Pneumonia: not just a Gram-negative issue ?

Paul M. Tulkens, MD, PhD

Cellular and Molecular Pharmacology Louvain Drug Research Institute Université catholique de Louvain

Brussels, Belgium

Vietnam Workshop Practical approaches to antibiotic use for pneumonia Taipei, Taiwan

With approval of the Belgian Common Ethical Health Platform – visa no. 16/V1/7383/078554

Which burden ?

- CAP:
 - A major acute cause of death (3rd to 7th);
 - Clear association between aging and pneumonia ("a friend of the elderly.")¹
 - Hospitalization rates for pneumonia have also increased significantly over the last 15 years²
 - High levels in long-term-care facilities ³
 → "health care associated" pneumonia ?
 - Costly treatments of elderly patients because of the increased length of hospital ⁴
 - Long term survival is often poor (half of elderly patients with community-acquired pneumonia died in the next year) ⁵

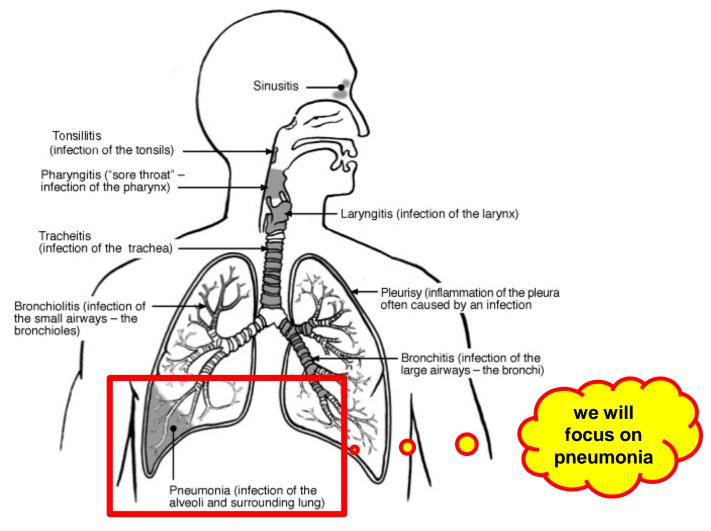
¹ Osler W The Principles and Practice of Medicine. 3rd ed 1898 Appleton New York 109

² Fry et al. JAMA. 294:2712-2719 2005

³ Marrie TJ. Infect Control Hosp Epidemiol. 23:159-164 2002

⁴ Marston et al. Arch Intern Med. 157:1709-1718 1997

⁵ Kaplan et al. Arch Intern Med. 163:317-323 2003


Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance
- Epidemiology
- Conclusions and Recommendations

Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance
- Epidemiology
- Conclusions and Recommendations

Respiratory tract infections: 1. the diseases

Infections of the respiratory tract

Respiratory tract infections: 2. the enemies

Pneumonia in patients coming from the community: which type ?

- community acquired (CAP)
 - Children
 - Young adult patients with no risk factor
 - Elderly
 - Comorbidities and severity of disease
- health care associated (HCAP)
 - nursing homes or previous antibiotic treatments
 - hospital
- immunocompromized patient
 - asplenic
 - HIV
 - anticancer treatment

Main pathogens in CAP (adult)

Pathogen	Frequency (%)
No pathogen identified	49.8
Streptococcus pneumoniae	19.3
Viruses	11.7
Mycoplasma pneumoniae	11.1
Chlamydia pneumoniae	8.0
Haemophilus influenzae	3.3
Legionella spp	1.9
Other organisms	1.6
Chlamydia psittaci	1.5
Coxiella burnetii	0.9
Moraxella catarrhalis	0.5
Gram-negative enteric bacteria	0.4
Staphylococcus aureus	0.2

Woodhead M. Eur Respir J Suppl 2002;36:20s-7s.

in Asia, recent reported figures (%) vary from

- 2.2 (China)
- 1 to 23 (Taiwan)
- 1.3 to 20 (Philippines)
- 3.1 to 5.5 (Malaysia)
- 12 (Korea)
- 20.6 to 23.1 (Thailand)
- 35.8 (India)

Jae-Hoon Songa et al. Intern. J. Antimicrob. Ag. 38 (2011) 108-117

In Ho Chi Minh, 71% of pneumonia in children were bacteriemic with *Streptococcus pneumoniae* grown in 92.5% of the blood cultures

Tran et al. Pediatr Infect Dis J. 1998 Sep;17(9 Suppl):S192-4.

In Nha Trang, *S. pneumoniae* and *H. influenzae* type b were the most common causes of laboratory-confirmed invasive bacterial disease in children.

Anh et al. Clin Infect Dis. 2009 Mar 1;48 Suppl 2:S57-64.

CAP: importance of age, severity of disease and environment on types of bacteria

Pathogen	Frequency (%)	
No pathogen identified	49.8	
Streptococcus pneumoniae	19.3	
Viruses	11.7	
Mycoplasma pneumoniae	11.1	
Chlamydia pneumoniae	8.0	
Haemophilus influenzae	3.3	
Legionella spp	1.9	
Other organisms	1.6	
Chlamydia psittaci	1.5	
Coxiella burnetii	0.9	
Moraxella catarrhalis	0.5	
Gram-negative enteric bacteria	0.4	
Staphylococcus aureus	0.2	

the most prevalent one

- オ in young adults
- ➔ in severe cases

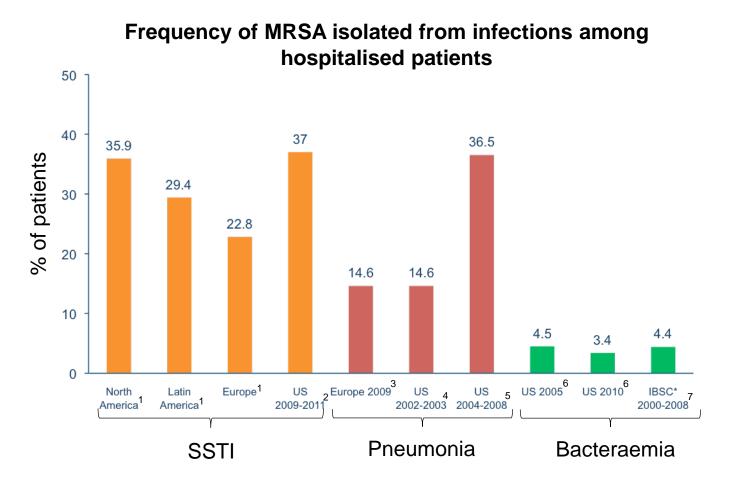
- in severe cases and comorbidities
- オ in local environments (!!!)

