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Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There
has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of
human, animal, plant and environmental origins. These pumps are mostly encoded on the
chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H,
Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug
resistance in bacteria. In the past five years, significant progress has been achieved in further
understanding of drug resistance-related efflux transporters and this review focuses on the latest
studies in this field since 2003. This has been demonstrated in multiple aspects that include but are
not limited to: further molecular and biochemical characterization of the known drug efflux pumps
and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of
drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug
efflux pumps in other functions such as stress responses, virulence and cell communication; and
development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux
transporters warrant novel strategies to combat multidrug resistance in bacteria.

Antibacterial resistance continues to be a global public health concern, threatens the
effectiveness of antibacterial therapy, and also challenges the efforts for developing novel
antibacterials. A variety of bacterial pathogens isolated globally have now become multidrug
resistant (MDR, here also used for “multidrug resistance”). Although antibacterial resistance
occurs by numerous mechanisms, including enzymatic inactivation or modification of drugs,
drug target alteration or protection, and lack of pro-drug activation, that due to the increased
active efflux of the drugs is a major concern especially because a single species of multidrug
efflux pump can produce a simultaneous resistance to a number of drugs, an MDR phenotype.
[1–4] Efflux also acts synergistically with other resistance mechanisms to provide elevated
level of resistance of clinical significance.[1]

A comprehensive review on bacterial drug efflux was prepared by us previously.[1] Since then,
a very large amount of literature has been published in this field. In this article, we cover the
advances in bacterial efflux systems since 2003 with emphasis on the clinical relevance of the
drug exporters in various bacteria. In order to keep the size of this article within an accessible
range, earlier literature cited in the previous review[1] was usually omitted. Recently, several
reviews that focus on various aspects of the drug efflux transporters or MDR have been
published.[3–10]
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1. Drug Resistance in Bacteria: Emerging Features
Drug resistance in bacteria continues to escalate globally with the emergence of novel
resistance patterns. This renders antibacterial therapy less effective and may lead us back to
the “pre-antibiotic era”, thus the need for innovative approaches to tackle antibacterial
resistance now.[11] We begin with the emerging features of antibacterial-resistant bacteria, in
which drug efflux plays an important role. First, MDR is a phenotype increasingly associated
with many pathogens. This also includes the extensive drug resistance (XDR) in
Mycobacterium tuberculosis[12] and pan-resistance in especially Gram-negative bacteria[13]
MDR can be caused by simultaneous presence of multiple individual resistance mechanisms,
each of which can be either plasmid- or chromosome-mediated.[10] In a typical example, an
R plasmid, which is often transferable or conjugative, causes MDR because it contains multiple
resistance genes on a single molecule of DNA. Furthermore, the so-called resistance island,
often on a chromosome, may contain a cluster of multiple resistance genes.[14–17] Resistance
genes are often also co-present with mobile genetic elements, e.g., transposons and integrons,
and in this manner they move as a block between molecules of DNA, for example among
different R plasmids and between plasmid and chromosome. In addition, MDR can be mediated
or enhanced by the inaccessibility of drugs to their cellular targets as a result of the outer
membrane (OM) impermeability and active drug efflux, which are often encoded by
chromosomal genes.

Second, novel mechanisms of resistance with emerging resistance determinants have been
reported. β-Lactamases continue to evolve with CTX-M type extended-spectrum β-lactamases,
AmpC, and carbapenamases as major threats for β-lactam therapy.[18, 19] A variant of
aminoglycoside-modifying enzyme, AAC(6′)-Ib-cr, can also modify fluoroquinolones and
thus yield fluoroquinolone resistance.[20] Plasmid-mediated fluoroquinolone resistance due to
the target protection (by qnr genes encoding proteins with a pentapeptide repeat) or efflux
mechanism (by qep genes) is increasingly observed.[21–23] Most worrisome are the pathogenic
bacteria with a combination of resistance genes associated with mobile genetic elements. For
instance, Gram-negative bacteria such as Acinetobacter and Pseudomonas as well as
Enterobacteriaceae often possess this type of mechanisms in addition to drug efflux systems.
[1, 6, 18, 24] A Salmonella Waycross isolate, obtained from a hospitalized elderly, possesses
plasmid-borne class 1 integron harbouring resistance genes blaIMP-4 (encoding for a class B
metallo-β-lactamase), aacA4 (an aminoglycoside-modifying enzyme), catB (chloramphenicol-
acetyltransferase), qnrB4 (a pentapeptide repeat protein) and qacG (an efflux pump).[25]

Third, the resistant pathogens are not only isolated from hospitals and communities but also
increasingly derived from other sources, e.g., animals, food products and environments.[15,
26–28] Resistant bacteria and genetic determinants of resistance can transfer between animals
and humans. This may be exemplified by the evolution and spread of methicillin-resistant
Staphylococcus aureus (MRSA).[29, 30]

2. Drug Efflux Pumps in Bacteria: Structures and Mechanisms
Bacterial drug efflux pumps have been categorized into five families, i.e., the ATP-binding
cassette (ABC) superfamily,[5] the major facilitator superfamily (MFS),[31] the multidrug and
toxic compound extrusion (MATE) family,[32] the small multidrug resistance (SMR) family
(a subgroup of the drug/metabolite transporter superfamily[33]), and the resistance-nodulation-
division (RND) superfamily.[1, 8, 34, 35] In particular, drug exporters belonging to RND family
play a key role in clinically relevant resistance in Gram-negative bacteria. A major achievement
in the field has been the structural and biochemical elucidation of drug efflux pumps and these
will be highlighted below.
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2.1 Drug Efflux Transporters
2.1.1 RND Transporters—RND efflux systems, which function as proton/drug antiporters,
are particularly widespread among Gram-negative bacteria and catalyze the active efflux of a
wide variety of antibacterial substrates including many antibiotics and chemotherapeutic
agents. Homologues exist even in higher animals, including the Niemann-Pick C1 Like 1
protein, shown to be involved in cholesterol absorption from intestine.[36] The extensive
studies in recent years with the archetypal bacterial RND pumps AcrAB-TolC of Escherichia
coli and MexAB-OprM of P. aeruginosa have revealed both the structure and mechanisms of
RND pumps in the efflux of a very wide range of agents. RND transporters (e.g., AcrB and
MexB) have large periplasmic domains and form tripartite complexes with the periplasmic
adaptor proteins or membrane fusion proteins (MFPs) (AcrA and MexA) and OM channels
(TolC and OprM).[8, 35, 37] The latter will be discussed below in two separate sections.

AcrB transporter is a homotrimer, and characteristically contains a large periplasmic domain
that equals the transmembrane domain in size.[1, 38] When AcrB protein was co-crystallized
with drugs, dyes, or deoxycholate, the ligands were found not only on the wall of central cavity
of the transmembrane domain but also at the side of a large external cleft in the periplasmic
domain.[1, 39, 40] These drugs may be on their correct pathway for extrusion,[39–41] but
lipophilic drugs may bind nonspecifically to hydrophobic spots on the protein surface.
However, AcrB that was accidentally crystallized (together with a small protein YajC)
contained ampicillin from the growth medium at the periplasmic site.[42]

Site-directed mutagenesis and/or structural studies have identified the key residues in the
transmembrane domains, residues Asp407, Asp408, Lys940 and Thr978 in AcrB.[1, 38, 39,
43–51] The recent titration study with dicyclohexylcarbodiimide showed the modification of
Asp408, which has a pKa of 7.4.[52] These residues probably function as the proton relay
network, ultimately resulting in drug extrusion.[45] In the periplasmic domain, a phenylalanine-
rich binding site around Phe178 and Phe615 is revealed and the Phe610Ala point mutation has
a significant impact on transport activity.[50] The replacement of AcrB residues 615 to 628
with the homologous MexB sequence (AcrB-615–628MexB) and more specifically the
Gly616Asn substitution in AcrB have both resulted in the reduction of macrolide resistance of
AcrB.[51] A single Val610Phe substitution in YhiV (MdtF), an AcrB homologue, altered
spectrum of MDR by retaining or increasing the resistance to fluoroquinolones, linezolid,
novobiocin and tetracyclines, while decreasing resistance to azithromycin and telithromycin,
suggesting the involvement of the region around the residue in determining substrate
recognition.[47] In vitro reconstitution of AcrD exporter showed that aminoglycosides are
captured from both periplasm and cytoplasm,[53] consistent with our early prediction that β-
lactams such as dianionic agents carbenicillin and ceftriaxone are captured from the periplasm.
[54]

New crystallographic studies have now revealed the asymmetric trimer structure of AcrB where
each AcrB protomer in the trimeric assembly goes through a cycle of conformational changes
during drug export (Fig. 1).[55–57] This asymmetric structure suggests the possible route of
substrate binding and extrusion as well as the presence of an open pathway between the
substrate binding pocket and the periplasm. It is especially important that Murakami and
coworkers found that one protomer bound minocycline or doxorubicin in a hydrophobic
binding site of the periplasmic domain, containing Phe610 mentioned above[55], which is
separate from the external cleft. The three-step functionally rotating mechanism of transport
describes each of the three protomers in one of the three functional states (i.e., access [loose],
binding [tight], and extrusion [open]) and predicts that the drug bound in the periplasmic
domain is extruded through the conformational change initiated by the protonation of one of
the residues in the aforementioned network within the transmembrane domain.[55] (Recently
an asymmetric structure of MexB trimer was elucidated, with the binding protomer containing
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the detergent molecule dodecylmaltoside within its periplasmic binding pocket[58]). The
functionally rotating mechanism has also been further supported by recent biochemical studies
with disulfide cross-linking as well as by the behaviour of covalently linked AcrB protomers.
[59–61] In particular, the new approach of Takatsuka and Nikaido[61] via the use of covalently
linked trimer expressed from a constructed giant gene is a powerful tool for studying the
transport mechanisms of drug pumps.[62] The “linked trimer” AcrB was not only expressed
well but also functional in providing resistance to antibacterials. Intriguingly, the inactivation
of only one of the three protomeric units in the linked trimer by either mutations in the “proton
relay network” in the transmembrane domain or disulfide cross-linking of the external cleft in
the periplasmic domain resulted in the total activity loss of the entire trimeric complex, thus
providing a strong biochemical evidence for the functionally rotating mechanism of RND pump
action.[61]

Steady-state fluorescence polarization was used to assess the interactions between fluorescent
ligands and purified AcrB transporter;[63] however, again there is no guarantee that the ligands
are binding to the relevant site within AcrB. Recently, the kinetic constants of AcrB were
successfully determined in intact cells by using cephalosporins as the substrates.[64] Among
the compounds tested, nitrocefin, with its two aromatic substituents, appeared to have the
highest affinity to AcrB, but with only a low value of kcat (about 10/s). In contrast, compounds
that were useful clinically, such as cefamandole, cephalothin, and cephaloridine apparently
had lower affinities to AcrB but showed much higher values of kcat. Most remarkably, positive
cooperativity was evident with the efflux of these compounds. Finally, cefazolin, with two
hydrophilic substituents (a tetrazole and a thiadiazole), showed little evidence of efflux by
AcrB.[64]

In an approach similar to the study of QacR and BmrR,[1] the repressor TtgR from P. putida
was crystallized with antibiotics and plant antimicrobials, and revealed a large binding pocket
with capacity for multiple binding interactions.[65] The repressor AcrR was crystallized;[66]
however it is not known if it binds any small inducer molecules.

2.1.2 MFS Transporters—This family is known to represent the largest group of secondary
active transporters[31] with well characterized multidrug pumps, including Bmr and Blt of
Bacillus subtilis, MdfA of E. coli, LmrP of Lactobacillus lactis, NorA and QacA of S.
aureus.[1] These transporters are antiporters that are thought to function as monomers.
However, in Gram-negative bacteria, MFS efflux systems can function as components of
tripartite systems together with the additional MFPs and OM channels (e.g., EmrAB-TolC and
EmrKY-TolC of E. coli).[1] These systems enable the transporter to efficiently export the
substrates across the double membranes of Gram-negative bacteria. This is unlike several
single-component MFS transporters, which can export drugs only into periplasm.[1] However,
even the transporters of the latter type can increase the resistance when the drugs exported into
the periplasm are further taken up by the tripartite RND pumps, as shown by the pioneering
study from the Lomovskaya group.[67]

To date, crystal structures are available for several MFS transporters such as the lactose/H+

permease LacY,[68] the glycerol-3-phosphate transporter GlpT[69] and the multidrug
transporter EmrD,[70] which are all from E. coli. The common folding pattern consisting of
two transmembrane domains that surround a substrate translocation pore may be shared by
most MFS members.[71] However, LacY and GlpT permeases transport a relatively narrow
range of structurally related substrates,[68, 69] while EmrD accommodates a range of
hydrophobic agents including benzalkonium, carbonyl cyanide m-chlorophenylhydrazone, and
sodium dodecylsulfate.[1, 72] The EmrD structure demonstrates an interior with mostly
hydrophobic residues and also displays two long loops extended into the inner leaflet side of
the cell membrane. The loop region can serve to recognize and bind substrates directly from
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the lipid bilayer (Fig. 1).[70] More recently, a low-resolution structure for MdfA has become
available.[73] With the particular examples of MdfA and LmrP, a recent review discusses the
physiological significance, multisubstrate specificities and the structural mechanisms of the
MFS multidrug transporters.[74] LmrP functions as a facilitated diffusion catalyst in the
absence of proton-motive force.[75] Site-directed mutagenesis studies with QacA produced
interesting results, for example, a tryptophan-to-alanine change in the outside surface was
compensated by changes in the inside loops of the protein.[76] An in-vitro study revealed that
EmrAB of E. coli forms a dimer in contrast to the trimeric RND AcrB.[77]

2.1.3 MATE Transporters—This family is represented by NorM of Vibro parahaemolyticus
[1, 32] and confers resistance to multiple cationic toxic agents (including fluoroquinolones) as
H+- or Na+-antiporters. However, the substrate profiles are generally narrower than those of
the RND transporters. Although there are only about 20 MATE transporters characterized to
date,[32] the bacterial genome sequences contain many more examples, and intriguingly, the
MATE proteins are present in all kingdoms of life.[78] For instance, two MATE genes were
identified on human chromosome 17, named hMATE1 and hMATE.[79] When expressed in
HEK293 cells, hMATE1 mediated H+-coupled electroneutral exchange of organic cations.
[79, 80] A phylogenetic analysis has classified the mammalian MATE proteinsinto three
subfamilies.[78, 81] To date, no crystal structures are available for any MATE transporters.

As discussed later, the majority of the bacterial MATE pumps have been identified by
expression in a heterologous, antimicrobial-hypersusceptible E. coli. Thus, the functional
significance of these pumps in the native hosts is usually unclear. The regulation of MATE
pumps will be discussed below in section 9 with the staphylococcal MepR-regulated MepA
pump.

