4.8	-2.0	
		_	-1.6	
pyrrolocytosines	once transferred b broth, intracellular s		-0.7	
peptides (defensins)	bacteria have the sa	ame MIČ	-1.5	
deformylase inhibitors	as the extracellular of are NOT "small of	-0.4		
glycopeptides	variants" (SCVs)		-0.6	
lipoglycopeptides	oritava	\land	-3.1	
oxazolidinones	linez	-2.9	-0.3	
 * all molecules but linezolid are highly b ** limit of detection: -5.5 log₁₀ units <u>References:</u> ¹ AAC (2006) 50:841-851; ² JA (2015) 59:4750-4758; ⁷ JAC (2010) 65:1720 	C (2013) 68: 648–658; ³ AA	urements 5760; ⁴ JAC (2011) 66:596-607	; ^₅ IJAA (2011) 38:52-59; [€] AAAC	

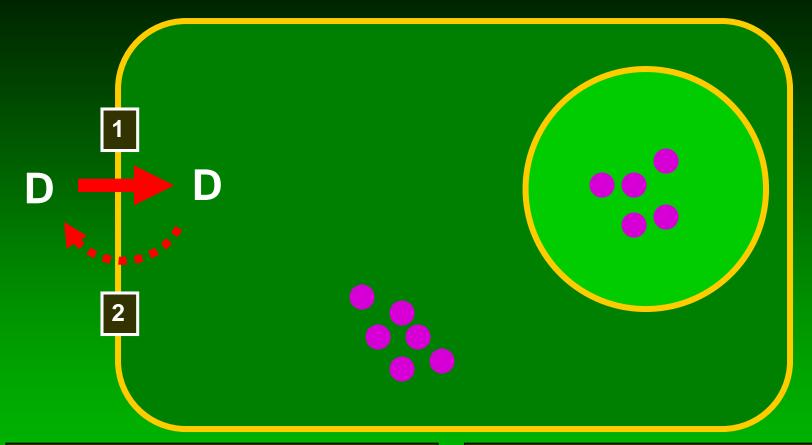
^a Reminder: E_{max} is the maximal reduction of the initial inoculum for an infinitely large drug concentration

Some antibiotics are better... ^a

Antibiotic Class	Molecule *	Emax (∆log ₁₀ CFU at 24h)		
Antibiotic Class		Extracellular **	intracellular	
beta-lactams	oxacillin ¹	-3.1	-1.6	
	ceftaroline ²	-5.4	-0.6	
lipopeptides	daptomycin ²	-5.1	-1.0	
fluoroquinolones	moxifloxacin ⁴	-4.8	-2.0	
	ciprofloxacin ⁵	-4.9	-1.6	
pyrrolocytosines	RX-P873 ⁶	-4.2	-0.7	
peptides (defensins)	NZ2114 ⁷	-4.1	-1.5	
deformylase inhibitors	GSK1322322 ³	-4.8	-0.4	
glycopeptides	vancomycin ²	-5.1	-0.6	
lipoglycopeptides	oritavancin ¹	-5.5	-3.1	
oxazolidinones	linezolid ²	-2.9	-0.3	

* all molecules but linezolid are highly bactericidal by conventional MBC/MIC measurements

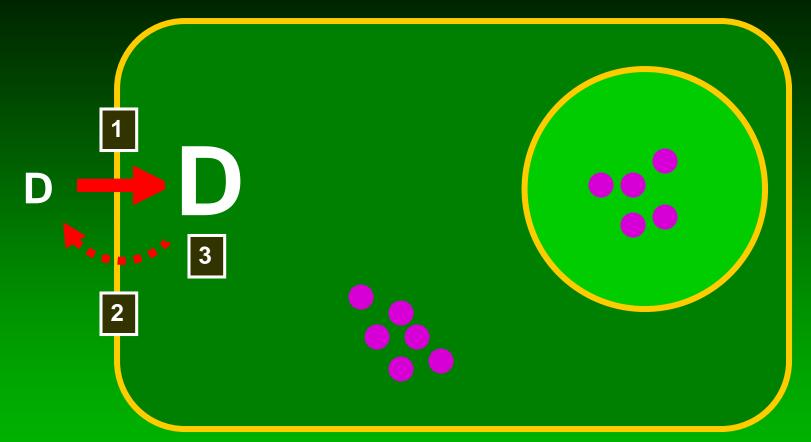

** limit of detection: -5.5 log10 units


<u>References:</u> ¹ AAC (2006) 50:841-851; ² JAC (2013) 68: 648–658; ³ AAC (2015) 59:5747-5760; ⁴ JAC (2011) 66:596-607; ⁵ IJAA (2011) 38:52-59; ⁶ AAAC (2015) 59:4750-4758; ⁷ JAC (2010) 65:1720-1724