Woodhead M. Eur Respir J Suppl 2002;36:20s-7s.

Main pathogens in HCAP associated pneumonia

All of the above plus

- Gram-positive
 - S. pneumoniae (most often <u>multiresistant</u>)
 - Methicillin-resistant *Staphylococci* (including *aureus* [MRSA])
 - Enterococci
- Gram-negative
 - Enterobacterciaceae (E. coli, K. pneumoniae)
 - Acinetobacter baumanii
 - Pseudomonas aeruginosa
- Anaerobes


Donowithz G. Acute pneumonia: health-care assciated pneumonia In Priciples and Practie of Infectious Diseases, Mandell et al. eds, 7th Edition on line - chapter 64 (https://expertconsult.inkling.com/read/principles-practice-infectious-diseases-mandell-7th/chapter-64/pneumonia-syndromes#87a18782a8ba440c91948961322e0397)

CAP and HCAP : a comparison of etiologies

Pathogen, n (%)	CAP	HCAP	P value
	(n=208)	(n=431)	
MRSA	25 (12.0)	132 (30.6)	<0.001
S. pneumoniae	85 (40.9)	45 (10.4)	<0.001
P. aeruginosa	10 (4.8)	110 (25.5)	<0.001
MSSA	28 (13.5)	60 (13.9)	0.874
Haemophilus species	36 (17.3)	18 (4.2)	<0.001
Other nonfermenting Gram-negative rods	4 (1.9)	43 (10.0)	<0.001
Other Enterobacteriaceae	5 (2.4)	39 (9.0)	0.002
Klebsiella species	7 (3.4)	28 (6.5)	0.103
E. coli	12 (5.8)	18 (4.2)	0.372
Legionella species	7 (3.4)	1 (0.2)	0.017

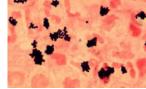
Micek et al. Antimicrob Agents Chemother. 2007; 51:3568-73.

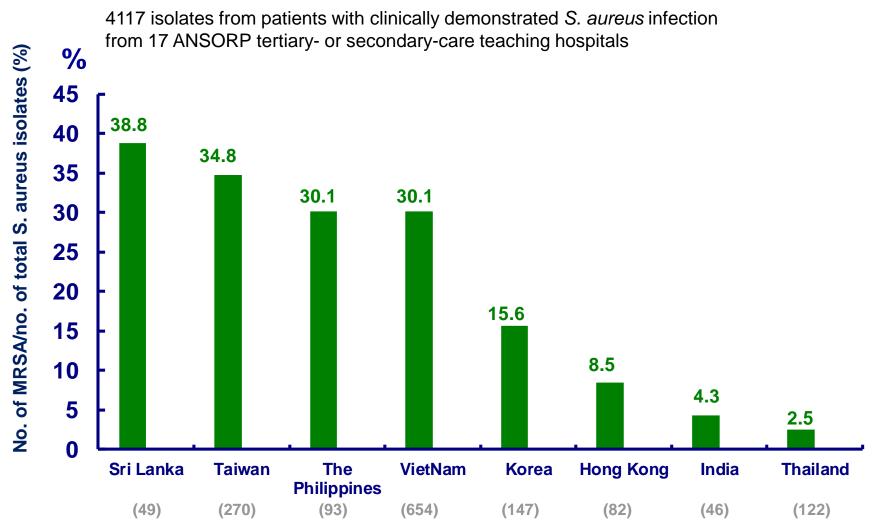
MRSA is a Frequent Cause of Hospital-acquired Infections in many parts of the world

SSTI = skin and skin-structure infection

IBSC = International Bacteremia Surveillance Collaborative (Finland, Australia, Canada, Denmark and Sweden)

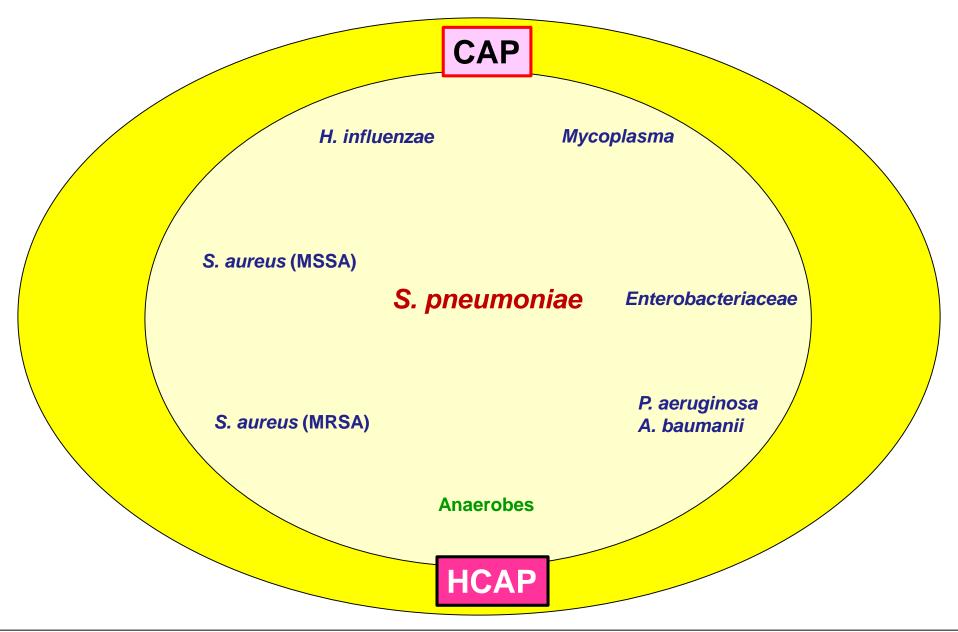
1. Moet GJ, et al. Diagn Microbiol Infect Dis 2007;57:7–13; 2. Ray GT, et al. BMC Infect Dis. 2013;13(1):252; 3. Koulenti D, et al. Crit Care Med 2009;37:2360-2368; 4. Kollef MH, et al. Chest 2005;128:3854-3862; 5. Jones RN, Clin Infect Dis 2010;51 Suppl 1:S81–7; 6. Landrum ML, et al. JAMA 2012;308:50-9; 7. Laupland M, et al. Clin Microbiol Infect 2013;19:465–471.


But also in Asia: spread of CA-MRSA?