2.1.4 SMR Transporters—This family of transporters is represented by EmrE of E. coli,
which functions as a homodimer of a small four-transmembrane protein.[1, 33] The SMR family
contains >250 annotated members, and is now grouped into three subclasses: the small
multidrug pumps, the paired SMR proteins, and suppressors of groEL mutant proteins.[82] The
SMR proteins may be encoded on the chromosomes or on plasmids and may be associated
with integrons. The substrate specificity is not limited to the disinfectants and can extend to
clinically relevant antibacterials such as aminoglycosides.[82, 83] Although EmrE exports its
substrates only into the periplasm, it can cause significant resistance as the substrate is then
taken up by constitutive tripartite RND pumps, such as AcrAB-TolC,[64, 84, 85] along the lines
formulated earlier.[67]

EmrE appears to function as a dimer. The orientation of the two protomers within the dimer
has been a subject of controversy. Biochemical studies indicated that the two protomers are
inserted into the membrane in a parallel orientation.[86] In contrast, electron[87] and x-ray
crystallography[88] suggested an antiparallel orientation, which is also favoured by another
study.[89] In this connection, the paired SMR proteins[90] may be relevant. EbrAB of B.
subtitilis is a heterodimer composed of two polypeptides, EbrA and EbrB, which are both
required for activity. Importantly, EbrAB displays an anti-parallel membrane topology.[91]
Thus one can argue for the presence of a conserved architecture for all SMR family members
as antiparallel dimers.[88] However, it is difficult to imagine that EmrE is inserted into the
membrane in two opposite orientations at equal probability, and it is difficult to exclude
completely the possibility that the antiparallel dimer is an artefact of dissociation-association
process during sample preparation. An especially strong result for the parallel orientation is
that two emrE genes, linked together with very short (down to two amino acid residues) linker
sequences, can function in the efflux.[92] Recent reviews present the opposing views on the
structure of SMR dimers.[84, 93] A study has defined a minimum activity motif of
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G90LxLIxxGV98 within the fourth transmembrane segment in mediating the SMR protein
dimerization.[94]

2.1.5 ABC Transporters—The multidrug transporters of ABC family are conserved from
bacteria to humans and export a wide array of substrates, driven byATP hydrolysis. The
structure of the S. aureus Sav1866 multidrug exporter has provided insight into ABC
transporter-mediated multidrug efflux (Fig. 1).[95] Sav1866 is also a structural homologue of
the human MDR P-glycoprotein. The outward-facing conformation of Sav1866 is triggered by
ATP binding and reflects the ATP-bound state, with the two nucleotide-binding domains in
close contact and the two transmembrane domains forming a central cavity that is presumably
the drug translocation pathway (for a review of ABC transporters, see reference[96]). The latter
is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to
the external medium. The inward-facing conformation is promoted by dissociation of the
hydrolysis products ADP and phosphate and shows the substrate-binding site accessible from
the cell interior.[95, 97] Similar outward/inward-facing conformations are also shared by the
RND transporter AcrB.[98] Interestingly, an alignment of an extended region of the ABC
transporter LmrA of L. lactis (a homologue of Sav1866) with a portion of the RND transporter
MexB of P. aeruginosa reveals significant similarity.[99]

The newly reanalyzed structure of MsbA (an E. coli lipid flippase) further supports that the
inward and outward openings are mediated by two different sets of transmembrane helix
interactions and that large ranges of motion may be required for substrate transport.[100]
Functional expression of Sav1866 in L. lactis deficient in LmrA and LmrCD transporters has
shown that Sav1866 accommodates multiple toxic agents.[101] A truncated LmrA protein
lacking the ATP-binding domain mediates a proton-ethidium symport reaction as a secondary-
active multidrug uptake system without ATP.[102] In proteoliposome reconstitution studies,
LmrA catalyzes Hoechst 33342 transport independent of auxiliary proteins in an ATP-
dependent fashion and a transmembrane proton gradient-dependent fashion.[103] These results
suggest that the transmembrane ligand transport and the utilization of energy source are
sometimes not linked so tightly.

2.2 Membrane Fusion Proteins
The tripartite tansporter complexes also contain MFPs and OM channel proteins, as mentioned
above. MFPs such as AcrA, EmrA, and MacA function as adaptor proteins in systems
containing RND (AcrAB-TolC), MFS (EmrAB-TolC) and ABC (MacAB-TolC) pumps.[1]
The bacterial genome sequences have shown the diversity of the MFPs with identification of
many homology-defined clusters (e.g., AcrA/MexA, TriAB, MexH, MacA, EmrA/EmrK,
CusB, VexL, and YknX clusters; the last one occurring in Bacillus[104]). The earlier crystal
structures of AcrA and MexA showed elongated molecules with three linearly arranged
domains: β-barrel, lipoyl and α-helical hairpin domains, but were missing the large domain
containing both N- and C-terminus.[105–107]. However, recent reanalysis of previous MexA
data resulted in the successful modeling of the hitherto missing domain,[108] as shown in Fig.
1. This domain is essential in the assembly and function of the tripartite complex.[109] Crystal
structure of MacA of MacAB-TolC indicates a domain orientation of MacA different from that
of AcrA with a hexameric MacA observed.[110] Acidic pH induces oligomerization and
conformational change of AcrA.[111] A conformational flexibility is evident in the α-helical
hairpin domain and may be important in coupling between the MFP conformations and OM
channel opening.[107] Molecular dynamics simulation of MexA has been published.[112]

Both AcrA and MexA play a key role in the pump complex assembly.[113–118] AcrA drives
TolC to fit the transporter complex.[119] Chimeric analysis of AcrA function reveals the
importance of its C-terminal domain in its interaction with the AcrB pump.[120] Mutations at
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both N- and C-terminus of MexA compromise the MexAB-OprM efflux activity, with the N-
terminus involved in oligomerization of MexA and/or interaction with OprM and the C-
terminus in interaction with the transporter MexB.[115, 118, 121] Construction of the chimeric,
functional AcrA-MexB-TolC complex has suggested a certain degree of flexibility in
accommodation.[122] In addition, there are paired MFPs as shown with TriAB of P.
aeruginosa, which are both essential for TriABC-mediated triclosan resistance.[123]

Although MFPs are often viewed as a mere “glue” in the tripartite complex, they may play a
more important role, in that they activate the function of the pump directly. This was first shown
in the in vitro assay of an RND pump AcrD, which must interact with AcrA to extrude
substrates.[53] A strong AcrA stimulation of the activity of the isolated AcrB pump[124] may
have a similar explanation.

2.3 Outer Membrane Channel Proteins
These trimeric proteins, represented by TolC and OprM, functions as channel proteins in the
multi-component transporters of various families.[125] TolC of E. coli works together with an
exceptionally wide range of transporters, belonging to the RND, MFS, and ABC family,[1]
and a tolC mutant was found to be defective in the excretion of endogenous porphyrins.[126]
Additional crystal structure of TolC in its partially open state reveals that the opening of the
end of the α-helical barrel is accompanied by the exposure of three shallow intraprotomer
grooves in the TolC trimer and there is a contact point with the MFP AcrA.[119] The crystal
structures of OprM and the Vibrio cholerae VceC are now also available.[127, 128] Like TolC,
the OprM channel is trimeric andcomposed of an OM-spanning β-barrel and a periplasmicα-
helical barrel, with an overall length of 135Å,[127] a structure consistent with early mutational
analysis.[129] In a cross-linking study performed after OprM/OprJ/OprN reconstitution into
liposome, either OprM or OprN formed a trimer; but OprJ unexpectedly was reported to form
a tetramer.[130]

Interaction of the OM proteins with other efflux components have been supported by genetic
and biochemical evidence, e.g., interaction between AcrA-TolC;[113, 131–133] AcrA-AcrB-
TolC;[113, 134] AcrB-TolC;[135] MexA-OprM[114, 118]and chimerics[117] With the availability
of structures of all three components, it is now possible to propose a model of the assembled
tripartite structure;[108, 136, 137] the most recent model containing only one MFP for a protomer
of RND pump.[108] Interestingly a study of interaction between MexA and OprM with an
innovative approach also suggests a 1:1 or 2:1 stoichiometry.[138] The substrates of the
transporters further stabilize the efflux pump complex as demonstrated with AcrAB-TolC.
[134] Moreover, the amino acid substitutions in the lower α-helical barrel of TolC enabled TolC
to function with non-cognate MexAB and to confer MDR.[139] Similarly, while TolC can
replace VceC to function with VceAB pump, VceC does not functionally interact with AcrAB.
Nevertheless, VceC gain-of-function mutants with the mutations located at the periplasmic tip
of VceC have enabled VceC to function with AcrAB.[140] Finally, the TolC homologue,
HI1462 of Haemophilus influenzae differs from the E. coli TolC in that it is anion-selective
and contains an arginine residue lining the tunnel entrance.[141]

3. Drug Efflux in Gram-Negative Bacteria
Drug efflux is a key mechanism of resistance in Gram-negative bacteria. The major clinically
relevant efflux systems belong to the RND efflux systems that are typically composed of a
cytoplasmic membrane pump, an MFP and an OM channel protein as described above. Over
the past several years, while those previously-studied drug efflux pumps including RND
systems have been further characterized, novel efflux systems have also been identified in
Gram-negative bacteria (Tables I and II).
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3.1 Gammaproteobacteria (Enterobacteriales, Vibrio, Aeromonas, Pseudomonas,
Acinetobacter, Stenotrophomonas and Haemophilus)

3.1.1 Enterobacteriales—This large order (for the taxonomy followed in this article, see
reference[142]) contains many genera that are important in human health.

Escherichia coli: Drug efflux systems in E. coli have been used as models for genetic and
biochemical studies.[1] Of clinical relevance, efflux (presumably due to AcrAB) was shown
to contribute to cefuroxime[143] and fluoroquinolone[144] resistance of strains from patients.
The postantibiotic effect of multiple antibacterials was prolonged in an acrAB mutant.[145]
Tigecycline was found to be a substrate for AcrAB and AcrEF pumps,[146, 147] in spite of its
activity against tetracycline-resistant strains carrying plasmid-borne specific efflux genes, tet
(B), tet(C), or tet(K). Moreover, tigecyline interacts with TetR repressor and induces the
expression of Tet(B).[146] Mureidomycin A and C and simocyclinone D8 (an angucyclinone
antibiotic) are also substrates for AcrAB-TolC.[148, 149] YojI, an ABC exporter, functions with
TolC and mediates resistance to microcin J25[150] and its expression is modulated by the
leucine-responsive regulatory protein (Lrp).[151] Preincubation of FloR pump-producing
florfenicol-resistant strains with anti-FloR antibody, in the presence of lysozyme and
ethylenediaminotetraacetic acid, increased the intracellular accumulation of florfenicol.[152]
A paired SMR pump, MdtJI, exports spermidine.[153]

Novel plasmid-encoded drug pumps have also been identified in E. coli. OqxAB, a RND pump,
mediates resistance to olaquindox (a growth promoter in pigs) and several other agents (Table
I).[154–156] Its function is dependent on TolC.[154] A plasmid-encoded fluoroquinolone
resistance protein, QepA, is a 14-transmembrane-segment MFS transporter and causes a
decreased accumulation of norfloxacin.[23] The qepA-harbouring isolates were further
identified in clinical strains in Japan[157] as well as in isolates derived from companion and
food-producing animals in China (with co-presence of Qnr, AAC(6′)-Ib-cr and the
aminoglycoside resistance 16S rRNA methylase RmtB). [158, 159] Isolates harbouring large
mobilizable plasmids, encoding QepA/QepA2 and CTX-M-15 β-lactamase, were recently
recovered from clinical isolates from France and Canada.[160, 161]

Salmonella enterica spp: Infections associated with either nontyphoid or typhoid
Salmonella are of global health concern and are complicated by the increasing prevalence of
acquired MDR. Salmonellae possess multiple drug efflux systems including the AcrAB-TolC
system.[1, 15, 162] An MDR isolate of S. Typhimurium derived from a patient treated with
ciprofloxacin was an AcrAB overproducer.[163] Among 388 Salmonella of 35 serovars from
animal and human origins, ca. 10% of the isolates were resistant to cyclohexane, a phenotype
usually associated with AcrAB overexpression.[164] Clonal expansion among human and
poultry isolates of quinolone-resistant S. Virchow probably emerged from a parental clone
overproducing AcrAB.[165] Laboratory-selected and naturally occurring fluoroquinolone-
resistant S. Typhimurium strains showed increased expressions of acrA, acrB, acrE, acrF,
emrB, emrD, and mdlB as well as, to a lesser extent, of mdtB, mdtC, and emrA.[165] A
complementary result is that ciprofloxacin-resistant S. Typhimurium mutants are difficult to
select in the absence of AcrB and TolC.[166] In S. Typhimurium DT204 overexpression of
acrAB plays a dominant role in fluoroquinolone resistance, and selection of fluoroquinolone
resistant mutant in an acrB background resulted in the isolation of strains overexpressing
acrEF through insertion of IS1 or IS10 elements.[167] AcrD and MdtABC pumps are also
involved in metal resistance.[168] As described above, an S. Waycross isolate possesses a
plasmid containing class 1 integron and MDR genes including the efflux pump gene qacG.
[25] Efflux is a major mechanism for the adaptive resistance to erythromycin, benzalkonium
chloride and triclosan in Salmonella spp.[169]

Li and Nikaido Page 8

Drugs. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The TolC component is required for AcrAB to function.[1] Strains with tolC inactivation
exhibited hypersusceptiblity to several antibacterials.[15, 170] Interestingly, TolC is required
for the colonization of MDR S. Typhimurium in chick although AcrAB is not.[171] This may
be partly because TolC is the OM component of many other efflux pumps, including the
Salmonella-specific RND pump MsdAB.[172] However, another study showed that both
tolC an acrB mutants colonized poorly and did not persist in the avian gut.[173] This is perhaps
due to the impact of the AcrAB-TolC disruption on reduced expression of certain pathogenesis
genes.[174]

There are also drug-specific pumps such as tetracycline-specific Tet pumps and phenicol-
specific FloR.[1, 15] Other multidrug pumps, such as EmrAB, MdfA and MdtK, were also
identified in S. Typhimurium (Table II).[172].

Enterobacter spp: Enterobacter aerogenes, a member of Enterobacteriales like E. coli, has
emerged as an important nosocomial pathogen. Early studies revealed that the MDR clinical
strains had a drastic porin reduction, altered O-polysaccharide, and active efflux of
chloramphenicol.[175] AcrAB-TolC, a major RND pump from E. aerogenes,[1] mediated
resistance to erythromycin and clarithromycin but not to telithromycin.[176] Chloramphenicol-
or imipenem-selected resistant mutants displayed elevated AcrAB expression that was also
associated with resistance to quinolones and tetracyclines.[177, 178] Tigecycline resistance was
due to RamA-mediated overexpression of AcrAB.[179] Elevated MarA expression was
triggered by certain antibiotics and phenolic compounds as well as by RamA activator[180]
and was observed in imipenem-resistant isolates.[177] AcrAB-TolC was inhibited by
chloroquinoline derivatives.[181] EefABC encodes another cryptic RND pump whose
expression from multicopy plasmids conferred MDR.[182] Chloramphenicol-resistant mutants
isolated in the laboratory showed detectable production of EefABC and showed resistance to
erythromycin and ticarcillin, but not to fluoroquinolones, ketolides and detergents.[183] Novel
resistance plasmids were also isolated with the co-presence of qepA, qnrS, rmtB and
blaLAP-1 (for a Class A β-lactamase).[184]

An ertapenem-resistant isolate of Enterobacter cloacae exhibited reduction of ompD and
ompF transcripts, and the inhibitory levels of multiple antibacterials for this isolate decreased
in the presence of the efflux pump inhibitor (EPI) Phe-Arg-β-naphthylamide, suggesting the
involvement of efflux mechanism.[185] Enterobacter gergoviae isolates from cosmetic
formulations containing parabens showed high methylparaben inhibitory concentrations; the
expression of a Phe-Arg-β-naphthylamide-sensitiveparaben efflux mechanism was responsible
for the observed resistance, although there was no cross-resistance to other antibacterials.
[186]

Klebsiella spp: Overexpression of AcrAB homologues, in some cases through AcrR mutations
or RamA overexpression, have been observed in multidrug- or fluoroquinolone-resistant
clinical isolates of Klebsiella pneumoniae and Klebsiella oxytoca.[187] Efflux also plays a key
role in β-lactam resistance in clinical isolates.[188] The multidrug efflux was inhibited by
alkoxyquinoline derivatives.[189] Decreased susceptibility to tigecycline in K. pneumoniae is
also a result of RamA-activated AcrAB overexpression.[190] An RND pump, EefABC (see
above), is involved in gastrointestinal colonization by K. pneumoniae and confers a tolerance
response to inorganic and organic acids (Table I). EefA inactivation did not alter the
susceptibility to bile salts, other detergents and antibiotics.[191] KmrA, an MFS transporter,
confers resistance to multiple toxic agents when expressed from a low copy number plasmid
(Table II).[192, 193] Over the past decade, qnr-containing plasmids have become widespread
among fluoroquinolone-resistant bacteria including Klebsiella.[21, 22] This resistance
mechanism interplays positively with the efflux pumps in producing clinically relevant
resistance.[194] The K. oxytoca TolC protein lacks six residues around the region of the residues
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280–290 of E. coli TolC that forms part of the loop exposed to the external side of the OM and
the absence of these residues is involved in resistance to colicins.[195]

Serratia spp: Serratia marcescens is naturally resistant to multiple antibacterials.[196] Three
RND pumps, SdeAB-HasF, SdeCDE and SdeXY, have been identified to date (Table I).[1,
197–201] HasF is a TolC homologue.[200] Intriguingly, SdeCDE requires the paired RND pump
components, SdeDE,[198] similar to MdtBC of E. coli. When expressed from plasmids, three
additional pumps, SmdAB (a heterodimeric ABC-type), SmfY (an MFS-type) and SsmE (an
SMR-type), confer, to a multidrug-susceptible E. coli, resistance to several structurally
unrelated antibacterials (Table II).[202–204] TetA(41) efflux protein and TetR(41) repressor
were observed in an environmental strain of S. marcescens.[205] A TetR/AcrR family repressor
PizR, which was identified because of its effect on the production of secondary metabolites
(prodigiosin and carbapenem), is a specific repressor of a four-component RND efflux pump,
ZrpADBC.[206] The overproduction of this pump may cause the removal of intracellular
metabolites, resulting in lowered transcription of genes involved in secondary metabolism.