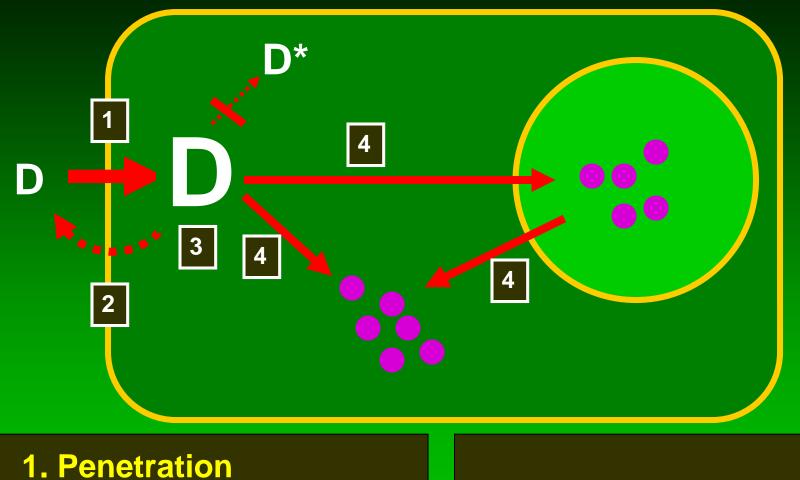
^a Reminder: E_{max} is the maximal reduction of the initial inoculum for an infinitely large drug concentration

Intracellular activity of antibiotics

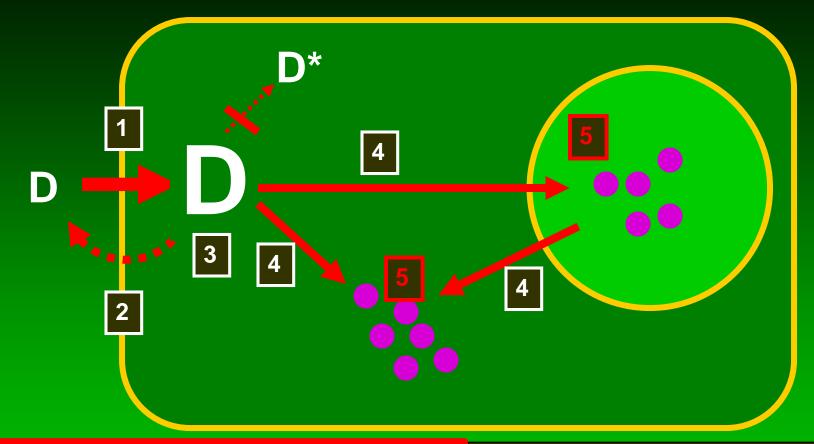
- What has been know for long about pharmacokinetics...
- What has surprised us ...
- Adding pharmacodynamics ...
- A renewed model ?



Penetration No efflux


Also obvious:

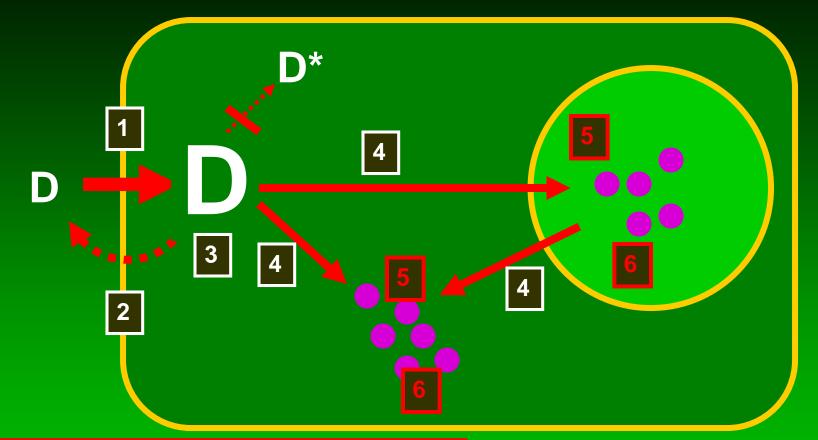
efflux decreases the intracellular concentration ex.: fluoroquinolones (MRP4), macrolides (Pg-p)


Penetration
 No efflux
 Accumulation

Much less obvious ... no simple correlation accumulation-activity ex.: fluoroquinolones, macrolides, β-lactams...