J Antimicrob Chemother 2011; **66**: 1061–1069 doi:10.1093/jac/dkr024 Advance Access publication 20 February 2011 Journal of Antimicrobial -Chemotherapy

Spread of methicillin-resistant *Staphylococcus aureus* between the community and the hospitals in Asian countries: an ANSORP study

Jae-Hoon Song^{1,2*†}, Po-Ren Hsueh^{3†}, Doo Ryeon Chung¹, Kwan Soo Ko^{2,4}, Cheol-In Kang¹, Kyong Ran Peck¹, Joon-Sup Yeom⁵, Shin-Woo Kim⁶, Hyun-Ha Chang⁶, Yeon-Sook Kim⁷, Sook-In Jung⁸, Jun Seong Son⁹, Thomas Man-kit So¹⁰, M. K. Lalitha¹¹, Yonghong Yang¹², Shao-Guang Huang¹³, Hui Wang¹⁴, Quan Lu¹⁵, Celia C. Carlos¹⁶, Jennifer A. Perera¹⁷, Cheng-Hsun Chiu¹⁸, Jien-Wei Liu¹⁹, Anan Chongthaleong²⁰, Visanu Thamlikitkul²¹ and Pham Hung Van²² on behalf of the ANSORP Study Group‡


But also in Asia: spread of CA-MRSA ?

Song et al. J Antimicrob Chemother. 2011;66:1061-9.

In a nutshell (for bacteria) ...

Message(s)

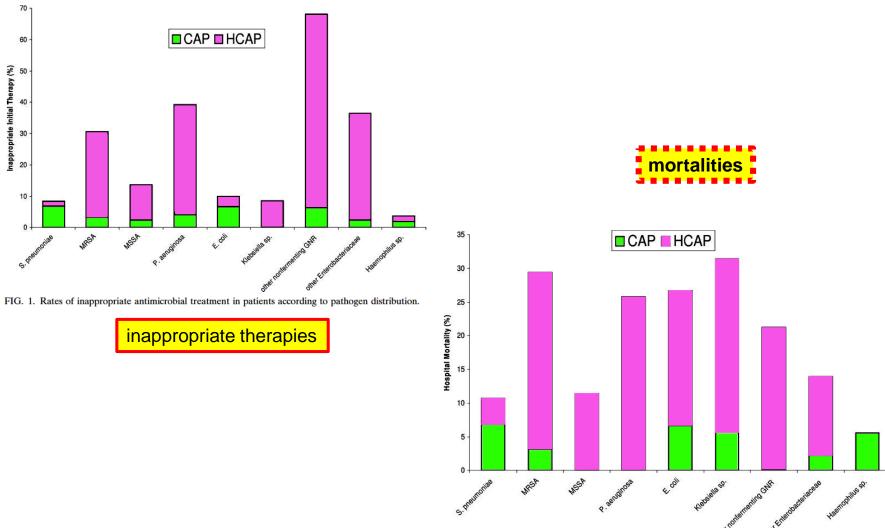
- Talk to your microbiologist
- Invest MORE in microbiology
- Trust microbiology
- Use microbiological surveys data

Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance...
- Epidemiology...
- Conclusions and Recommendations

Avoid inappropriate treatments in HCAP ...

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 2007, p. 3568–3573 0066-4804/07/\$08.00+0 doi:10.1128/AAC.00851-07 Copyright © 2007, American Society for Microbiology. All Rights Reserved. Vol. 51, No. 10


Health Care-Associated Pneumonia and Community-Acquired Pneumonia: a Single-Center Experience[∀]

Scott T. Micek,¹ Katherine E. Kollef,² Richard M. Reichley,³ Nareg Roubinian,² and Marin H. Kollef^{2*}

Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, Missouri¹; Pulmonary and Critical Care Division, Washington University School of Medicine, St. Louis, Missouri²; and BJC Health Care, Center for Health Care Quality and Effectiveness, St. Louis, Missouri³

Received 29 June 2007/Returned for modification 24 July 2007/Accepted 31 July 2007

Avoid inappropriate treatments ...

Micek et al. Antimicrob Agents Chemother. 2007; 51:3568-73.

FIG. 2. Rates of hospital mortality according to pathogen distribution. GNR, gram-negative rods.

A choice of antibiotics based on EUCAST...

European Society of Clinical Microbiology and Infectious Diseases

Organization

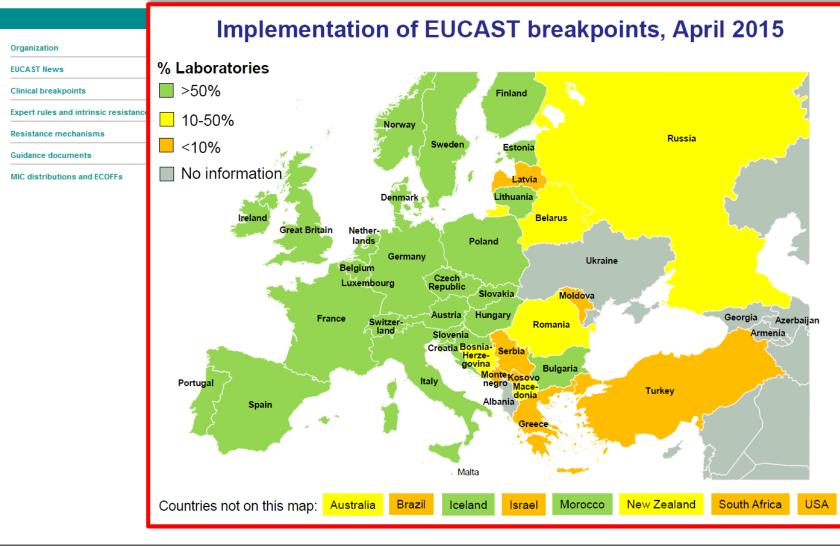
EUCAST News

Clinical breakpoints

Expert rules and intrinsic resistance

Resistance mechanisms

- **Guidance documents**
- MIC distributions and ECOFFs


The European Committee on Antimicrobial Susceptibility Testing - EUCAST

EUCAST deals with **breakpoints** and technical aspects of phenotypic in vitro **antimicrobial susceptibility testing** and functions as the breakpoint committee of EMA and ECDC.

A choice of antibiotics based on EUCAST...