3.1.2 Vibrio spp—In contrast to the groups so far discussed, which belong to
Enterobacteriales, Vibrio spp. belong to another order, Vibrionales. There are six operons for
putative RND-type efflux transporters in the chromosome of V. cholerae O1, the causative
pathogen for cholera. Two bile-regulated RND systems, VexAB and VexCD, are involved in
bile resistance.[207] VexAB causes resistance to multiple antibacterials including bile acids,
whereas deletion of VexCD, also known as BreAB, does not cause any change in the sensitivity
to antibacterials, including bile salts. However, the simultaneous absence of VexB and VexD
dramatically lowers the resistance to bile salts, and only to bile salts.[207] Further analysis
regarding vexAB and breAB expression established that vexAB was induced in the presence of
bile, novobiocin or sodium dodecylsulphate, whereas induction of breAB was specific to bile.
BreR is a direct repressor of the breAB promoter and is able to autoregulate its own expression.
Expression of breR and breAB is induced by the bile salts, which appear to abolish the complex
formation between the repressor BreR and breAB and breR promoters.[208] In another study,
all of the six RND operons were cloned from V. cholerae non-O1 and expressed in efflux-
deficient E. coli; VexAB produced resistance to dyes and some resistance to deoxycholate,
whereas VexEF conferred resistance to antibiotics but not to bile salts. Ethidium efflux activity
via VexEF-TolC requires Na+ (Table I).[209]

The OM component, VceC coded in the vceCAB operon, is required for the function of the
MFS-type VceAB pump.[210] The native VceC does not function in replacing TolC of the E.
coli AcrAB-TolC, but the gain of function mutant of VceC with the amino acid substitutions
located at the periplasmic tip has been isolated.[140] VceR repressor regulates vceCAB
expression by alternating between mutually exclusive conformations[211] but positively
regulates its own synthesis.[212]

Several MATE-type pumps and an ABC-type pump have also been characterized from
Vibrio spp. (Table II).[213–216] Mutational analysis of NorM identified functionally important
residues that are mostly located in periplasmic loops.[217] Efflux plays a major role in
quinolone resistance in Vibrio fluvialis.[218]

3.1.3 Aeromonas spp—The ubiquitous waterborne species (e.g., Aeromonas hydrophila
and Aeromonas veronii) belong to yet another order, Aeromonales in Gammaproteobacteria.
They cause intestinal infections in normal adults or children, as well as extraintestinal infections
in immunocompromised hosts. There is an increasing resistance trend in this group.[219]
Moreover, Aeromonas strains may serve as reservoirs for dissemination and transfer of
resistance among humans, animals, plants and natural soil and water, because mobile resistance
gene cassesstes are often found.[220]
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Drug efflux contributes to resistance in Aeromonas.[219] The genomes of A. hydrophila and
A. salmonicida show an abundance of transporters comparable to those of pseudomonads and
vibrios, with the presence of putative drug efflux systems in A. hydrophilia including 10 RND
transporters such as AheB,[221] and in A. salmonicida including RND exporters (AcrAB,
MexF, and MexW), MFS pumps (MdtH and EmrD), MATE (NorM), SMR (EmrE) and ABC
(there are several MacAB homologues) (for details see Antibiotic Resistance Gene Database:
http://ardb.cbcb.umd.edu/cgi/ssquery.cgi?db=O&gn=a&sp=382245).[220] Up-regulation of
RND genes occurs in the presence of erythromycin.[222] An RND system, AheABC, is
responsible for intrinsic resistance, and extrudes 13 antibacterial substrates out of the 63 agents
tested (Table I).[223]

The tetA(E) gene encoding a tetracycline efflux protein was observed in Aeromonas two
decades ago,[224] and its prevalence, often associated with large plasmids, was recently
reconfirmed in Aeromonas spp. derived from fish farms.[225] Quinolone-resistant A.
salmonicida strains isolated from diseased fish not only carried mutations in the target genes
but also indicated an important contribution of efflux.[226]

3.1.4 Pseudomonas spp. and Acinetobacter spp—The large order
Pseudomonadales contain mostly soil bacteria, which often show MDR phenotype because
their OM has an exceptionally low permeability owing to the mostly closed porin channels.
[227] This makes the tripartite efflux systems, which work in synergy with the OM barrier,[1]
exceedingly efficient. Pan-resistance in Gram-negative bacteria often occurs among this group.
[13]

Pseudomonas aeruginosa and its relatives: Multidrug efflux systems in P. aeruginosa,
particularly the RND-type Mex pumps, have been extensively investigated since their
discovery in early 1990s.[1, 6, 228] Studies with clinical isolates including epidemic clones
support the established role of the drug efflux pumps in MDR.[229–234] Thus, efflux
mechanisms are considered as a key factor in optimizing the treatment of P. aeruginosa
infections.[235–237] Meanwhile, approaches for detection of overexpressed Mex efflux systems
are in development.[238]

Overexpression of MexAB-OprM and MexXY-OprM occurred, respectively, in 11% and 35%
of 120 bacteraemic isolates from France, suggesting enhanced expression of the efflux systems
without causing the loss of ability to cause severe bloodstream infections.[239] Isolates can
also simultaneously overproduce multiple drug pumps and broaden the resistance profiles.
[240] Carbapenem resistance was due to non-enzymatic mechanisms, active efflux and the
OprD deficiency, in a large number of isolates from Bulgaria.[241] Efflux-type resistant
mutants with broad cross-resistance were selected in vitro by ertrapenem, a carbapenem which
contains a side-chain with an aminobenzoate moiety and is used increasingly against the
community-acquired pathogens (although not active against P. aeruginosa).[242] Fosfomycin,
with no lipophilic surface, is predictably a poor substrate for most Mex systems.[243] Tolerance
of P. aeruginosa to tea tree oil is also associated with the OM barrier and efflux pumps.[244]

MexXY-OprM is necessary for adaptive resistance to aminoglycosides[245] and is
overproduced in amikacin-resistant or MDR isolates including those producing PER-1 β-
lactamase.[229, 246–250] It also plays a key role in resistance to a fourth generation
cephalosporin, cefepime.[251] A Phe1018Leu change in MexY, which increased MDR, was
identified in isolates from cystic fibrosis patients, suggesting the need of MexXY in the hostile
environment of cystic fibrosis lung.[252] Transposon mutagenesis showed that aminoglycoside
resistance can be generated by the inactivation of the repressor mexZ (causing increased
MexXY-OprM-mediated efflux), but also by the inactivation of other genes galU, nuoG and
rplY, which respectively, may have produced unstable OM, reduced drug influx, and alteration
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of the target of aminoglycosides.[253] Gene disruption study indicates that two OM proteins,
OpmG and OpmI, also function in MexXY-mediated aminoglycoside efflux.[254]

MDR pumps also impair the in vivo efficacy of fluoroquinolones or aminoglycosides in therapy
of P. aeruginosa infections.[255–257] One study using an animal model concluded that MexAB-
OprM had insignificant impact on drug efficacy,[258] but it utilized meropenem and cefepime,
weak substrates for this system. The combination of levofloxacin and imipenem prevented the
emergence of high-level resistance in strains already lacking susceptibility to one or both drugs
due to the Mex pump overexpression and OprD deficiency.[259]

MexJK requires OprM for erythromycin efflux, while a TolC homologue, OpmH, functions
with MexJK for triclosan efflux, suggesting the preference among multiple OM proteins by an
RND transporter and/or an MFP.[260, 261] Novel RND pumps (MexMN-OprM, MexPQ-
OpmE, MexVW-OprM and TriABC-OpmH) and an MATE-type PmpM pump have been
characterized from P. aeruginosa (Tables I and II) and TriABC-OpmH requires two MFP
components, TriAB, for its function.[123, 262–264] An increased expression of a probable ATP-
binding component of an ABC transporter was observed in a ciprofloxacin-resistant strain.
[265]

Several new antibacterials such as ceftobiprole (a fifth generation cephalosporin), doripenem
and tigecycline are substrates for RND pumps.[266–270] A hydrophobic indole derivative that
inhibits P. aeruginosa growth by targeting MreB (a prokaryotic actin homologue) is,
predictably, a substrate for MexAB-OprM.[271] As predicted from the synergy between the
pumps and the OM barrier, an OM-permeabilizing polycationic compound 48/80[272]
increased the susceptibility of P. aeruginosa to the hydrophobic biocide triclosan.[273]

Drug efflux systems have also been characterized from other Pseudomonas species.
Pseudomonas putida DOT-T1E withstands solvents predominantly because it removes
solvents from within the membrane interior by using three RND systems, TtgABC, TtgDEF,
and TtgGHI.[1] Among them TtgABC plays a major role in the intrinsic antibiotic resistance.
[274] The RND system EmhABC from Pseudomonas fluorescens accommodates nontoxic,
highly hydrophobic polycyclic aromatic hydrocarbons and antibacterials.[275] Mutational
analysis of EmhB suggested that the central cavity and periplasmic domains play an important
role in the efflux function.[276] High-level benzalkonium chloride resistance in P.
fluorescens is also attributable to efflux.[277] Pseudomonas stutzeri contains TbtABM pump
associated with tributyltin resistance.[278] A putative ABC transporter PltHIJKN is required
for the export of pyoluteorin, an amphiphilic antibiotic with a resorcinol linked to dichlorinated
pyrrole via a ketone bridge, in Pseudomonas sp. M18, and can also confer resistance to
pyoluteorin when expressed in E. coli.[279]

Acinetobacter spp: Clinically relevant Acinetobacter spp. are often related to Acinetobacter
baumannii-Acinetobacter calcoaceticus complex.[280] Particularly A. baumannii and relatives
have emerged as common nosocomial pathogens worldwide with high-levels of MDR
increasingly observed.[281, 282] This is not so surprising, as Acinetobacter, as a member of
Pseudomonadales, produces an OM of exceptionally low permeability.[283] Its OM appears
to lack a trimeric porin found in Enterobacteriales, and to contain an OmpA/OprF homologue
as the major porin.[284] With such an OM, efflux becomes extremely efficient in building
resistance.[285] Additionally, MDR strains of Acinetobacter often contain individual genetic
determinants that mediate resistance to β-lactams, aminoglycosides and fluoroquinolones.[18,
280]

Indeed RND efflux systems have been reported in Acinetobacter spp. (Table I). AdeIJK,
identified in susceptible and resistant A. baumannii,[16] is likely responsible only for intrinsic
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resistance.[286] AdeDE (with an unidentified OM component) and AdeXYZ were reported in
Acinetobacter genospecies 3.[287, 288] The comparative genomics of MDR in A. baumannii
shows that adeABC genes are only present in the MDR isolate analyzed, but not in a susceptible
strain. Intriguingly, the MDR isolate carries an 86 kb genomic resistance island containing an
integrase gene and 45 individual resistance genes, including several uncharacterized RND
systems.[16] The significance of the resistance island in MDR is further demonstrated with
additional genome analysis.[17] AdeABC is regulated by the AdeRS two-component
regulatory system[289] and also contributes to resistance to netilmicin and tigecycline.[290–
292] A 25-fold increase in adeB expression was observed in a tigecycline-resistant mutant.
[292] Sequence analysis of an 850-bp fragment internal to adeB revealed many sequence types,
suggesting the possibility of sequence-based adeB typing.[293] Efflux pump overproducers
have been observed with resistant Acinetobacter including those from hospital outbreaks.
[294] Tigecycline-non-susceptible A. baumannii that caused bloodstream infection was partly
attributable to an efflux mechanism.[295] Distribution of AdeABC and AdeIJK was associated
with the presence of class 1 integron.[296] An AdeT-associated putative RND pump involved
in aminoglycoside resistance was also revealed via a comparison of the membrane
subproteomes.[297] The pumps belonging to the MFS, SMR and MATE were also reported
from A. baumannii (Table II).[298, 299] Transposon mutagenesis of A. baylyi identified a few
genes encoding efflux proteins, AcrB or OprM homologues, responsible for intrinsic
resistance.[300]

Drug-specific pumps such as tetracycline pumps Tet(A) or Tet(B) have also been found in
MDR Acinetobacter[301, 302] which also contain AdeABC. Tet(A) may coexist with Tet(M)
that is for ribosomal protection.[302, 303] Given that Tet(A) confers resistance to tetracycline
butnot to minocycline, minocycline may be one of limited drugs to which some MDR
Acinetobacter may still be susceptible.[296, 302]

3.1.5 Stenotrophomonas maltophilia—This species, found in various environments,
used to be considered as a relative of Pseudomonas, but is now known to belong to a separate
order, Xanthomonadales. It increasingly causes human infections that are difficult to treat,
particularly due to the MDR phenotypes attributed to efflux mechanisms.[1, 304] Early studies
indicate growth temperature-dependent variation of cell envelope lipids and proteins as well
as antibiotic susceptibilities.[305] S. maltophilia contains a homologue of P. aeruginosa OprF,
whereas no homologue of the trimeric, open porin of Enterobacteriales can be found. Thus
OM permeability is probably low, and synergy with the tripartite drug efflux is expected to be
efficient. In addition the S. maltophilia genome reveals a number of drug resistance
determinants as well as potentially mobile genetic regions. Indeed 8 putative RND-type efflux
systems are present and include the previously identified SmeABC and SmeDEF[1] as well as
the new SmeGH, SmeIJK, SmeMN, SmeOP, SmeVWX, and SmeYZ (Table I).[306] Some of
these putative RND pumps do not have an identified OM component, but proteins such as
SmeC[307] might also be used by these other systems. Additional ABC-type and MFS-type
transporters are shown in Table II.

SmeABC and SmeDEF contribute to MDR in clinical isolates.[308] The biocide triclosan can
also select SmeDEF-overproducing mutants.[309] Mutations in the SmeT repressor can result
in SmeDEF overproduction. Yet the drug resistance pattern is not completely reproducible
among SmeDEF overproducers, and the contribution of so far unidentified drug efflux systems
is suspected.[310, 311] The EPI Phe-Arg-β-naphthylamide does not affect the SmeDEF efflux
activity.[312] Highly effective efflux mechanism is also suggested to preserve topoisomerase
targets in S. maltophilia challenged by ciprofloxacin.[313]

3.1.6 Haemophilus influenzae—This organism belongs to the order Pasteurellales. The
majority of H. influenzae strains were found to have a macrolide efflux mechanism.[314]
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Telithromycin and azithromycinefflux was further demonstrated in various clinical strains.
[315] In fact, efflux is required for ribosomal protein mutations to produce high-level macrolide
resistance.[316] Ciprofloxacin-nonsusceptible respiratory isolates were more hypermutable
than the susceptible group and the hypermutability appeared to result in the stepwise
accumulation of resistance mechanisms, including target modifications, loss of a porin protein,
and increased efflux.[317]

The previously described AcrAB-TolC pump of H. influenzae [1, 318]also accommodates the
peptide deformylase inhibitor LBM415, a lipophilic compound, which selected AcrR mutants.
[319, 320] Overproduction of AcrAB (due to AcrR mutations) and alterations in penicillin-
binding protein 3 were observed in β-lactamase-negative, high-level ampicillin-resistant H.
influenzae of diverse geographical sources.[321] Single cysteine mutations were constructed
in AcrB in positions identified as important for substrate recognition in order to investigate the
accessibility of the cysteine to the hydrophilic thiol-reactive fluorophore fluorescein-5-
maleimide and the results suggest that substrates induce conformational changes in AcrB.[49]
Finally, a Na+-dependent NorM homologue, HmrM, conferred MDR when expressed in E.
coli (Table II).[322]

3.2 Betaproteobacteria (Burkholderia, Neisseria and Brucella)
Class Betaproteobacteria contains many bacterial species that interact intimately with plants
or animals. Possibly the patterns of their efflux activity reflect this mode of living.