Penetration
 No efflux
 Accumulation
 Subcell. bioavailability

This is probably the most critical property ex.: fluoroquinolones, oxazolidinones vs macrolides and aminoglycosides

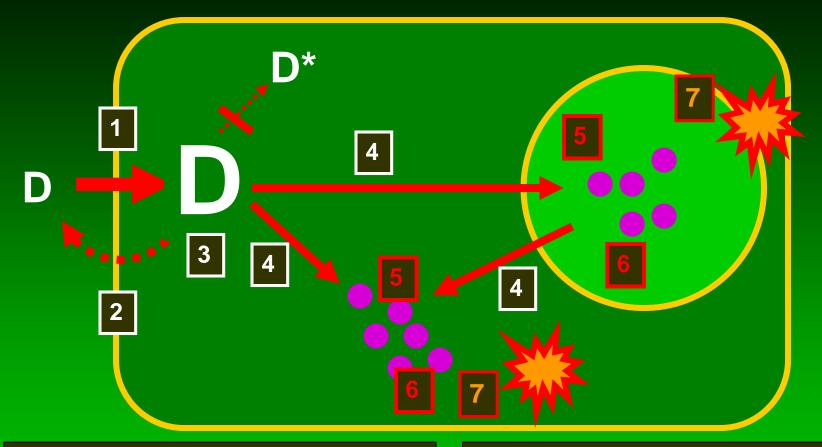


Interesting aspect but could vary for drugs and bugs ...

 one + example: intracellular MRSA and conventional β-lactams... (not shown in this lecture)

4. Subcell. Dioavallability

5. Expression of activity



Probably critical to explain the noneradication or part of the intracellular inoculum...

→ future therapeutic targets ?

4. Subcell. bioavailability

5. Expression of activity 6. Bacterial responsiveness (population)

 Penetration
 No efflux
 Accumula A. Subcell. 5. Expression of activity
 6. Bacterial responsiveness and pharmacodynamics
 7. Cooper. with host def.

But what can we do NOW ?

- All tested antibiotics fail to eradicate intracellular *S. aureus* (and many other bacteria) in the THP-1 model (and in other models)...
- Some antibiotics, however, fare better (moxifloxacin, oritavancin, e.g.) and could be our drugs of (desperate) choice...
- We must now try to understand the reasons for this global failure ... and/or screen for better compounds (follow us...)
- In the meantime, intracellular organisms will remain a cause of concern and may (unfortunately) justify large doses and prolonged treatments... which is what we most often do...

But this work would not have been possible without

The drugs...

- β-lactams: penicillin V, oxacillin, cloxacililn, ceftaroline*, ceftobiprole* (+ avibactam*)
- aminoglycosides: gentamicin, amikacin
- **lincosamides:** clindamycin, pirlimycin
- fluoroquinolones: ciprofloxacin, pefloxacin, lomefloxacin, sparfloxacin, moxifloxacin,, garenoxacin*, gemifloxacin, finafloxacin*, delafloxacin*
- oxazolidinones: linezolid, radezolid*, tedizolid*
- **glycopeptides**: vancomycin, telavancin*, oritavancin*,
- **macrolides:** clarithromycin, azithromycin, solithromycin*,
- other classes: daptomycin, GSK 1322322*, gepoditacin*, Debio1452*
- etc...

The people...

- M.B. Carlier *,**
- A. Zenebergh **
- B. Scorneaux *
- Y. Ouadrhiri *
- S. Caryn *,**
- C. Seral **
- M. Barcia-Macay *
- H.A. Nguyen **
- J.M. Michot *
- B. Marquez **
- C. Vallet *
- S. Lemaire *,**
- A. Melard
- J. Buyck **
- D. Das **
- F. Peyrusson *
- F. Van Bambeke (current head of the group)
- ..

* doctoral fellow; ** post-doctoral fellow

^{*} new molecules studied at preclinical level