EUCAST EUCAST UNCOMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

European Society of Clinical Microbiology and Infectious Diseases

C. nnoumonios (clinical breakp	oint (mg/L) ^b
S. pneumoniae ^c	susceptible	resistant
β-lactams		·
amoxicillin	≤ 0.5	> 2
ceftriaxone	≤ 0.5	> 2
ertapenem	≤ 0.5	> 0.5
meropenem	≤2	> 2
macrolides		
azithromycin	≤ 0.25	> 0.5
clarithromycin	≤ 0.25	> 0.5
fluoroquinolones		·
levofloxacin ^d	≤2	> 2
moxifloxacin	≤ 0.5	> 1
glycopeptides		
vancomycin	≤2	> 2
tetracyclines		
doxycycline	≤1	> 2

^a more details and proposals on <u>http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf</u>

^b susceptible: high likelihood of clinical success; resistant: high likelihood of clinical failure

^c non-meningitis indication

^d high dose (2 X 500 mg/day)

MRSA	clinical breakpoint (mg/L) ^b		
	susceptible	resistant	
β-lactams		·	
ceftaroline	≤1	>1	
macrolides			check those
clarithromycin	≤1	> 2	figures agains
fluoroquinolones			epidemiologic
moxifloxacin ^c	≤ 0.5	> 1	
glycopeptides	•		
vancomycin	≤2	> 2	
tetracyclines			
doxycycline	≤1	> 2	
tigecycline	≤ 0.5	> 0.5	
Oxazolidinones			
linezolid	≤4	> 4	
tedizolid	≤ 0.5	> 0.5	
Trimethoprim/Sulfamethoxazole	≤2	> 4	

^a more details and proposals on <u>http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf</u>

^b susceptible: high likelihood of clinical success; resistant: high likelihood of clinical failure

^c moxifloxacin has no indication for MRSA but some strains show low MICs (testing is essential)

Enterchanteriagon	clinical breakpoint (mg/L) ^b			
Enterobacteriaceae	susceptible	resistant		
β-lactams				
amoxicillin/clavulanic acid	≤ 8	> 8		
piperacillin/tazobactam	≤ 8	> 16		
ceftazidime	≤1	> 4		
ceftriaxone	≤1	> 2		
ertapenem	≤ 0.5	> 1		
meropenem	≤ 2	> 8		
fluoroquinolones				
ciprofloxacin	≤ 0.5	> 1		
moxifloxacin	≤ 0.5	> 1		
aminoglycosides				
gentamicin	≤1	> 4		
amikacin	≤ 4	> 16		
polymyxins				
colistin	≤2	> 2		

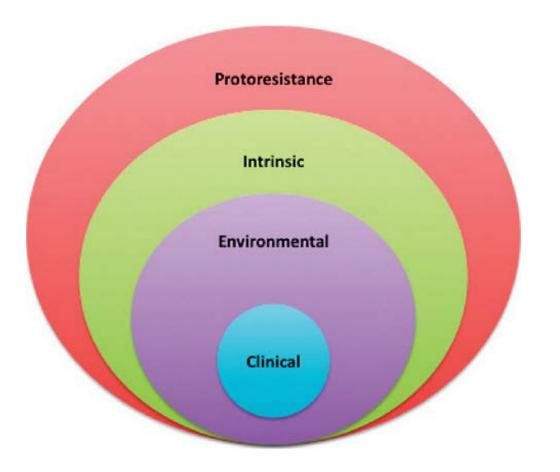
check those figures against your epidemiological data

^a more details and proposals on <u>http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf</u>

^b susceptible: high likelihood of clinical success; resistant: high likelihood of clinical failure

Beaudamanas aaruginasa	clinical breakpoint (mg/L) ^b			
Pseudomonas aeruginosa	susceptible	resistant		
β-lactams				
piperacillin/tazobactam	≤ 16	> 16		
ceftazidime	≤ 8	> 8		
cefepime	≤8	> 8		
meropenem	≤2	> 8		
fluoroquinolones				
ciprofloxacin	≤ 0.5	> 1		
levofloxacin	≤1	> 2		
aminoglycosides				
gentamicin	≤ 4	> 4		
amikacin	≤8	>16		
polymyxins				
colistin	≤ 4	> 4		

check those figures against your epidemiological data

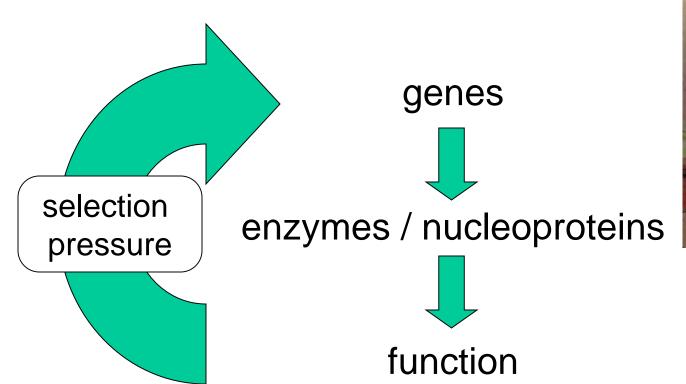

^a more details and proposals on http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf

^b susceptible: high likelihood of clinical success; resistant: high likelihood of clinical failure

Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance...
- Epidemiology
- Conclusions and Recommendations

The resistome ...

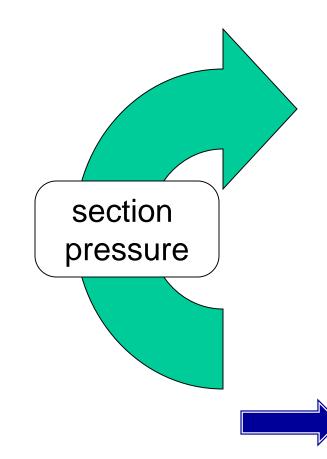


- all the genes and their products that contribute to antibiotic resistance
- highly redundant and interlocked system
- clinical resistance under represents the resistance capacity of bacteria
- existing biochemical mechanisms (protoresistome) serve as a deep reservoir of precursors that can be coopted and evolved to

Antibiotic Resistance:Implications for Global Health and Novel Intervention Strategies: Workshop Summary http://www.nap.edu/openbook.php?record_id=12925

The selectome

A simple application of Darwin's principles ...