3.2.1 Burkholderia spp—This species include several pathogenic members for diseases in
humans and animals such as Burkholderia cepacia complex, Burkholderia mallei and
Burkholderia pseudomallei. OM of these organisms contains, as the major porin, a trimeric
protein (Omp38) that is a distant relative of E. coli OmpF. Nevertheless, permeation through
this channel appears to be slower, by one or two orders of magnitude, than that through OmpF.
[323] With the low permeability OM, efflux is expected to be efficient in creating resistance,
and indeed genomes of several Burkholderia species contain many drug efflux pump genes
(http://www.membranetransport.org). For instance, there are, respectively, 14, 9, and 12 RND-
type transporters in the genomes of Burkholderia cenocepacia, B. mallei, and B.
pseudomallei.[324] In B. cenocepacia expression of the four RND pumps was detectable and
one of these pumps was inducible by chloramphenicol. When overexpressed in E. coli, an RND
gene (orf2), whose expression was not detectable in B. cenocepacia, conferred resistance to
several antibiotics and to ethidium bromide.[324] The ceoR repressor gene was identified
upstream of the previously characterized RND operon, ceoAB-opcM.[325] In B.
pseudomallei, two RND pumps, BpeAB-OprB (and its BmeR repressor) and BpeEF-OprC
(and its BpeT repressor), were characterized (Table I)[326–328] in addition to AmrAB-OprA.
[1] BpeEF-OprC, homologous to CeoAB-OpcM of B. cenocepacia, conferred resistance to
chloramphenicol and trimethoprim.[1] In both ceoR-ceoAB-opcM and bpeT-bpeEC-oprC gene
complexes, there is an additional gene, llpE (encoding a lipase-like hydrolase protein) between
the repressor gene and the RND structural genes.[325, 328, 329] The llpE gene is conserved in
the isolates of B. cepacia complex and may benefit the bacterial survival in the cystic fibrosis
lung.[329] A recent study confirmed widespread expression of 7 RND pumps in clinical B.
pseudomallei strains.[330]

3.2.2 Neisseria spp—Neisseria porins, which are trimeric and show high permeability, have
been studied intensively over the years. One of their outstanding characteristics is the anion
selectivity that forms a contrast to the cation selectivity of enterobacterial porins;[331] this may
be important in making Neisseria spp. much more susceptible to anionic penicillins. The major
multidrug pump, MtrCDE,[1] also contributes to resistance to cationic antibacterial peptides
in Neisseria meningitidis[332] as well as modulates the in vivo fitness of Neisseria
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gonorrhoeae.[333] It has been known that penicillin resistance in gonococci requires
simultaneous overexpression of MtrCDE and a mutation in the PIB porin; in this remarkable
example of OM/pump synergy, the porin mutation lowers the influx of penicillin thereby
increasing the effectiveness of the pump to produce resistance.[334, 335] A clinical isolate with
reduced ceftriaxone susceptibility and MDR also has a porin mutation and overexpression of
MtrCDE.[336] High occurrence of simultaneous mutations in target enzymes and MtrRCDE
was observed in quinolone-resistant N. gonorrhoeae.[337] Inactivation of the ABC transporter
MacAB in clinical isolates only slightly decreased resistance to azithromycin and erythromycin
but macAB overexpression enhanced the macrolide resistance of gonococci defective in
MtrCDE pump.[338]

Mutations in either the gonococcal or meningococcal norM gene (for MATE pump) resulted
in increased susceptibility to antibacterial cationic compounds.[339] Resistance to tetracycline
and doxycycline (not minocycline) in N. meningitidis of various sources was associated with
tet(B) drug-specific efflux gene.[340, 341] As well, the presence of a possible constitutive efflux
pump for tetracycline resistance, which might be inhibited by reserpine, was also suggested in
N. gonorrhoeae.[342] A gene for a TolC-like protein of N. meningitidis is cotranscribed with
the gene for HlyD protein and is required for extracellular production of the repeats-in-toxin
toxin FrpC. However, this TolC cannot functionally replace the OM protein MtrE of MtrCDE
for antibacterial resistance.[343]

3.2.3 Brucella spp—These Gram-negative coccobacilli are members of the order
Rhizobiales, and are related to Rhizobia and Agrobacterium. The genus contains several
different species, each with slightly different specificity for host animals. They cause
brucellosis, a zoonotic disease which may be transmitted to humans.[344] Brucella spp. contain
trimeric porins homologous to E. coli porins, with roughly comparable permeability,[345] and
with such a permeable OM the contribution of efflux to drug resistance is predicted to be not
so extreme. Nevertheless, the genomes of Brucella abortus, Brucella canis, Brucella
melitensis, Brucella ovis and Brucella suis show the presence of two dozens of the putative
drug efflux transporters belonging to MFS, RND, SMR, and ABC
(http://www.membranetransport.org).[346, 347] An MATE-family pump was also identified in
B. melitensis, and its expression in a drug-hypersusceptible E. coli strain produces MDR (Table
II), although the disruption of this gene in B. metitensis did not alter the susceptibility to
ciprofloxacin.[348] BepC, a TolC homologue identified in B. suis,[349] is functionally involved
in two RND systems, BepDE and BepFG, which interplay in providing MDR (Table I).[350]
BepC with 25% identity to E. coli TolC was surprisingly able to complement TolC deficiency
in E. coli in restoring MDR but not in haemolysin secretion.[349] Efflux also contributes to
resistance to erythromycin and fluoroquinolones.[351, 352]

3.3 Epsilonproteobacteria (Campylobacter and Helicobacter)
3.3.1 Campylobacter spp—Campylobacter spp. are major foodborne pathogens and show
increasing resistance to antibacterials. The major OM protein is a trimeric porin,[353] which
seems to produce high permeability channels comparable to E. coli porins.[354]. Yet multidrug
efflux pumps are reported to play a major role in drug resistance.[355, 356] Campylobacter
jejuni contains at least 14 putative drug efflux pumps, including 3 RND (CmeB, CmeD, and
Cj1373), 4 MFS, 4 SMR and 1 ABC transporters.[357] Two functionally characterized RND
systems, CmeABC and CmeDEF, contribute to intrinsic resistance. Overproduction of
CmeABC has been demonstrated in isolates that are resistant to macrolides, fluoroquinolones
and tetracyclines.[355, 358–365] Frequent variations in cmeB gene sequence have been observed.
[366]
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Macrolides and fluoroquinolones are the drugs of choice for therapy of Campylobacter
infections. Chickens, which are fed tylosin-containing feed and infected with C. jejuni or
Campylobacter coli, yielded resistant mutants that had the contribution from CmeABC.[367]
Low-level macrolide resistance was also found due to CmeABC and other uncharacterized
efflux pump(s) (but not to CmeDEF), and was minimized by the EPI Phe-Arg-β-
naphthylamide.[368, 369] Enrofloxacin treatment of chickens infected with susceptible
Campylobacter promoted the emergence of CmeABC-associated fluoroquinolone-resistant
mutants.[355] A recent study shows antisense-mediated gene silencing by cemA-specific
peptide nucleic acid for inhibition of CmeABC pump.[370]

Contribution of CmeDEF to intrinsic resistance is likely secondary compared with that of
CmeABC.[371] Nevertheless, the cmeB/cmeF double mutants in C. jejuni showed further
decrease in MDR than single mutants, and moreover, the double mutations impaired cell
viability.[371] Disruption of cmeB did not affect the expression levelsof cmeF and vice versa.
[372] There is evidence that a non-CmeB or -CmeF efflux pump or reduced uptake is involved
in conferring MDR.[373]

Campylobacter isolates exhibit either high- or low-level erythromycin resistance phenotype.
Cross-resistance to erythromycin, clarithromycin and the ketolide telithromycin was observed
in the high-level resistant isolates due to mutations in the 23S rRNA. Low-level erythromycin
resistance was, in contrast, mediated by Phe-Arg-β-naphthylamide-sensitive, macrolides/
ketolide-selective efflux mechanism which remains unidentified.[368] A synergy between
CmeABC and the ribosomal modifications was observed in macrolide resistance.[374]
Recently, a theoretical model that explains such synergy has been proposed.[375]

3.3.2 Helicobacter pylori—This Gram-negative, microaerophilic bacterium inhabits
various areas of the stomach and duodenum and is linked to the development of ulcers. Its OM
contains a porin producing a large channel,[376] but it is unknown what fraction of this channel
is open. H. pylori is intrinsically resistant to multiple antibacterials such as glycopeptides,
polymyxins, nalidixic acid, trimethoprim, sulfonamides, nystatin,amphotericin B, and
cycloheximide.[377] Two early studies suggested the absence of functional efflux mechanisms
for intrinsic resistance in H. pylori,[378, 379] despite the presence of putative RND efflux
systems (HefABC, HefDEF, and HefGHI).[378] However, a recent study revealed that
inactivation of HefA renders a chloramphenicol-selected MDR mutant more susceptible to
multiple antibacterials (Table I).[380] Re-examination of HefC, HefF and HefI mutants found
that HefC is, in fact, involved in MDR (Table I).[380] Another study[381] identified 26 putative
transporters belongingto the RND, MFS and ABC families as well as only oneputative MATE
transporter that is involved in ethidium efflux. Characterization of the four TolC homologues
revealed the involvement of one in resistance to ethidium bromide and another in resistance to
novobiocin and sodium deoxycholate. Inactivation of the two TolC homologues increased
susceptibility to metronidazole.[381] A TolC-like protein constitutes the OM component of the
RND-type CznABC metal efflux pump that provides resistance to cadmium, zinc and nickel
salts and is also essential for gastric colonization.[382]

3.4 Bacteroides spp
Bacteroides is a genus of Gram-negative anaerobes that is phylogenetically very far away from
the phylum Proteobacteria discussed so far. Bacteroides constitutes substantial portion of the
mammalian gastrointestinal flora which are bile-resistant. Analysis of Bacteriodes proteomes
suggests a capacity to use a wide range of dietary polysaccharides.[383] Bacteriodes fragilis is
considered both the most frequent clinical isolate and the most virulent Bacteroides species.
[384] The B. fragilis cell envelope undergoes major changes in protein expression and
ultrastructure in response to stressors such as bile and antibacterial agents. The latter may also
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act as signals for attachment and colonization.[383] Several proteins were reported as porins in
B. fragilis OM, one study showing that the porins are very inefficient, by a factor of 10 or even
more, compared with the E. coli porins.[385] Bacteroides are intrinsically resistant to a variety
of structurally unrelated antibiotics including certain β-lactams and aminoglycosides.[386]
Acquired resistance to erythromycin and tetracycline has been observed and prompted
concerns that Bacteroides species may become a reservoir for resistance in other, more highly
pathogenic bacterial strains.[387]

Drug efflux plays a key role in resistance in Bacteroides[1, 384, 388] and, for example, efflux
of fluoroquinolonesby NorA/Bmr of B. fragilis and BexA of Bacteriodes thetaiotaomicron
was described earlier.[1] On the basis of homology, 16 putative RND efflux pumps in B.
fragilis, named bmeABC1–16, were identified.[389] Disruption of bmeB15 led to increased
susceptibility to a range of antibacterials (Table I).[389] BmeABC5 conferred metronidazole
resistance in a clinical isolate, which contained a mutation in the promoter region of bmeC5
(coding for the OM component), preventing the binding of the repressor BmeR5.[390]
Expression of all bmeB genes except bmeB9 was detectable.[391] Construction of multiple
deletion mutants demonstrated that seven BmeB pumpsare functional and have
overlappingsubstrate profiles, and at least four confer intrinsic resistance in an additive manner.
[391] MDR strains of Bacteriodes have been isolated clinically or selected in the laboratory
with resistance attributable to elevated efflux activities of RND systems.[391] In other studies
overexpression of various RND pumps was demonstrated in clinical isolates showing increased
resistance levels to several drugs.[392, 393] A Bacteroides conjugative transposon,
CTnGERM1, contains genes that are also observed in Gram-positive bacteria, such as a gene
for Mef(A), a macrolide efflux pump.[394]

4. Drug Efflux in Gram-Positive Bacteria
The drug efflux pumps in Gram-positive bacteria are usually non-RND pumps and often the
singleton protein pumps belonging to the MFS, MATE, SMR or ABC. Those pumps reported
or further characterized since 2003 are listed in Table II. The significance of the drug pumps
in individual bacteria is discussed below.

4.1 Members of Phylum Firmicutes (Clostridium, Bacillus, Listeria, Staphylococcus,
Lactococcus, Lactobacillus, Enterococcus and Streptococcus)

Most of Gram-positive bacteria described below belong to the large phylum Firmicutes.

4.1.1 Clostridium spp—Clostridium is a genus of Gram-positive, obligate anaerobes that
include at least four important pathogens in humans i.e., Clostridium botulinum, Clostridium
difficile, Clostridium perfringens, and Clostridium tetani. In particular, C. difficile is a
significant cause of pseudomembranous colitis as it can overgrow other bacteria and disrupt
indigenous intestinal microflora during antimicrobial therapy. Clindamycin, third-generation
cephalosporins, penicillins, and fluoroquinolones are considered to have the greatest risk
factors for producing C. difficle infections.[395] This would also suggest intrinsic or acquired
drug resistance in Clostridium, which is a factor promoting C. difficile outbreak in hospitals.
[396] Indeed, the genome of a virulent and MDR C. difficile strain shows a large proportion of
the genome with mobile genetic elements putatively responsible for the acquisition of genes
involved in resistance and virulence.[397] The cdeA gene from a clinical C. difficile isolate
encodes a Na+-coupled MATE efflux pump. When expressed on plasmid, this pump conferred
MDR upon C. perfringens and E. coli (Table II). There was an elevated cdeA expression in C.
difficile in the presence of ethidium bromide (although not ciprofloxacin).[398] Another efflux
pump, Cme, a MefA/MefE homologue from C. difficile, was able to confer resistance in
Enterococcus faecalis (Table II).[399] Fluoroquinolones show limited activities against
anaerobic bacteria and the efflux appears to be a mechanism for the resistance in Clostridium
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hathewayi.[400] However, another study revealed that high-level fluoroquinolone resistance in
toxin-A-negative, toxin-B-positive C. difficile isolates was associated with a novel mutation
in the target gene gyrB and that efflux inhibitors had little impact on the resistance.[396] Tet
efflux proteins such as Tet(P) and Tet(40) are also distributed in Clostridium.[401, 402]

4.1.2 Bacillus spp—Several multidrug pumps including Bmr, Blt and Bmr3 have been
described earlier in B. substilis.[1, 403] A Bmr3-overproducing mutant selected by puromcyin
exhibited the increased stability of bmr3 transcripts and MDR.[403] LmrB, a fourth multidrug
efflux pump, was identified from spontaneous mutants of B. subtilis by puromycin and
lincomycin selection.[404] The lmrB efflux gene and the lmrA repressor gene form an operon.
[405] Mutations in two regions immediately downstream of the -10 lmrAB promoterregion
increased lmr transcription in lincomycin-resistant mutants.[406] LmrA autogenously represses
the transcription of lmrAB through binding to the lmrAB promoter region. Interestingly, LmrA
also represses the expression of another gene, yxaG that encodes an iron-containing quercetin
2,3-dioxygenese. However, the latter apparently is not involved in MDR, although it forms an
operon with yxaH that encodes a putative membrane protein and may function as a drug
exporter.[405] Tet(L) tetracycline efflux protein from B. subtilis has been characterized as a
dimer.[407]

An MDR operon mdtRP (encoding the MdtR repressor and the MFS pump MdtP) is involved
in resistance to fusidic acid and other agents.[408] YvcC (BmrA), a functional ABC transporter
in B. subtilis, is homologous to mammalian P-glycoprotein and to LmrA of L. lactis. This
transporter was constitutively expressed in B. subtilis, and its deletion decreased ethidium
efflux. Inverted membrane vesicles prepared from overexpression of YvcC in E. coli exhibited
high transport activities for Hoechst 33342 (a lipophilic fluorescent bisbenzimide agent),
doxorubicin, and 7-aminoactinomycin D.[409]

Fluoroquinolones such as ciprofloxacin are drugs recommended for the treatmentof anthrax.
Studies have been carried out to identify the steps necessary to obtain high-level resistance to
fluoroquinolones in Bacillus anthracis and to characterize the underlying mechanisms.
Although GyrA and/or ParC mutations were the major mechanisms, efflux was also observed
in the mutants obtained at certain steps.[410–412] The identity of the efflux pump(s) remains
unknown.