Detail of watercolor by George Richmond, 1840. Darwin Museum at Down House

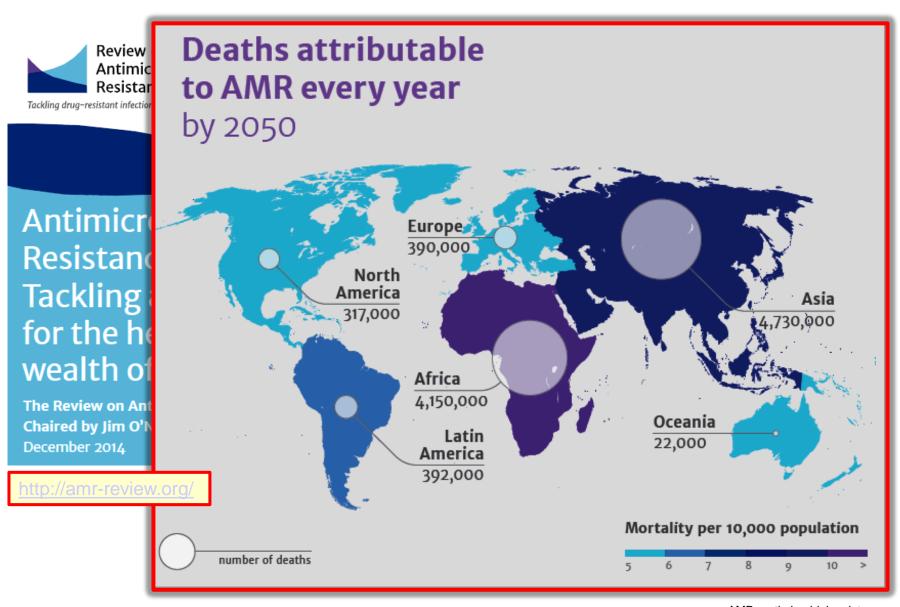
How and why can you select so easily ?

A simple application of Darwin's principle... to a highly plastic material...

- an infectious focus typicaly contains more than 10⁶ - 10⁹ organisms
- most bacteria multiply VERY quickly (20 min...) and do mistake ...
- they are not innocent or useless mistakes

fast selection of the fittest !

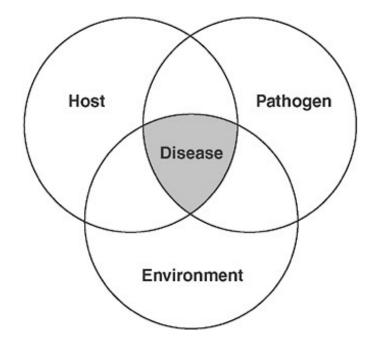
What are the risks ?



Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations

The Review on Antimicrobial Resistance Chaired by Jim O'Neill December 2014

http://amr-review.org/


What are the risks ?

Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance...
- Epidemiology
- Conclusions and Recommendations

Epidemiology

Epidemiology: principles

Epidemiological (surveillance) studies must be

- **geographically** well adapted to the type of pathogen
 - S. pneumoniae \rightarrow regional or national
 - *P. aeruginosa* \rightarrow by hospital and even wards
- comprehensive
 - correct coverage of patients, underlying diseases, and organisms of interest
 - with a sufficiently large number of isolates in a given period
- use appropriate interpretative criteria (breakpoints)

Resistance in Cambodia and neighboring countries

OPEN 3	ACCESS	Freely	available	online
--------	--------	--------	-----------	--------

PLOS ONE

Etiologies and Resistance Profiles of Bacterial Community-Acquired Pneumonia in Cambodian and Neighboring Countries' Health Care Settings: A Systematic Review (1995 to 2012)

Sophie Goyet¹, Erika Vlieghe², Varun Kumar³, Steven Newell⁴, Catrin E. Moore^{3,5,6}, Rachel Bousfield^{3,6}, Heng C. Leang⁷, Sokheng Chuop⁷, Phe Thong⁸, Blandine Rammaert⁹, Sopheak Hem¹, Johan van Griensven^{2,8}, Agus Rachmat⁴, Thomas Fassier¹⁰, Kruy Lim⁸, Arnaud Tarantola¹*

1 Epidemiology unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia, 2 Institute of Tropical Medicine, Antwerp, Belgium, 3 Angkor Hospital for Children, Siem Reap, Cambodia, 4 Naval Medical Research Unit2, Phnom Penh, Cambodia, 5 Wellcome Trust Major Overseas Programme, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, 6 Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford University, Oxford, United Kingdom, 7 National Institute of Public Health, Phnom Penh, Cambodia, 8 Sihanouk Hospital Center of HOPE, Phnom Penh, Cambodia, 9 Hopital Necker-Enfants malades service des Maladies Infectieuses et Tropicales, APHP, Paris, France, 10 University of Health Sciences, Faculty of Medicine, Phnom Penh, Cambodia

PLoS One. 2014; 9(3): e89637

Resistance in Cambodia and neighboring countries

OPEN CACCESS Freely available online

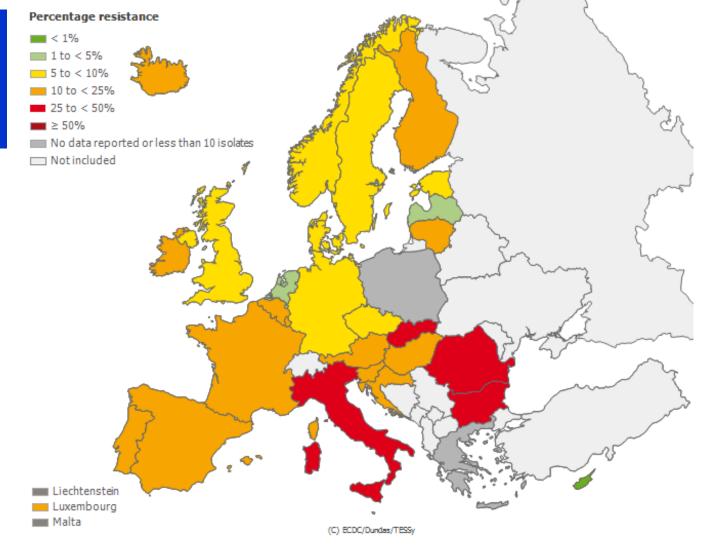
Etiologies and Resistance Profiles of Bacte Community-Acquired Pneumonia in Camb Neighboring Countries' Health Care Settin Systematic Review (1995 to 2012)

Sophie Goyet¹, Erika Vlieghe², Varun Kumar³, Steven Newell⁴, Catrin E. Moo Heng C. Leang⁷, Sokheng Chuop⁷, Phe Thong⁸, Blandine Rammaert⁹, Sopher Griensven^{2,8}, Agus Rachmat⁴, Thomas Fassier¹⁰, Kruy Lim⁸, Arnaud Tarantola