4.1.3 Listeria monocytogenes—The Gram-positive bacterium L. monocytogenes is a
ubiquitous,intracellular pathogen implicated as the causative organism in various outbreaks of
the foodborne disease, listeriosis. It is estimated that 20–30% of foodborne listeriosis infections
in high-risk individuals may be fatal.[413] Although L. monocytogenes is usually susceptible
to most antibacterials,[414, 415] strains resistant to some agents have been isolated recently.
[416–418]

Drug efflux determinants including floR, tet(A) and tet(K) have been also observed in L.
monocytogenes.[417, 418] Isolates resistant to heavy metal (cadmium and arsenic) salts and
benzalkonium chloride were also obtained[419, 420] and further resistance to ethidium bromide
was likely associated with an efflux pump.[420] The multidrug transporter MdrL is partially
responsible to adaptation of L. monocytogenes to benzalkonium chloride[1, 421] and can also
be repressed by LadR, a PadR-related transcriptional regulator.[422] As described in section 8,
this and two other multidrug transporters in L. monocytogenes were recently found to be
involved in controlling the innate host immune response.[423] Another MFS drug pump, Lde,
is a homologue of PmrA from Streptococcus pneumoniae and is involved in resistance to
fluoroquinolones and toxic compounds.[424] Intriguingly, Lde as a bacterial efflux pump
cooperates with a eukaryotic MRP-like efflux transporter to reduce the activity of
ciprofloxacin, a substrate of both pumps, in J774 macrophages infected with L.
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monocytogenes.[425] The in vivo-induced virulence factor Hpt mediates uptake of fosfomycin
in L. monocytogenes (which is resistant to fosfomycin in vitro), making an antibacterial in-
vitro/in-vivo paradox, i.e., the bacteria are resistant in vitro but are susceptible to the drug in
vivo.[426]

4.1.4 Staphylococcus spp—Efflux is an important resistance mechanism in S. aureus.[1,
427] In addition to the previously described chromosomal NorA pump and plasmid-encoded
MsrA and QacA/B pumps,[1] additional chromosomally-encoded pumps have been
characterized from S. aureus and these include the MFS-type NorB, NorC, MdeA, SdrM and
Tet(38), the MATE-type MepA, the SMR-type SepA, and the ABC-type AbcA and Sav1866,
which (except Tet[38]) are all multidrug pumps with the substrates shown in Table II.[428–
434] Intriguingly, the sepA gene is located immediately downstream of sdrM, and SepA is the
only known SMR pump encoded on the chromosome in S. aureus.[435] Additionally, NorB
can facilitate bacterial survival when overexpressed in a staphylococcal abscess and may
contribute to the relative resistance of abscesses to antibacterial therapy, thus linking bacterial
fitness and resistance in vivo.[436] Among the plasmid-coded genes, msr(A) not only encodes
a macrolide efflux pump but also is required for expression of mph(C) that encodes a
phosphotransferase for inactivating some macrolide antibiotics.[437] A plasmid-encoded
phenicol efflux pump FexA was identified in Staphylococcus lentus.[438]

In a recent study, ca. 50% of the 232 bloodstream isolates of S. aureus were considered as
strains exhibiting efflux of at least two structurally unrelated substrates. Frequencies of
overexpressed efflux genes were mepA (4%), mdeA (11%), norA (23%), norB (25%) and
norC (17%), and ca. 20% of the strains overexpressed two or more efflux genes.[439] The
prevalence of msrA/msrB efflux genes was significantly higher in the invasive MRSA spa-type
t067 than in the other MRSA spa-types in a national survey in Spain.[440] Exposure to several
substrates significantly increased norA expression.[441] Low concentrations of several biocides
and dyes also selected the mutants overexpressing mepA, mdeA, norA and norC, with mepA
overexpression predominating. Overexpression was frequently associated with promoter-
region or regulatory protein mutations.[442] Loss of NorA pump leading to susceptibility to
fluoroquinolones was observed in laboratory-generated vancomycin intermediate resistant S.
aureus strains.[443] The mef(A) efflux gene was detected in Staphylococcus sciuri resistant to
macrolides, lincosamides, streptogramins, and linezolid.[444]

The SMR-type QacD pump, encoded by plasmids and conferring a low-level antiseptic
resistance, has been found in both methicillin-susceptible S. aureus (MSSA) and MRSA, and
the smr gene cassettes were classified into three types.[445, 446] High-level antiseptic resistance
genes qacA and qacB were more frequent in MRSA isolates than in MSSA isolates.[445] QacA,
but not QacB or QacC, confers in vitro resistance to thrombin-induced platelet microbial
protein 1 (tPMP-1), a cationic antibacterial polypeptide, apparently by a mechanism that does
not involve efflux.[447] The presence of Tet(M) ribosomal protection or Tet(K) efflux proteins
has no discernible effect on the tigecycline activity for either MRSA or MSSA strains.[448]
Novel agents may be sought to bypass the efflux mechanism. A novel des-fluoro[6] quinolone,
DX-619, generates resistant S. aureus mutants only at a very low frequency; the mechanism
of resistance in these mutant strains is unlikely to be the conventional ones.[449] Co-presence
of qacA/B, qacG, qacH, qacJ and/or smr efflux genes were confirmed in Staphylococcus
haemolyticus human isolates.[450]

4.1.5 Lactococcus lactis and Lactobacillus spp—In silico analysis of the genome of
non-pathogenic, Gram-positive L. lactis suggests the presence of 40 putative drug transporters
including the previously described LmrA (ABC transporter) and LmrP (MFS).[1, 451] An
additional heterodimeric ABC transporter, named LmrCD (YdaG/YdbA), has been reported
as a major determinant of both intrinsic and acquired MDR in L. lactis. Up-regulation of
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lmrCD in resistant strains was observed, while deletion of lmrCD led to the hypersusceptibility
to toxic compounds including bile salts (Table II), but not to common antibiotics.[451, 452]
Cholate-induced wild-type cells, which actively extrude cholate, differ from LmrCD-deficient,
cholate-selected resistant cells, whose resistance seems to involve multiple responses.[453] A
local transcriptional repressor of lmrCD, LmrR (YdaF), which belongs to the PadR family,
interacts with drugs to cause lmrCD up-regulation.[454] Mdt(A), originally described in L.
lactis, is a plasmid-encoded drug pump and confers resistance to macrolides, lincosamides,
streptogramins and tetracycline.[1] A mutated mdt(A) gene containing inactivating mutations
was identified in susceptible Lactococcus garvieae strains.[455]

Lactobacillus species are a major group of lactic acid bacteria and play an important role in
promoting intestinal and vaginal health. An ABC multidrug exporter HorA, a homologue of
LmrA of L. lactis, is involved in hop resistance in Lactobacillus brevis.[456] Additional
unidentified proton-dependent pump also contributes to hop resistance.[457] Several
Lactobacillus species derived from broiler chickens displayed tetracycline resistance due to
the presence of the efflux genes tet(K), tet(L) or tet(Z) and the ribosomal protection genes tet
(M) or tet(W).[458, 459] A tetracycline-resistant Lactobacillus sakei showed the coexistence of
two different tetracycline resistance mechanisms, plasmid-carried efflux gene tet(L) and
chromosomally-located transposon-associated tet(M).[460] Bile-mediated aminoglycoside
sensitivity in Lactobacillus species likely results from increased membrane permeability.
[461] Heterologous expression of BetL, a betaine uptake system of L. monocytogenes, enhances
the stress tolerance of Lactobacillus salivarius.[462]

4.1.6 Enterococcus spp—This species is resistant to numerous antibacterials with efflux
as a key mechanism of resistance as described previously.[1] Additional efflux systems have
been found. EfrAB, an ABC exporter in E. faecalis, conferred MDR upon a drug-hypersensitive
E. coli (Table II) and this efflux activity was inhibited by reserpine, verapamil, and o-vanadate
inhibitors of ABC pumps.[463] Lsa pump is involved in intrinsic resistance to lincosamides
and streptogramins in E. faecalis[1] and the lsa-like genes of clinical isolates susceptible to
lincosamides and dalfopristin carried premature termination mutations.[464] However,
acquired intermediate-level gentamicin resistance in E. faecalis was not associated with clear
indications of an active efflux.[465] Sparfloxacin- or norfloxacin-selected resistant E.
faecalis mutants contained a non-EmeA (see ref[1]), NorA-like pump.[466] Analysis of the
foodborne Enterococcus faecium and E. faecalis indicated the presence of a number of the
resistance determinants such as tet(L), tet(M) and tet(K) (for tetracycline resistance) and
ermA,B,C, mefA,E, msrA/B and ereA,B (for erythromycin resistance). All E. faecium strains
contained the msrC gene that encodes an erythromycin exporter,[467, 468] in spite of an early
study that led to a different conclusion.[469] An MFS pump, EfmA of E. faecium was
characterized (Table II).[470]

4.1.7 Streptococcus pneumoniae and relatives—This human pathogen causes many
types of pneumococcal infection and is a common cause of bacterial meningitis. Efflux-
mediated drug resistance is common in this species.[1] An in vivo exposure to ciprofloxacin
resulted in predominately efflux-mediated resistant mutants, suggesting that efflux plays a
central role in emergence of fluoroquinolone resistance.[471] Azithromycin selected for efflux-
type low-level resistance to macrolides.[472]

The MFS-type MefA, MefE and PmrA exporters are involved in macrolide or fluoroquinolone
resistance.[1] In macrolide-resistant isolates from various geographical areas, efflux mediated
by MefA-and/or MefE were predominant.[473–476] The presence of a tet(O)-mef(A)chimeric
element indicated the genetic linkage between macrolide and tetracycline resistance.[477] Non-
PmrA efflux pumps were also associated with fluoroquinolone resistance in S. pneumoniae.
[478, 479] Consistently, fluoroquinolone-susceptible isolates did not exhibit efflux.[480] The
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activity of the ketolide telithromycin can also be reduced by MefA in Streptococcus pyogenes
[481] although the ketolides possess enough activity against efflux-positive isolates.[482]

An MDR mutant obtained after exposure of capsulated wild-type strain of S. pneumoniae to
ciprofloxacin constitutively overexpressed 22 genes including patA and patB that encode a
heterodimeric ABC transporter (Table II). Expression of patAB was induced by ciprofloxacin
in both wild-type and resistant strains.[483] Quinolones and distamycin also strongly induced
patAB expression in fluoroquinolone-sensitive strains. A second group of quinolone-induced
transporter genes are SP1587 and SP0287, which are homologues of, respectively, oxalate/
formate antiporters and xanthine or uracil permeases belonging to the MFS.[484] Interestingly,
the EPI reserpine selected MDR mutants that overexpressed PatA and PatB, despite the fact
that only patA was involved in reserpine resistance.[485] Exposure to subinhibitory
ciprofloxacin resulted in patAB-mediated efflux regardless of the expression of pmrA.[486]
Another heterodimeric ABC-type pump, SP2073-SP2075, was identified from a PmrA-
deficient S. pneumoniae strain to mediate intrinsic resistance to toxic agents and certain
quinolones (Table II). Inactivation of other putative MFS, MATE, and ABC-type drug
exporters did not alter the drug susceptibility. [487] An ABC transporter, Spr0812/0813, was
required for intrinsic resistance to bacitracin, but an overexpression of a mutant Spr0813
permease lacking the two C-terminal helices resulted surprisingly in reduced susceptibility to
vancoresmycin, an antibiotic of tetrameric acid (2,4-pyrrolidine-dione) class.[488]

Efflux pumps encoded by mef(A) and mef(E) genes are among the most common mechanisms
of resistance to macrolides (M phenotype) in streptococci. These genes may be located on the
chromosomes (e.g., chromosomal chimeric tet(O)-mef(A))[489, 490] but are more often
associated with transferable elements such as the mef(E)-containing macrolide efflux genetic
assembly (MEGA) element or mef(A)-containing transposons.[490–492] The mef(A) elements
of Streptococcus pyogenes are likely prophage-associated.[493] Conjugative transfer of mef
(E) from viridans streptococci to S. pyogenes was demonstrated. In all cases of conjugal transfer
of mef(E), the gene was carried on MEGA.[494] Another study suggested that mef(A) and mef
(E) genes were also observed in ca. 9% of erythromycin-resistant isolates of Streptococcus
agalactiae and transformation was considered the main mechanism for resistance gene
acquisition.[495] The mef(A) gene has also been found in Gram-negative bacteria[496] and can
be transferred to E. faecalis and E. coli recipients.[497]

A mel (msr(D)) gene that encodes an ABC transporter is cotranscribed with the mef(E). Both
mel and mef(E) were inducible by macrolides and were required for macrolide resistance.
[498, 499] The mef(E)-MEGA element was inserted into a Tn916-like genetic element to form
a new composite element, Tn2009 containing both mef(E) and tet(M).[500] Tn2009 can further
absorb erm(B) to form another new composite, Tn2010.[501] A novel mef gene variant, mef
(I), was identified in Streptococcus pseudopneumoniae,[502]; mef(I), an adjacent new msr
variant, and catQ chloramphenicol resistance gene form a composite structure, 5216IQ
complex.[503]

4.2 Bifidobacterium spp. (a Member of Phylum Actinobacteria)
The Gram-positive, anaerobic bifidobacteria belong to the phylum Actinobacteria that contain
also Corynebacterium and Mycobacterium. Bifidobacterium is an important natural inhabitant
of the human intestinal microflora. Like other constituents of this microflora,
Bifidobacterium has evolved to tolerate inhibitory factorsin the intestinal niche, such as bile
salts and antibacterial peptides.[504, 505] Drug efflux is probably a major mechanism for such
tolerance or resistance. A protein with 8 transmembrane segments, BbmR of Bifidobacterium
breve exhibits characteristics reminiscentof MDR proteins and confers resistance to macrolides
azithromycin, clarithromycin and dirithromycin.[506] Two genes (abcA and abcB) from B.
breve encoding a putative ABC efflux transporter were coexpressed in the heterologous host
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L. lactis and conferred resistance to nisin and polymyxin B (Table II).[507] The ctr gene of
Bifidobacterium longum encodes a cholate efflux exporter and confers resistance to cholate,
chloramphenicol, and erythromycin in the heterologous host E. coli. Ctr belongs to the sodium/
bile acid family of transporters, which had not been reported previously to cause antibiotic
resistance.[504] A recent study identified bile salt-affected, envelope-associated proteins
including ABC trasnporters of B. longum.[508]

5. Drug Efflux in Mycobacteria
The significance of drug efflux in mycobacteria has been discussed previously,[1] and is also
the subject of other reviews.[509–512] Indeed, mycobacteria such as M. tuberculosis and
Mycobacterium smegmatis contain at least two or three dozens of putative drug efflux
transporters.[513, 514] Several of them have been shown to be involved in resistance to
aminoglycosides, chloramphenicol, fluoroquinolones, isoniazid, linezolid, rifampicin,
tetracycline and other toxic compounds.[1, 510, 512, 514, 515] Enhanced killing of intracellular
multidrug-resistant M. tuberculosis by efflux pump inhibitors (EPIs) was recently
demonstrated.[516] Nevertheless, it is not entirely clear how these pumps create significant
levels of resistance if they pump out drugs only into the “periplasmic space,” inside the highly
impermeable cell wall.

The M. tuberculosis genome contains 13 putative RND-type transporters, designated MmpL
(mycobacterial membrane proteins, large).[513] However, the inactivation of 11 out of 13 of
the mmpL genes including mmpL7 did not alter the drug susceptibility.[517] The mmpL4,
mmpL7, mmpL8, and mmpL11 genes are instead involved in the virulence in mice.[517]
Nevertheless, when expressed in M. smegmatis, MmpL7 confers a high-level resistance to
isoniazid due to efflux and this resistance level decreases in the presence of the EPIs.[518]
MmpL7 also catalyzes the export of phthiocerol dimycocerosate in M. tuberculosis and an
MmpL7-deficient mutant is attenuated for growth in the lungs.[517] MmpL8 exports a sulfatide
precursor, 2,3-diacyl-α,α′-trehalose-2′-sulfate.[519]

There are at least 26 putative ABC drug exporters in M. tuberculosis.[520] The Rv2686c-2687c–
2688c operon encodes an ABC exporter and its expression in M. smegmatis mediates resistance
to fluoroquinolones, which is reduced in the presence of EPIs.[521] There are also 16 putative
MFS drug efflux proteins proteins.[522] A Tap-like pump (Rv1258c) was overexpressed in an
MDR clinical isolate of M. tuberculosis.[523] In M. bovis BCG the Mb2361c protein,
homologous to the MFS-type Rv2333c pump from M. tuberculosis,[522] is involved in intrinsic
resistance to spectinomycin and tetracycline.[524]

In an important development, the whiB7 gene, which is a primary regulatory gene and
coordinates resistance to drugs, was characterized in M. tuberculosis. The whiB7 expression
was induced by erythromycin, tetracycline, and streptomycin as well as by fatty acids and
whiB7 deletion mutants were hypersusceptible to clarithromycin, erythromycin, lincomycin,
spectinomycin and streptomycin. Induction of whiB7 was correlated with the expression of
genes associated with resistance, including Rv1258c (tap for a drug efflux pump), Rv1473
(encoding a putative macrolide transporter) and Rv1988 (erm for ribosomal
methyltransferases).[525]

When expressed in Mycobacterium bovis BCG, the M. tuberculosis iniA gene confers
resistance to isoniazid and ethambutol, two first-line antituberculosis agents. These two agents
also induce the expression of iniA and the linked iniB/iniC in M. tuberculosis, but iniA deletion
results in increased susceptibility only to isoniazid. IniA may function as a MDR pump
component, although the type of the pump remains unknown.[526] Alkyl diphenyl ethers that
are high affinity InhA inhibitors with activity against drug-resistant M. tuberculosis mutants
were unable to up-regulate a putative drug efflux pump.[527]
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The M. smegmatis genome contains many genes encoding putative drug efflux pumps. The
expression of the lfrA gene (encoding the first-identified mycobacterial efflux pump[1]) and
the homologues of M. tuberculosis Rv1145, Rv1146, Rv1877, Rv2846c (efpA) and Rv3065
(mmr and emrE) was detectable.[514] Null mutants each carrying a deletion of lfrA, efpA or
Rv1877 homologue produced increased susceptibility to various agents, indicating the role of
these genes in intrinsic resistance.[514] The repressor LfrR for the LfrA pump was also
identified and characterized.[514, 528]

6. Contribution of Efflux Pumps to Resistance in Bacteria of Animal and
Environmental Origins

There is an increasing concern on drug resistance in bacteria of animal and environmental
origin, which may serve as a reservoir of resistance genes and/or resistant strains in human
infections.[26–28, 529, 530] Efflux-mediated resistance has often been observed in animal
pathogens. Fluoroquinolone resistance in canine P. aeruginosa isolates or in avian pathogenic
E. coli isolates involves the efflux pump overexpression (e.g., AcrAB).[531, 532] A macrolide
efflux gene, mef(B), which clusters with sulphonamide resistance gene sul3 on a plasmid, was
recently reported from porcine E. coli.[533] MexXY overexpression occurred in P.
aeruginosa from dairy cows with Pseudomonas mastitis.[534] AcrAB overexpression was
found in MDR Salmonella isolated from diseased swine.[535] Efflux contributes to
erythromycin and fluoroquinolone resistance in poultry and pig isolates of C. coli.[536] FloR
pump mediates florfenicol resistance in pathogenic E. coli isolates of calves[537] and a plasmid-
encoded, yet-unidentified chloramphenicol efflux pump was detected in E. coli isolated from
poultry carcass.[538] Efflux activity in fluoroquinolone and tetracycline resistant Salmonella
and E. coli of poultry origin contributes to reduced susceptibility to household antibacterial
cleaning agents.[539]. A number of coagulase-negative S. epidermidis isolates obtained from
milk, heifers and dairy cows carried MsrA efflux-based resistance to erythromycin.[540] MDR
in E. coli of both avian and human sources was usually associated with tetracycline efflux
genes.[541]

The plasmids harbouring qepA, qnr and aac(6′)-Ib-cr fluoroquinolone efflux/resistance genes
were found highly prevalent among ceftiofur-resistant Enterobacteriaceae isolates from
companion and food-producing animals.[158, 159] Plasmids containing oqxA (for an RND-type
multidrug pump, see Table I) were prevalent in E. coli isolates derived from pigs.[155] Animal
pathogens also carry plasmid-borne efflux genes such as floR (for florfenicol resistance) in
bovine Pasteurella multocida[542] and tet(L) (for tetracycline resistance) in bovine
Mannheimia and Pasteurella [543] and swine Actinobacillus pleuropneumoniae.[544]
Inactivation of TolC or its homologue FtlC led to multidrug susceptibility in the zoonotic
pathogen Francisella tularensis.[545] We note that overexpression of MarA-like regulator and
AcrAB pump can cause MDR of Yersinia pestis, a possible agent of bioterrorism.[546]

Drug efflux pumps are also evident in environmental isolates. An erythromycin resistance
mosaic plasmid, isolated from a sewage treatment plant, harbours resistance determinants,
mel (for an ABC-type efflux transporter) and mph (for a macrolide-2′-phosphotransferase) as
well as an integron-containing transposon element.[547] MexAB-OprM contributes MDR in
P. aeruginosa isolated from farm environments and retail products.[548] The presence of the
intI1 (class 1 integrase), qacE (multidrug efflux), and qacEΔ1 (attenuated qacE) genes was
significantly higher for the isolates pre-exposed to quaternary ammonium-polluted
environments.[549] Unidentified efflux mechanism contributes to phenicol resistance in MDR
Chryseobacterium isolates from fish and aquatic habitats.[550] Efflux contribution to resistance
in Aeromonas spp. from aquatic sources has been described above.[224–226] Tetracycline efflux
genes (and other resistance genes) were detected in uncultured soil bacteria which can also be
a reservoir of resistance genes.[551] A novel tetracycline-specific Tet41 pump was identified
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in an environmental strain of S. marcescens.[205] The genome analysis reveals the presence of
a number of putative drug efflux pumps of ABC, MFS, RND and SMR types in
Chromobacterium violaceum, a Gram-negative bacterium commonly found in aquatic habitats
of tropical and subtropical regions.[552]

7. Role of Efflux Pumps in Biofilm Resistance
Bacteria growing in biofilms are more resistant or tolerant to antibacterials than their planktonic
counterparts.[553] This is in large part attributable to a strategy with the occurrence of persister
cells that shut down the targets to protect cells from killing by antibacterials.[554] It seems
possible that efflux pumps also contribute to resistance in biofilms. However, ciprofloxacin
resistance in biofilms did not correlate with expression of AcrAB or MarA in E. coli or of
MexAB-OprM in P. aeruginosa[555, 556] There was also no up-regulation of MexAB-OprM
and MexCD-OprJ in biofilms of P. aeruginosa[557] and overproduction of these two systems
did not affect the biofilm formation.[558] Nevertheless efflux pumps may affect drug-specific
resistance in biofilms such that resistance to ofloxacin is dependent on the expressionof
MexAB-OprM pump at a low ofloxacin concentration range[556] and the MexCD-OprJpump
acts as a biofilm-specific mechanism for azithromycin resistance.[559] MexAB-OprM and
pmr-mediated lipopolysaccharide modification are also linked to tolerance to colistin in P.
aeruginosa biofilms.[560]

Zhang and Mah[561] recently reported the identification of a PA1874–1877-encoded efflux
system in P. aeruginosa that is important for biofilm-specific resistance to tobramycin,
gentamicin, and ciprofloxacin. Similarly, in an uropathogenic E. coli RapA regulatory protein
appears to increase the transcription of a putative MDRpump gene yhcQ and evidence suggests
this protein also contributes to the biofilm-specific penicillin G resistance.[562] The biocide
triclosan up-regulates the expression of acrAB pump genes and marA pump activator gene in
Salmonella biofilm cells.[563] Bile salt-induced B. fragilis cells with elevated RND pump
expression increase the possibility for biofilm formation, with increased resistance possibly
due to efflux.[564] It was noted that a polymicrobial-biofilm-associated MDR S. aureus isolates
carried an MDR gene cluster including macrolide efflux gene msrA.[565]

8. Role of Drug Efflux Pumps beyond Drug Resistance
MDR efflux pumps can handle a wide range of structurally unrelated substrates including those
compounds produced by higher organisms, such as bile salts, fatty acids and hormones.[1,
566–571] Thus the pumps are likely to affect the interaction of bacteria with the host animals
and plants. Indeed, the drug efflux pumps can respond to a range of stimuli including stress
signals, and they influence the colonization, pathogenesis or virulence, cell communications,
biofilm formation and other fitness responses.[572–574] These functions may well be the
physiological functions of at least some of the drug pumps, and may ensure the persistence of
drug efflux transporters in evolution.[575] The physiological function of the best studied RND
transporter AcrB is clearly to protect E. coli cells from the bile salts and fatty acids that are
abundant in the intestinal tract, their normal habitat.[1, 10, 566] Finally, the conventional
measurement of the minimal inhibitory concentrations alone may not indicate the extraordinary
capacity of MDR transporter;[576] this was shown clearly by the observation that cephaloridine
is pumped out strongly by AcrB although the susceptibility of E. coli to this drug is scarcely
affected by the deletion of this pump.[64]

8.1 Bacterial Stress Responses
Bacteria possess a complex regulatory network to ensure a coordinated and effective response
to various types of stress.[577] The role of MDR pumps in stress responses was demonstrated
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early by the stress-induced AcrAB expression in response to fatty acids, ethanol, high salt
concentration, etc.[566] This will be discussed below under the Regulation.

P. aeruginosa RND pumps provide a good example for their stress response functions.[573] In
response to the ribosome-targeting antibacterials,[578] expression of MexXY is elevated by the
aberrant polypeptides and their oxidatively modified counterparts, and this may lead in turn to
the removal of such polypeptides.[579, 580] Subsequent to the action of membrane-damaging
agents, MexCD-OprJ likely exports the released membrane constituents.[573, 580] MexEF-
OprN also may protect the cell by responding to hydrogen peroxide (H2O2) and nitric oxide.
[573] Consistent with such ideas, the repressor MtrR of the MtrCDE pump controls 69 genes
including rpoH, which encodes the general stress response sigma factor RpoH. RpoH-regulated
genes also modulate levels of gonococcal susceptibility to H2O2.[581] Iron starvation in E.
coli led to increased expression of the RND gene mdtF and a decrease in acrD.[582] Thus,
MDR pumps may often function for toxic waste disposal rather than only for drug resistance.
[583]

8.2 Colonization and Virulence
It has been reported that MDR transporters such as RND pumps contribute to the bacterial
colonization in the host. For example, TolC (and its homologue) mutants of S. Typhimurium
and V. cholerae are deficient in intestinal colonization.[171, 173, 174, 567] Administration of the
EPI Phe-Arg-β-naphthylamide also decreased the colonization of C. jejuni.[570] Nishino et al.
[172] determined the virulence role of 9 drug transporters of Salmonella, and concluded that
MdtABC, MdsABC (a salmonella-specific RND complex) and MacAB were required for
virulence and acrAB and acrEF null mutants had impaired ability in causing the mortality of
mouse by oral route of infection. A strain deleted for all 9 pump genes did not cause mortality
in mice. However, such results may not mean that the pump activity is directly connected with
“virulence”, given that the major function of AcrB and its relatives in enteric bacteria is the
protection of bacteria against bile salts. In this connection, it is regrettable that often little
attention has been paid to the presence of bile salts, and oral challenge has been routinely used
without further consideration.

However, there are data that cannot accommodate such trivial explanations. AcrB mutants of
S. Typhimurium failed to invade macrophages in vitro AcrB mutants of S. Typhimurium failed
to invade macrophages in vitro.[173] MexAB-OprM deletion mutant of P. aeruginosa was
greatly reduced in its ability to infect cultured cells.[584] BesABC of Borrelia burgdorferi (a
causative agent of Lyme borreliosis) is involved in virulence.[585] A functional MtrCDE
system enhances gonococcal genital tract infection in female mice and MtrCDE-deficient
gonococci are more rapidly cleared from mice secreting gonadal hormones.[568] BepFG-
defective mutant of B. suis is attenuated in virulence.[350] CznABC metal pump of H. pylori
is required for urease modulation and gastric colonization.[382] Exposure of B. fragilis cells to
bile salts increases, in addition to efflux, bacterial co-aggregation and adhesion to intestinal
epithelial cells.[564]

Some of the results above may be explained by the function of MDR pumps in exporting
virulence factors. P. aeruginosa MexAB-OprM system exports virulence determinants[1] and
contributes to the success of an epidemic clone.[586] A cystic fibrosis epidemic strain of P.
aeruginosa overproduces both MexAB-OprM and MexXY-OprM and displays enhanced
virulence.[587] However, overexpression of MexCD-OprJ and MexEF-OprN impairs the type
III secretion system that delivers toxins to the cytoplasm of the host cells, and this is due to the
lack of expression of ExsA, a master regulator of the type III secretion system.[588] MexCD-
OprJ up-regulation also impairs bacterial growth and has a strain-specific, variable impact on
rhamnolipid, elastase, phospholipase C, and pyocyanin production.[589] PseABC of P.
syringae is involved in secretion of lipopeptide phytotoxins.[590] BpeAB-OprB of B.
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pseudomallei is neededfor optimal production of quorum-sensing-controlled virulencefactors
such as siderophore and phospholipase C and for biofilmformation, and the bpeAB mutant is
attenuated in their invasiveness and cytotoxicity.[327] Nevertheless, resistance involving pump
overexpression may also result in biological cost and affect the fitness. SmeDEF
overexpression in S. maltophilia leads to virulence reduction.[591] Reduced fitness has been
observed with quinolone-resistant strains of E. coli and P. aeruginosa.[592, 593] Subsequently,
fitness-compensatory mutations may beacquired for bacterial survival.[593]

MacAB-TolC of E. coli functions in the secretion of a peptide toxin, the heat-stable enterotoxin
II, which is produced by enterotoxigenic E. coli.[594] AcrA and DinF (an MATE pump) of
Ralstonia solanacearum contribute to bacterial wilt virulence,[595] and the phytoalexin-
inducible AcrAB pump contributes to virulence in the fire blight pathogen, Erwinia
amylovora, possibly by excluding these plant toxins.[596]

TolC homologues, as key pump components, are also required for virulence of a large number
of bacteria, such as Brucella suis (BepC),[349] Francisella tularensis (causing tularemia)
[545] and Salmonella,[172] as well as plant pathogens Erwinia chrysanthemi[597] and Xylella
fastidiosa.[598] The TolC-like TdeA protein is required for leukotoxin export in
Aggregatibacter actinomycetemcomitans, an oral commensal.[599]

8.3 Quorum Sensing
Bacteria use quorum sensing systems to control gene expression in response to cell density
and environmental factors. The process involves the production and detection of extracellular
signalling molecules called autoinducers.[600] Among those, N-acyl homoserine lactones have
been studied most intensively.[601] There are numerous reports on the role of RND pumps in
quorum sensing. However, many of the conclusions demand more careful analysis. This is
because in the usual batch culture system, some cells that were turned on early (producers) will
be secreting the autoinducer, while the rest of population (receivers) will be responding to this
signalling molecule. Thus even when a given transporter exports the signal, it will have
opposite effects on these two types of cells, and the outcome in the whole, mixed population
is impossible to predict.