1 Epidemiology unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia, 2 Institute of Tropical Medicine, Antwerp, Belg Reap, Cambodia, 4 Naval Medical Research Unit2, Phnom Penh, Cambodia, 5 Wellcome Trust Major Overseas Programme, N Unit, Bangkok, Thailand, 6 Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford University, Oxfor Public Health, Phnom Penh, Cambodia, 8 Sihanouk Hospital Center of HOPE, Phnom Penh, Cambodia, 9 Hopital Necker-Enfant et Tropicales, APHP, Paris, France, 10 University of Health Sciences, Faculty of Medicine, Phnom Penh, Cambodia

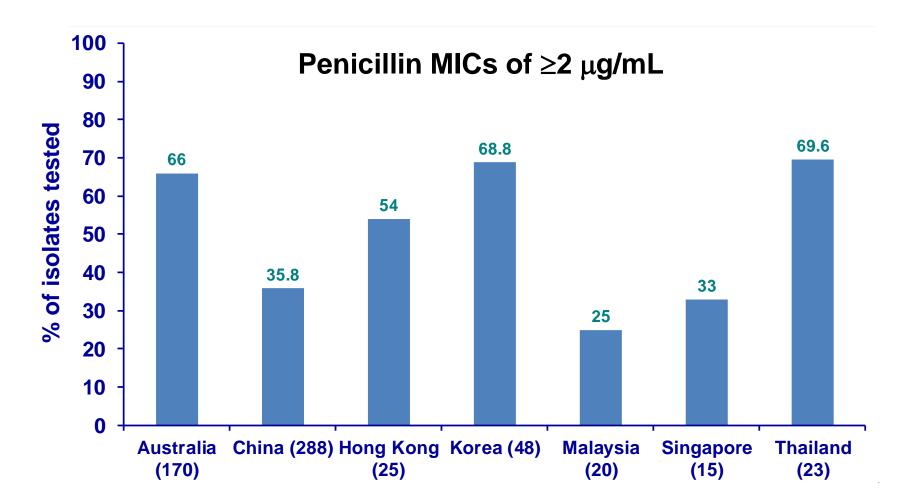
PLoS One. 2014; 9(3): e89637

Further comment:


In two multinational antimicrobial susceptibility studies carried out between 2000 and 2004, Vietnam's isolates had one of the highest resistance rates against cefuroxime, clindamycin, and erythromycin out of 11 Asian countries....

(cited from Hung et al. Int J Infect Dis. 2013; 17(6):e364-73.

Table 1. Antimicrobial resistance rates of S. pneumonia. Mean resistance rate b study reference study period n. of isolates N % n penicillin G intermediate resistance 132 424 31.1 high level resistance 25.2 123 / 488 resistance (level not defined) 6 58 58.0 ampicillin 10 148 6.9 amoxicillin 5 84 6.0 amoxicillin-clavulanic acid 8 257 3.1 cefuroxime 122 257 47.5 ceftriaxone 22 224 9.8 cephalothin 0 64 0.0 cefotaxime 57 284 20.2 chloramphenicol 48.3 188 390 tetracycline 35.2 58 164 erythromycine 233 447 52.1 azithromycin 99 200 49.5 vancomycin 2 1 84 2.0 thrimetoprim/sulfamethoxazole 329 421 78.2 ofloxacin 75 200 37.5 levofloxacine 2 216 0.9


You are not alone ... for macrolide resistance

Resistance to macrolides in Europe in 2014

http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/map_reports.aspx Last visited: 14 March 2016

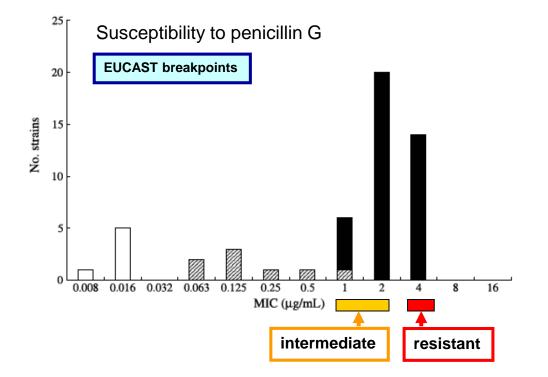
Resistance Rates of *S. pneumoniae* Asia-Pacific Region

Sader et al. Diagn Microbiol Infect Dis 2013; 76:61-8.

Resistance to penicillin in Vietnam: 1. Hospital

Pediatrics International (2008) 50, 514-518

doi: 10.1111/j.1442-200X.2008.02616.x


Original Article

Drug-resistant pneumococci in children with acute lower respiratory infections in Vietnam

Kiwao Watanabe,¹ Dang Duc Anh,² Phan Le Thanh Huong,² Nguyen Thu Nguyet,³ Nguyen Thu Hien Anh,² Ngo Thi Thi,³ Nguyen Tien Dung,⁴ Doan Mai Phuong,⁴ Olivia S. Rusizoka,¹ Tsuyoshi Nagatake,¹ Hiroshi Watanabe^{1,†} and Kazunori Oishi^{1,5} Departments of ¹Internal Medicine and ⁵Special Pathogen, International Research Center for Infectious Diseases, Institute of Microbial Diseases, Osaka University, Japan and ²National Institute of Hygiene and Epidemiology, ³Department of Laboratory, National Pediatric Hospital and ⁴Department of Laboratory, Bach Mai Hospital, Hanoi, Vietnam

Resistance to pencillin for S. pneumoniae at Bach Mai, Hanoi, Vietnam

Watanabe et al. Ped. Int. 2008; 50:514-518

Resistance to penicillin for S. pneumoniae at Bach Mai, Hanoi, Vietnam

Watanabe et al. Ped. Int. 2008; 50:514-518

Recent Vietnamese data for respiratory tract infections in a major hospital *

S. pneumoniae (n=44)						
Antibiotic	no. tested	R (%)	I (%)	S (%)	MIC ₅₀	MIC ₉₀
Erythromycin	38	92.1	2.6	5.3		
Chloramphenicol	34	17.6	0	82.4		
Clindamycin	38	86.8	0	13.2		
Vancomycin	37	0	0	100		
Cotrimoxazole	37	94.6	2.7	2.7		
Penicillin	43	23.3	58.1	18.6	0.38	1.5

CLSI breakpoints

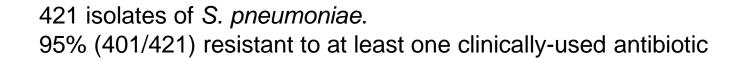
* Bach Mai hospital, Hanoi (Jan-May 2013) Unpublished data