Early literature on the role of RND pumps on quorum sensing through N-acyl homoserine
lactone was analyzed previously (section 2.2.1 of reference[1]). Moreover, N-acyl homoserine
lactones should easily diffuse across any membrane as a lipophilic, uncharged molecule, and
it is difficult to imagine that they need to be pumped out actively by an RND pump (although
extremely hydrophobic members may be pumped out from within the membrane interior, to
avoid self-poisoning of the producer cells). We thus concluded that there is no evidence that
the secretion of N-acyl homoserine lactones by producer cells requires RND pumps, and the
overproduction of RND pumps are likely to hinder the entry of autoinducers into receiver cells.
[1] In fact, overproduction of MexEF-OprN system decreases, rather than increases, the
production of N-acyl homoserine lactone autoinducers by the whole population.[1]
Nevertheless, several reviews have emphasized the “role” of RND pumps in quorum sensing
without careful analysis, and there are studies that “confirm” this purported “physiological”
role of the pumps, and this myth of autoinducer export by RND pumps still continues. In an
extension of an earlier study, it was shown that deletion mutants in the mexHI-opmD system
are drastically reduced in the production of autoinducers.[602] However, as pointed out earlier,
[1] such mutants overproduce other RND systems and the data may simply mean that the
exclusion of autoinducers through efflux results in the failure to convert the receiver cells (the
majority of the population) into producer cells, rather than the authors’ interpretation that
MexHI-OpmD is essential in the export of autoinducers. Possibly a similar interpretation
applies to the observation that deletion of BpeAB-OprB pump hinders the production of
autoinducers in batch cultures of B. pseudomallei.[327, 603] In another study, AcrAB deletion
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mutant of E. coli was found to reach a 10% higher final density in the stationary phase, in
comparison with the wild type. Furthermore, the culture supernatant of an AcrAB overproducer
decreased the final density of the wild type culture. It was concluded that AcrAB pumped out
N-acyl homoserine lactone signal.[604] In our opinion, the data are far too insufficient for such
a conclusion.

An autoinducer enhances MexAB-OprMexpression but this activity is repressedby MexT
(PA2492), the activator of MexEF-OprN pump.[605, 606] Macrolides modulate the quorum-
sensing system of P. aeruginosa and the cell density-dependent expression of MexAB-OprM
is repressed by a subinhibitory concentration of azithromycin.[607] The phenazine pyocyanin
is a physiological signalling factor for the up-regulation of several quorum sensing-controlled
genes including those encoding MexHI-OpmD pump.[608] Overexpression of the quorum
sensing regulator SdiA in E. coli is linked to the increased levels of AcrAB pump.[1] The
exogenous autoinducers N-acyl homoserine lactones modulate expression of four quorum
sensing regulatory luxR genes and four bme RND pump genes and biofilm formation in B.
fragilis.[609] In the plant pathogenic Burkholderia glumae, quorum sensing is involved in
pathogenicity by the regulation of biosynthesis and export of a very hydrophilic phytotoxin
toxoflavin (in which a pyrimidine is fused to a triazine) by ToxGHI RND pump.[610]

8.4. Other Cell Physiology
Drug efflux pumps also influence additional cell physiology other than those described above.
AcrEF-deficient E. coli cells are defective in chromosome condensation and segregation and
thus AcrEF plays a role in the maintenance of cell division, as the name of RND implies.
[611] In L. monocytogenes, the MFS drug transporters such as MdrL and the newly-identified
MdrM and MdrT control the magnitude of a host cytosolic surveillance pathway, leading to
the production of several cytokines, a result linking bacterial MDR to host immunity.[423]
Moreover, the genes encoded for MdrL, MdrM and MdrT are, respectively, linked to the
regulatory genes encoding LadR, TetR and MarR,[423] suggesting the importance for
controlling the efflux pump expression.

9. Regulation of Drug Efflux Pump Expression
9.1 Multiple-Level Genetic Regulation: Involvement of Local and Global Regulators/
Modulators

Both the presence of numerous multidrug efflux systems and the overlapping functions of the
MDR transporters require a well-regulated expression of these efflux systems, which can be
subject to multiple levels of regulation. Indeed, involvement of a variety of local and global
transcriptional regulators and other modulators underlines the complexity anddiversity of the
mechanisms in regulation of drug effluxpumps, as previously described with the regulation of
AcrAB-TolC efflux system of E. coli.[1] In particular, most regulators (e.g., AcrR of E. coli)
of the efflux pumps fall into the TetR family of transcriptional repressors (Table I and II) (see
reference[612] for a review). Crystallographic studies reveal AcrR (also CmeR of C. jejuni) as
a dimeric two-domain molecule with an entirely helical architecture.[66, 613] The two-
component systems EvgAS, PhoPQ and BaeSR also affect the expression of the E. coli
exporters. The expression of emrKY, yhiUV, acrAB, mdfA and tolC is increased by the
constitutive EvgS. PhoPQ further affects tolC expression as part of an interaction between
EvgAS and PhoPQ.[1, 614] BaeSR induces expression of AcrD and MdtABC pumps in E.
coli and S. Typhimurium.[168, 615] Indole, copper, or zinc (all in millimolar concentrations)
induces these transporters, presumably by interacting with BaeSR.[168, 615] The repressor AcrS
of AcrEF pump also represses AcrAB.[616] MdtEF (YhiUV) pump-mediated MDR is activated
by AraC-XylS family regulators GadX[617] and YdeO[618] but repressed by the global
regulator CRP,[619] which is involved in catabolite repression. Deletion of the E. coli hns gene,
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coding for the histone-like nucleoid-structuring protein H-NS, derepresses acrEF and mdtEF
genes;[620] however, we are not aware of conditions that lower the expression level of H-NS.

P. aeruginosa contains 10 RND systems which have been characterized (Fig. 2).[1, 6] The
complex regulation of these Mex pumps shown in Fig. 2 is used here for demonstrating the
multiple levels of the efflux pump regulation. MexAB-OprM overexpression is typically
associated with mutations in the linked mexR repressor gene as demonstrated in various mutants
(earlier called nalB).[1, 621] The structure of MexR suggests effector-induced conformational
changes for inhibiting DNA binding.[1] A recent study revealed that MexR is a redox-sensing
regulator that senses peroxide stress to increase MexAB-OprM expression and drug resistance.
[622]

In spite of the early identification of MexR, the MexAB-OprM regulation is more complicated,
and also involves additional regulators/modulators such as NalC, NalD and AmrR (Fig. 2).
NalC, encoded by PA3721, is a repressor of the TetR/AcrR family and negatively regulates
the expression of the PA3720-PA3719 operon, located downstream of nalC. Thus, PA3720-
PA3719 is overexpressed in nalC mutants. PA3719 encodes a protein modulator of only 53
amino acid residues, named AmrR, which functions as an anti-repressor that interacts with
MexR and modulates MexR repressor activity.[623] The nalC mutants show modestly elevated
expression of mexAB-oprM. The removal of AmrR decreases MexAB-OprM expression to
wild-type levels and compromises MDR. These mutants also produce markedly elevated levels
of MexR protein.[624] The crystal structure of MexR in complex with AmrR reveals the way
the repressor activity is modulated.[625] Mutations in nalD (PA3574), which encodes a TetR
familyrepressor,[612] are also responsiblefor mexAB-oprM overerexpression in some clinical
isolates.[233, 240, 626] NalD binds to a second promoter upstreamof mexAB-oprM, directly
repressing the effluxgene expression.[627]

An inverse relationship in expression between MexAB-OprM and other efflux pumps MexCD-
OprJ or MexEF-OprN has been observed.[589, 628] This mechanism is also likely the cause of
β-lactam hypersusceptibility in nfxC-type MexEF-OprN-overproducing mutants.[605]
However, details of this regulatory mechanism(s) remain unknown. Increased mexAB-oprM
expression is induced by N-butyryl homoserine lactone and this is repressed by MexT, a
positive regulator of mexEF-oprN.[605] Mutations in mexS (PA2491 encoding a probable
oxidoreductase) promote MexT-dependent mexEF-oprN expression and MDR in a clinical
strain.[629] Inactivation of mexS resulted in up-regulation of the genes for efflux pumps
(including MexCD-OprJ and MexEF-OprN), alginate synthesis and nitrate reduction as well
as down-regulation of the genes for DNA replication, ribosome synthesis, virulence factor and
lipopolysaccharide synthesis.[630] Macrolides such as azithromycin also reduce the expression
of MexAB-OprM, possibly via the impact on the quorum sensing system.[607]

Expression of MexCD-OprJ is regulated by NfxB repressor.[1] This pump complex is induced
by disinfectants and dyes but not by common antibiotics.[631] This induction was shown
recently to involve an AlgU-dependent pathway.[573, 580] Membrane damaging-agents such
as biocides, cationic antibacterial peptides, detergents and solvents disrupt the OM and/or
cytoplasmic membrane by releasing the membrane lipid constituents, which signal the
cytoplasmic-membrane-associated Muc proteins (homologues of Rse proteins of E. coli). The
latter then activates AlgU (a homologue of E. coli Sigma E), a sigma factor that positively
regulates mexCD-oprJ expression. Thus the physiological function of MexCD-OprJ may be
the export of constituents from damaged membranes.[573] Moreover, the inactivation of the
DNA oxidative repair system led to increased mutation frequency that also yielded nfxB
mutations with MexCD-OprJ overproduction.[632] Overexpression of MexCD-OprJ in nfxB
mutants decreases MexAB-OprM and MexXY expression.[589]
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MexZ is a transcriptional repressor of the mexXY efflux operon, and purified MexZ shows
specific binding with the mexZ-mexX intergenic site.[633] The mexXY operon is inducible by
antibacterials targeting the ribosome.[578] The aberrant polypeptides produced and their
oxidatively modified products (generated via reactive oxygen) interact with PA5471 in
regulating MexXY.[573] Though the precise activity of PA5471 remains to be determined,
disruption in gene PA5471 compromises the drug-inducible mexXY expression, and PA5471
itself is induced by the same ribosome-targeting agents that induce mexXY expression. PA5471
thus appears to modulate MexZ activity in affecting mexXY expression (Fig. 2).[579] The
mexJK operon is constitutively expressed in mutants with defects in the upstream mexL gene.
The MexL repressor regulates the expression of both mexL and mexJK.[634]

MvaT, a global regulator in P. aeruginosa, has been proposed as an H-NS-like protein involved
in biofilm, quorum sensing and virulence.[635–638] Deletion of mvaT resulted in increased
resistance to chloramphenicol and norfloxacin but higher susceptibility to imipenem, and this
was associated with increased expression of mexEF-oprN.[639]

The operons for other P. aeruginosa RND efflux systems such as MexHI-OpmD, MexMN-
OprM, MexPQ-OpmE, MexVW-OprM and TriABC-OpmH are not associated with putative
regulatory genes. How these pumps are regulated remains unknown. However, intriguingly,
these efflux systems apparently have narrow or drug-specific substrate profiles, or their
function as drug pumps had to be measured through the heterologous overexpression from
plasmids (Table I).

Multiple mechanisms are also involved in regulation of MDR transporters in other Gram-
negative bacteria. In most cases, local regulators encoded by the genes linked to the efflux
genes are identified as shown in Tables I and II. The three RND efflux operons ttgABC,
ttgDEF and ttgGHI of P. putida have, respectively, the adjacent repressor genes ttgR, ttgT and
ttgV.[1, 640] TtgV and TtgT repressors bind with different affinities to the promoters of the
RND efflux operons, and show a new model of regulation in cross-regulating TtgDEF and
TtgGHI.[640, 641] In C. jejuni, CmeR functions as a transcriptional repressor for CmeABC by
binding specifically to the inverted repeat sequences in the cmeABC promoter.[613, 642] In an
enrofloxacin-selected MDR C. jejuni, a point mutation in the binding site of CmeR was
responsible for the overproduction of CmeABC.[643]

Multiple regulatory pathways are involved in the high-level MDR in Salmonella.[644] In a
highly invasive and MDR zoonotic pathogen S. Choleraesuis, gene for AcrR was inactivated
by a stop codon insertion, resulting in the AcrAB overexpression for ciprofloxacin resistance.
[645] Elevated expression of the MarA global activator was observed with increased levels of
RND pumps, AcrB, AcrD, and AcrF, in posthterapy MDR S. Typhimurium.[646] Inactivation
of marA impaired inducible MDR in S. Choleraesuis and the EPI Phe-Arg-β-naphthylamide
reduced the MDR phenotype.[647] A MarA homologue, the global regulator Rma (RamA),
which is not present in E. coli, is often overproduced in Salmonella spp. including MDR S.
Enteritidis, S. Hadar, S. Paratyphi B and S. Typhimurium,[644, 648–651] increasing the
expression of AcrAB, AcrEF and MdtABC.[650, 651] Overexpression of AcrAB was also
demonstrated in S. Typhimurium with the prolonged treatment with commercial disinfectants,
although the isolates also exhibited reduced invasiveness.[652] The promoter region of
macAB genes in S. Typhimurium harbours a binding site for the response regulator PhoP, which
represses macAB transcription. PhoPQ is a major regulator of Salmonella virulence, thus
indicating an inverse connection between a virulence determinant and a drug efflux system.
[172]

MtrCDE of N. gonorrhoeae is repressed by MtrR repressor and activated by MtrA.[1, 653,
654] MtrR also negatively regulates FarR, a repressor involved in the regulation of FarAB,

Li and Nikaido Page 29

Drugs. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suggesting a coordinating mechanism for MtrCDE and FarAB expression.[655] In N.
meningitidis, however, MtrCDE expression is regulated neither by MtrR nor MtrA. Instead,
the MtrCDE-overproducing clinical isolates contain a unique insertion element, called Correia
sequence, in the mtrCDE promoter region. A post-transcriptional regulation of the mtrCDE
transcript by cleavage in the inverted repeat of the Correia element was also identified.[656]
Expression of mtrCDE in gonococci is also inducible by membrane-acting hydrophobic
antibacterial agents in a manner dependent on another envelope protein, MtrF. The mtrF
expression is repressed not only by MtrR, but also by another repressor, MpeR, in an additive
manner.[657, 658]

The regulation of MDR transporters in Gram-positive bacteria is exemplified by the
staphylococcal pumps as presented in Fig. 3. Expression of NorA, NorB, NorC and AbcA
pumps is affected by multiple regulators including MgrA (also called NorR or Rat) and NorG.
[434, 659–661] MgrA (multiple gene regulator) of the MarR family is a global regulator that
controls autolysis, virulence, biofilm formation, and efflux pump expression.[659, 660, 662,
663] Overexpression of MgrA may either increase or repress norA expression based on the
genetic background including, for example, presence or absence of the promoter region
mutations of norA, i.e., flqB mutations that alone cause norA overexpression.[660, 662, 664]
MgrA also augments expression of NorC, Tet38 and AbcA pumps (Table II and Fig. 3).[434]
The function of MgrA on norA expression appears to require other regulators such as global
regulators SarA[665] and Agr (accessory gene regulator).[660] The two-component regulatory
system ArlR-ArsS, initially found to modulate autolytic activity in S. aureus, also affects
norA expression.[1] Substrate exposure can also augment norA expression, likely via yet
unidentified mediators.[441] NorG, a member of the GntR-like transcriptional regulator family,
binds specifically to the promoters of the pump genes. MgrA is an indirect repressor for
norB and a direct activator for abcA; NorG in contrast has an opposite effect on these pump
genes.[434, 662] The regulation of the MATE pump MepA involves the repressor MepR, which
is a substrate-responsive regulatory protein repressing both mepR and mepA expression.[442,
666] Single and multiple in vitro exposures to low concentrations of biocides and dyes generated
S. aureus mutants overexpressing mepA and other pumps. In addition to regulatory protein
mutations alterations in promoter regions were also found.[442] MepR binds the mepA operator
as a dimer of dimers, but binds the mepR operator as a single dimer.[667] Regulation of the
efflux pumps MdeA, SdrM and SepA remains unknown (Fig. 3).