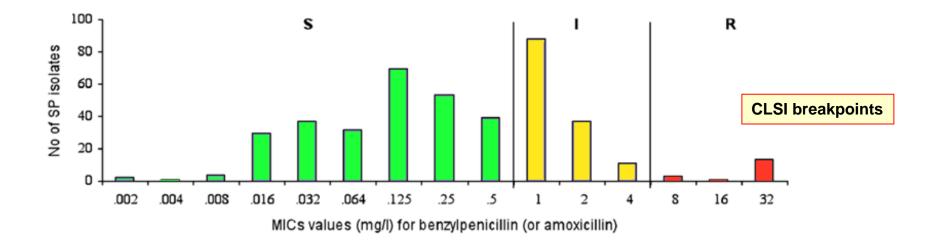
Resistance to penicillin in Vietnam: 2. Community

Hoa et al. BMC Infectious Diseases 2010, 10:85 http://www.biomedcentral.com/1471-2334/10/85

RESEARCH ARTICLE

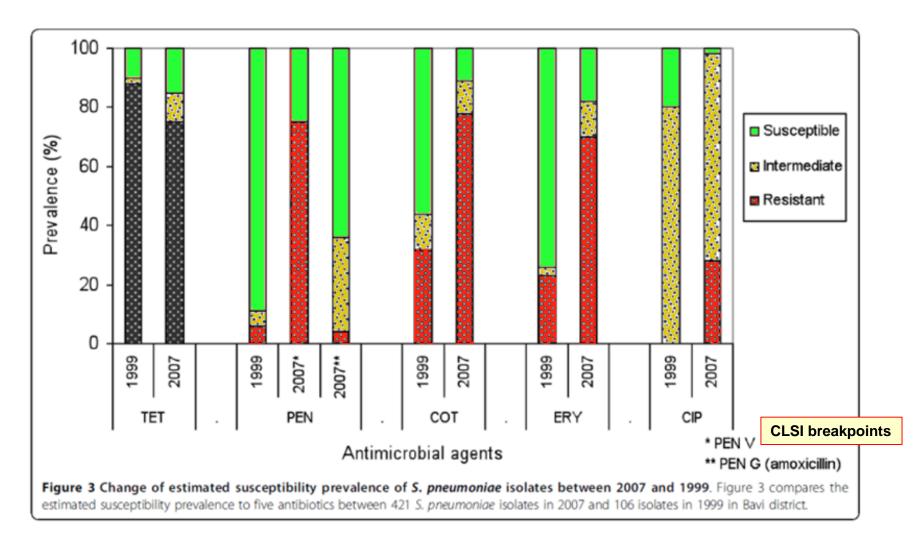
BMC Infectious Diseases


Open Access


Decreased *Streptococcus pneumoniae* susceptibility to oral antibiotics among children in rural Vietnam: a community study

Nguyen Quynh Hoa^{1,2*}, Nguyen V Trung^{3,4}, Mattias Larsson¹, Bo Eriksson⁵, Ho D Phuc⁶, Nguyen TK Chuc⁷, Cecilia Stalsby Lundborg¹

Resistance for *S. pneumoniae* in Ba Vi District, Vietnam



High level of resistance for

- co-trimoxazole (recommended by WHO !)
- tetracycline
- penicillin V
- erythromycin (70-78%; crossed resistance with other macrolides).

Resistance for *S. pneumoniae* in Ba Vi District, Vietnam

Resistance increases over time ...

Resistance and community antibiotic consumption in Vietnam

Thesis for doctoral degree (Ph.D.) 2010

High antibiotic use and resistance among children under five Acute respiratory infections: knowledge and behaviour of caregivers and health-care providers in Vietnam

Nguyen Quynh Hoa

Conclusions: Resistance to commonly used antibiotics and multidrug-resistance of *S. pneumoniae* is markedly high. High dose of amoxicillin is the only oral antibiotic that can possibly be used when treatment is required for community-acquired pneumococcal infections. Most of children had used antibiotics unnecessarily during their most recent illness and in the 28-day period during the study. There is a serious lack of knowledge on appropriate antibiotic use among the HCPs as well as the caregivers. Antibiotics are often prescribed or dispensed for common colds.

The message: make and use surveys

• Viet Nam should know ITS resistance patterns (by regions) !

Contents of the presentation

- The diseases and the enemies
- From enemies to antibiotics: which ones to use ?
- The fear for resistance...
- Epidemiology
- Conclusions and Recommendations

Conclusions and Recommendations

Any prescription should assess...

- the risk/benefit balance for individual patients
- the adequacy to the most likely pathogen (with possibility for surprises !)
- the current and foreseeable resistance to antibiotics that will affect all present and future patients

https://www.whitehalltraining.com/blog/risk-benefit-doesnt-balance

Please, ask questions... and start the discussion...

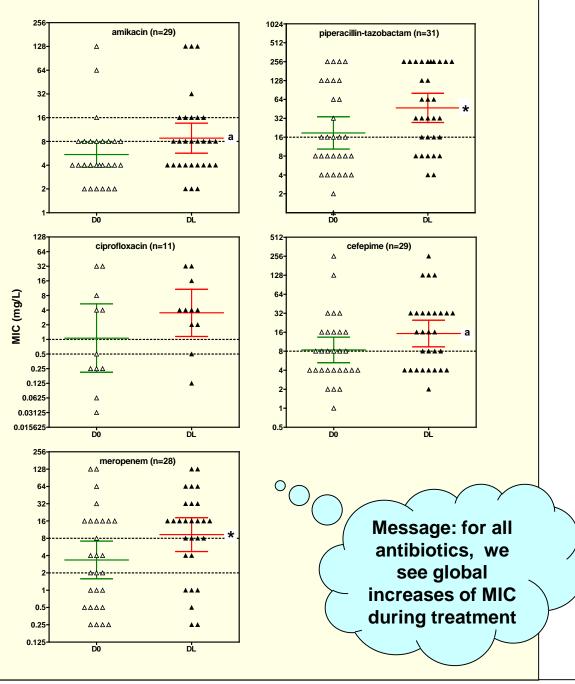
Back-up

The hidden risk of therapy (in our hospitals ...)

International Journal of Antimicrobial Agents 36 (2010) 513-522

In vivo development of antimicrobial resistance in *Pseudomonas aeruginosa* strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy

Mickaël Riou^{a, 1}, Sylviane Carbonnelle^{a, 2}, Laëtitia Avrain^{a, b}, Narcisa Mesaros^{a, 3}, Jean-Paul Pirnay^c, Florence Bilocq^c, Daniel De Vos^{c, d}, Anne Simon^e, Denis Piérard^f, Frédérique Jacobs^g, Anne Dediste^h, Paul M. Tulkens^{a, *}, Françoise Van Bambeke^a, Youri Glupczynskiⁱ


^a Unité de Pharmacologie Cellulaire et Moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

- ^b Coris BioConcept, Gembloux, Belgium
- ^c Laboratory for Molecular & Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
- ^d Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- e Laboratoire de Microbiologie, Cliniques Universitaires St-Luc, Brussels, Belgium
- ^f Laboratorium voor Microbiologie, Universitair Ziekenhuis Brussel, Brussels, Belgium
- ^g Clinique des Maladies Infectieuses, Hôpital Erasme, Brussels, Belgium
- h Laboratoire de Microbiologie, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
- ⁱ Laboratoire de Microbiologie, Cliniques Universitaires UCL de Mont-Godinne, Yvoir, Belgium

Do you remain effective while treating ?

- D0: initial isolate
 DL: last isolate obtained
- individual values with geometric mean (95 % CI)
- S (lowest line) and R (highest line) EUCAST breakpoints
- * p < 0.05 by paired t-test (twotailed) and Wilcoxon nonparametric test
- ^a p < 0.05 by Wilcoxon nonparametric test only

Note: stratification by time between D0 and DL gave no clue (too low numbers)

Organism	Mechanism	What to do ?	success?
Streptococcus pneumoniae	target mutation PBP2x with low penicillin binding	increasing the dosage of β -lactams	partial (MIC ≤ 4 mg/L)
	target mutation for macrolides, lincosamides and steptogramins	nothing (high-level resistance)	no
	efflux for macrolides	increase the dose (but difficult) use ketolides or 16- membered macrolides	disputable Telithromycin effective but risk of toxicity
	efflux for fluoroquinolones	avoid fluoroquinolones subject to efflux (ciprofloxacin, gemifloxacin)	yes (if using moxifloxacin)

Organism	Mechanism	What to do ?	success?
Haemophilus influenzae	β-lactamase	add a β-lactamase inhibitor	yes (but toxicity)
	target mutation for β- lactams	high level resistance	no
Moraxella catarrhalis	β-lactamase	add a β-lactamase inhibitor	yes (but toxicity)
Staphylococcus aureus	methicillin-resistance	use vancomycin, linezolid, or daptomycin	yes, but limits (vancomycin; daptomycin) and toxicities
Mycoplasma pneumoniae	target mutation for macrolides	nothing (high level resistance)	no

Organism	Mechanism	What to do?	success?
Enterobacteriaceae	β-lactamases (including ESBL and carbapenemases)	ng ESBL	
	target mutations for fluoroquinolones	use the most potent fluoroquinolone (dissociated resistance)	moderate
	efflux (affect several classes)	"fine-tuning" antibiotic choice (based on antibiogram)	moderate

Organism	Mechanism	What to do ?	success?
Pseudomonas aeruginosa	β-lactamases (including ESBL)	change antibiotic(s)	yes (but difficulties in case of MDR)
	decreased permeability	choosing an antibiotic with higher permeability	moderate
	target mutations for fluoroquinolones	use the most potent fluoroquinolone (dissociated resistance)	moderate
	efflux (affect several classes)	"fine-tuning" antibiotic choice (based on antibiogram)	moderate

S. pneumoniae: example in Belgium for CAP

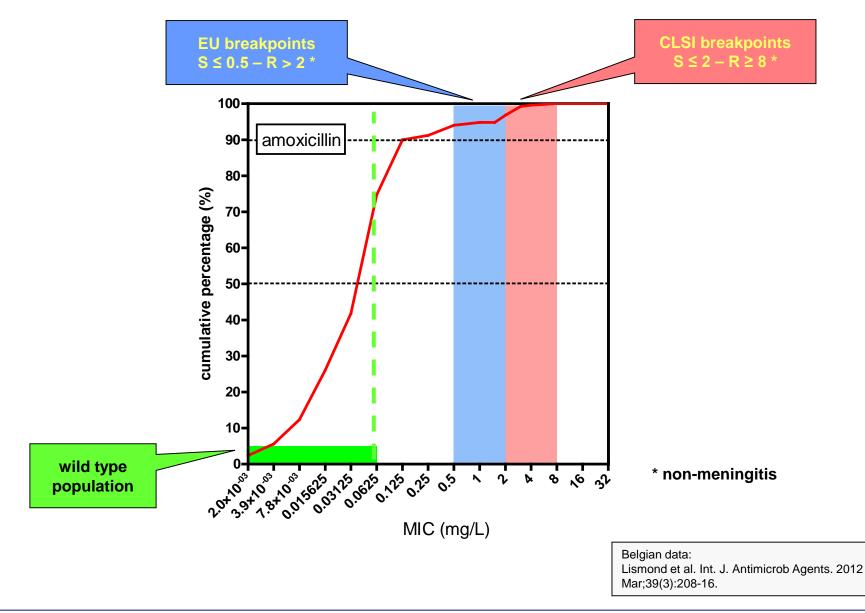
Antimicrobial susceptibility of *Streptococcus pneumoniae* isolates from vaccinated and non-vaccinated patients with a clinically confirmed diagnosis of community-acquired pneumonia in Belgium

Ann Lismond^a, Sylviane Carbonnelle^{a,1}, Jan Verhaegen^b, Patricia Schatt^c, Annelies De Bel^d, Paul Jordens^e, Frédérique Jacobs^f, Anne Dediste^g, Frank Verschuren^h, Te-Din Huang^{i,2}, Paul M. Tulkens^{a,*}, Youri Glupczynski^j, Françoise Van Bambeke^a

^a Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

^b Laboratorium microbiologie, Universitair Ziekenhuis Gasthuisberg, Leuven, Belgium

^c Laboratoire de microbiologie, Cliniques Notre-Dame de Grâce, Gosselies, Belgium


^d Microbiologie en ziekenhuishygiëne, Universitair Ziekenhuis Brussel, Brussels, Belgium


e Afdeling pneumologie, O.L.V. Ziekenhuis, Aalst, Belgium

^f Clinique des maladies infectieuses, Hôpital Erasme, Brussels, Belgium

- g Laboratoire de microbiologie, CHU Saint-Pierre, Brussels, Belgium
- h Service des urgences, Cliniques universitaires Saint-Luc, Brussels, Belgium
- ⁱ Laboratoire de microbiologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
- ^j Laboratoire de microbiologie, CHU Mont-Godinne, Yvoir, Belgium

S. pneumoniae: an example in Belgium for CAP

S. pneumoniae: how to make antibiotic policy