9.2 Phenotypic Induction of Drug Efflux Pump Expression
The expression of drug pumps is often subjected to induction by small molecules (e.g.,
antibiotics, biocides, bile salts and salicylate), including substrates of the pumps. The examples
of such compounds or inducers are compiled in Table III. There are multiple mechanisms for
the induction. A typical mechanism relies on the interaction of the particular inducers and the
regulator proteins, as exemplified by the binding of multiple toxic agents with the BmrR or
QacR repressors, which, respectively, impact on the expression of Bmr pump in B. subtilis
[668] or QacA/QacB pumps of S. aureus.[669, 670] In the induction of P. aeruginosa MexCD-
OprJ (and also MexXY),[578, 631] membrane-damaging agents act through AlgU-dependent
pathway as described above.[573] A recent study examined the transcriptome response of P.
aeruginosa to pentachlorophenol, a common environmental contaminant. Exposure to
pentachlorophenol resulted in strong up-regulation of both MexAB-OprM and MexJK pumps
and of the regulatory genes PA3720-PA3719 and PA3721, but the molecular mechanisms were
not investigated.[671] The CzcRS two-component regulatory system is involved in heavy metal
and carbapenem resistance in P. aeruginosa, and this resistance can be induced by zinc released
from latex urinary catheters into urine.[672]
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The drug pump BmeB expression in B. fragilis is induced by analgesics/antiseptics, detergents
and disinfectants, but the mechanism is unknown.[673] Increased expression of RND pump
genes, together with other changes in cell morphology, was seen upon exposure of B.
fragilis to bile salts.[564] B. fragilis isolates from stool expressed more RND pumps than blood
isolates, and withstood the bile salt stress better.[674] Bile acids are also implicated in the
regulation of several V. cholerae RND pump genes.[209]

In enteric bacteria, some antibiotics induce efflux pump production through MarA, but the
mechanism remains obscure except the salicylate binding (and inactivation) of MarR.[1]
Recently, transketolase, an enzyme in the pentose phosphate pathway, was found to bind MarR
specifically.[675] Since stresses often up-regulates the pentose phosphate pathway, this may
mean a signalling pathway for the stress-induced overproduction of AcrAB-TolC through the
MarA overproduction caused by the inactivation of MarR. SoxR, which is the repressor of
another global regulator SoxS, is well-known to become inactivated by reactive oxygen
radicals.[1] Rob, another global transcription activator, is larger than MarA and SoxS, and its
activity is modulated directly by the binding of some AcrAB substrates.[1]

Microarray analysis revealed that exposure of S. Typhimurium to nalidixic acid at a
subinhibitory concentration resulted in overexpression of 226 genes including efflux pump
genes (e.g., acrA, emrA and tolC).[676] The overproduction of AcrAB-TolC and other proteins
also occurred after the exposure of S. Typhimurium to ciprofloxacin.[677] Triclosan induced
the expression of acrAB and marA in the biofilm cells of S. Typhimurium.[563] Nitric oxide
decreased activity of fluoroquinolones via its activation of soxRS and marRAB regulons in S.
Typhimurium.[678] RamR repressor controls RamA expression (and therefore AcrAB
expression) in Salmonella, and most MDR clinical isolates had mutations in the ramA gene.
[679]

Salicylate continues to demonstrate its impact on multiple gene expression including efflux
pump genes (Table III). In S. aureus, salicylate induction down-regulates a multidrug pump
repressor gene (mgrA) and sarR, which represses a gene (sarA) important for intrinsic
resistance, likely representing a unique mechanism that allows S. aureus to resist antibacterial
stress and toxicity. SarA also globally affects the expression of many virulence genes.[680,
681]

9.3 Growth-Dependent Expression of Drug Efflux Pumps
The expression of drug exporter genes can vary based on the phases of growth. The expression
of mexAB-oprM from P. aeruginosa is increased in the stationary phase and enhanced by
quorum-sensing autoinducers,[682] whereas the expression of the P. syringae mexAB-oprM
and S. maltophilia smeDEF operons is maximal in early exponential phase.[683, 684] In E.
coli, the expression of acrAB, emrAB, emrD, emrE, emrKY, mdfA, and ydgFE is relatively
stable, but mdtEF expression is the highest at the late stationary phase. The latter effect is
mediated by the stationary-phase sigma factor rpoS.[685] In a chemostat culture, acrAB
expression in E. coli is affected by the growth rate. This regulation does not require RpoS.
[686] Expression of both the B. subtilis efflux gene mdtP and its repressor gene mdtR decreases
during the stationary phase.[408]

10. Efflux Pump Inhibitors
Most clinically used antibacterials were discovered between 1941 and 1968. Over the past four
decades, there were only a few novel classes of antibacterials developed, i.e., the oxazolidinone
linezolid, lipopeptide daptomycin, and a ketolide connected to a polar aromatic residue,
platensimycin.[687, 688] Thus, development of novel antibacterial drugs has been challenged
by the rapid emergence of bacterial resistance, especially MDR, as well as by the unwillingness
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of pharmaceutical companies.[11] Given the clinical significance of drug efflux pumps in
pathogenic bacteria, exploration of EPIs has been under way and also a subject of reviews.
[689–699] Biochemical and structural elucidation of key efflux pumps of both prokaryotic and
euokaryotic origins have also facilitated the mechanism-based design of EPIs.[700, 701]

Archetypal efflux pumps such as the E. coli AcrAB-TolC, the P. aeruginosa MexAB-OprM,
and the S. aureus NorA have been used to screen and characterize the potential EPIs. EPIs of
various sources have been investigated, including those derived from natural sources.[697,
702] With respect to MexAB-OprM-specific EPIs, compounds of synthetic pyridopyrimidine
series have become available and these include a potential preclinical candidate quaternary
ammonium analogue D13-9001, which potentiated the activity of levofloxacin and aztreonam
against P. aeruginosa.[703–707] Examples of various EPIs are shown in Table IV.

Some EPIs may be the substrates for the pumps they inhibit.[708] Some inhibitors may also
target the MDR transporters of fungal and mammalian cells (e.g., the jatrophane diterpenoids
[709, 710] and phenothiazines[711, 712]). The modes of action of some EPIs may not be limited
to the inhibition of efflux pumps (in this case the term “resistance modulators” is more
appropriate).[702] The EPI 1-(1-naphthylmethyl)-piperazine displays a paradoxical effect on
A. baumannii isolate, where it unexpectedly decreased the susceptibility to tigecycline whereas
the susceptibility to other tetracyclines was increased as expected.[713]

The combinational use of an EPI with antibacterial agents should potentiate the activity of
antibacterials, and it would also reduce the frequency of emergence of resistant mutants.[1,
714, 715] For example, the presence of the EPI Phe-Arg-β-naphthylamide resulted in a up to
2,000-fold reduction in the minimum inhibitory concentrations of antibacterials known to be
substrates of the Campylobacter CmeABC pump, and the frequency of emergence of
erythromycin-resistant mutants in C. jejuni was reduced more than 1,000 fold.[715]

Some fluoroquinolone dimers remain active against NorA-overproducing S. aureus and do not
inhibit ethidium efflux catalyzed by NorA.[716] Also, a hybrid between an EPI and a weak
antibacterial, berberine, displayed an elevated antibacterial activity.[717] Several EPIs have
also been usedin antibacterial photodynamic inactivation in combination with cationic
phenothiazinium salts and light to enhancethe antibacterial activity.[718] Both 1-(1-
naphthylmethyl)-piperazine and Phe-Arg-β-naphthylamide inhibit the production of the
virulence factors cholera toxin and the toxin-coregulated pilus in V. cholerae.[719]
Alkoxyquinoline derivatives (e.g., 2,8-dimethyl-4-(2′-pyrrolidinoethyl)-oxyquinoline) were
able to inhibit antibacterial extrusion in E. aerogenes,[189] suggesting quinoline derivatives as
promising efflux inhibitors for this species.[693] Among the clinical isolates of E. aerogenes,
there was a noticeable increase in those containing an efflux mechanism susceptible to Phe-
Arg-β-naphthylamide between 1995 and 2003.[720]

Understanding how EPIs block the transport of antibacterials is critical for designing and
optimizing EPIs. Reserpine action is affected by the residues Phe143, Val286 and Ph306 of
the Bmr pump, and these residues are also involved in determination of the substrate specificity.
[721] NorA seems to have both high- and low-affinity binding sites to the phenolic metabolites
catechin gallates, which paradoxically stimulated efflux at a lower concentration.[722] The
differential impact of Phe-Arg-β-naphthylamide on the potentiation of carbencillin and
levofloxacin/erythromycin, respectively, against MexAB-OprM-mediated resistance also may
suggest the complexity of substrate recognition site.[8]

Finally, the susceptibility to efflux pump substrates in the presence and absence of an EPI has
been used as a crude screen for the presence of efflux-based resistance mechanisms.[1, 439]
The accuracy of reserpine, an EPI universally used for Gram-positive bacteria, in predicting
pump gene overexpression was recently reassessed. The reserpine screen failed to identify
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many strains that overexpress one or more staphylococcal MDR pump genes, suggesting a
need for development of an improved method.[723]

11. Conclusions
Bacteria have evolved sophisticated mechanisms of resistance including efficient drug efflux
pumps that accommodate a wide range of substrates, both antibacterials and non-antibacterials.
Efflux-mediated resistance can be clinically relevant and render antibacterial therapy
ineffective. It also provides baseline resistance that helps the emergence of further resistance
mechanisms such as drug inactivation or drug target modification. Thus it may be necessary,
for the optimization of the pharmacokinetics and pharmacodynamics of antibacterial therapy,
to take into account the activity (and its possible inhibition) of drug efflux pumps.[256, 724]
Even the eukaryotic drug efflux pumps have been implicated in pharmacokinetics of
antibacterials such that transport of fluoroquinolones is also mediated by mammalian
transporters, which impact on the drug disposition or secretion.[725, 726]

The control of bacterial drug efflux pumps is a complex process with involvement of an intricate
regulatory network that allows bacteria to sense and respond to a wide range of stress signals
including, but not limited to, the presence of antibacterials. Such capability may require many
genes, and thus usually a larger genome size.[727] In any case, the selection of efflux-pump
overproducing strains depends on bacterial exposure to antibacterials, and limiting such
exposure, including minimizing of antibacterial use, would limit the emergence of efflux-
mediated drug resistance.[728, 729]

Structural and genetic studies have allowed the better understanding of the transport
mechanisms of the efflux pumps, and these include the identification of amino acid residues
or regions for rational design of drugs that may be able to evade efflux. Such agents or EPIs
would be able to overcome the efflux-mediated resistance. In this regard, the activities of
tigecycline against various pathogens are at least partly attributable to being an inferior
substrate for specific Tet transporters. Interestingly, among the wide ranges of antibacterial
substrates for bacterial MDR transporters, antibacterial peptides tend to be rather poor
substrates, such that AcrAB, MexAB and NorA pumps do not confer resistance to several
human antibacterial peptides,[730] although cases of pump-mediated resistance to such
peptides are known.[332, 731] Significant efforts have been made to develop EPIs. EPIs are
even considered in combating the XDR in M. tuberculosis[732]. However, it appears that none
of the bacterial EPIs tested have ever entered into a clinical trial phase, although this may be
the result of various factors, such as the high cost of running clinical trials for an EPI and then
again for EPI-antibacterial combination.

The presence of MDR pumps in bacteria is certainly not just for drug resistance. However,
understanding the physiological roles of the MDR pumps may continue to be rather difficult
as the functions of these pumps are often involved in a complex, and overlapping network of
reactions in the bacterial cell. In any case, in antibacterial therapy clearly we have an urgent
need to overcome the negative effects caused by the MDR pumps. We hope that exciting new
discoveries on these pumps will continue to arrive.
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Fig. 1.
Crystal structures of multidrug efflux transporters exemplified by AcrAB-TolC[55, 107, 119]
and EmrD[70] of E. coli and Sav1866 of S. aureus.[56] Instead of AcrA, we show the recent
complete structure of its homologue MexA.[108] See text and the relevant references for details
of the structural properties of these transporters. The figures were drawn by Pymol
(http://www.pymol.org) by using the coordinate files 2DRD (AcrB), 2V4D (MexA), 2VDE
(TolC, an open form), 2GFP (EmrD), and 2HYD (Sav1866), obtained from the Protein Data
Bank. The models were colored in rainbow colors (N-terminus blue, C-terminus red) and the
approximate positions of membrane bilayers are indicated by horizontal lines. Note that for
oligomeric proteins, the rainbow color was selected from the N-terminus of one protomer all
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the way to the C-terminus of another protomer. Proteins were positioned so that the external
portion is up in the figure. The bound minocycline in the AcrB structure is shown in red rods
(highlighted by a green arrow).
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Fig. 2.
Regulation of the RND superfamily Mex transporters of P. aeruginosa. The efflux systems are
shown in the light blue blocks with the respective transcriptional units presented in the solid
grey lines. All regulators are shown in the green boxes, and their functions as repressor or
activator are indicated, respectively, in the green or orange dotted arrows. The inverse
relationship between MexAB-OprM expression and MexCD-OprJ/MexEF-OprN expression
is marked by a double arrowed line. Interaction of the regulators (MexR or MexT) with the
modulators (ArmR or MexT) is denoted by the double arrowed dotted lines. See text and
relevant references for details of the regulation. MDA=membrane-damaging agents; QS AIs=
quorum-sensing autoinducers.
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Fig. 3.
Regulation of multidrug or drug-specific efflux transporters of S. aureus. The efflux
transporters are shown in colour blocks. All regulators are presented in the green boxes, and
their functions as repressor or activator are indicated, respectively, by the green or orange
dotted arrows. Unknown regulators are marked with a question mark (?) with the dotted grey
lines linked to the relevant transporters. See text and relevant references for details of the
regulation.
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Table 2

MFS, MATE, SMR and ABC multidrug efflux transporters in bacteria reported or further characterized since
2003

Transporter family/Organism Efflux pump Regulator (Family) Substratesa References

Major Facilitator Superfamily (MFS)

Acinetobacter baumannii SmvA (A1S_2057) ? EM, MV, QAC [299]

Bacillus subtilis Bmr3 ? FQ, PU [403, 744]

LmrB LmrA (TetR) DR, FQ, LC,
PU

[404, 405]

MdtP MdtR (MarR) AT, FU, NO,
SM

[408]

Bordetella bronchiseptica CmlB1 ? CM [745]

Clostridium difficile Cme ? EB, EM, SA [399]

Clostridium saccharolyticum Tet(40) ? TC [402]

Enterobacter aerogenes QepA (plasmidborne) ? FQ [184]

Enterococcus faecium EfmA ? DP, FQ, TPP [470]

Escherichia coli Mef(B) (plasmidborne) ? ML [533]

QepA, QepA2 (plasmidborne) ? FQ [23, 160, 161]

Helicobacter pylori Hp1181 ? Unknown [746]

Klebsiella pneumoniae KmrA (Ec) ? AC, DP, EB,
HO, MV, TPP

[193]

Listeria monocytogenes Lde ? AC, BC, EB,
FQ

[421, 424, 425]

MdrL LadR Unknown [422]

MdrM MarR Unknown [423]

MdrT TetR Unknown [423]

Mycobacterium smegmatis LfrA LfrR (TetR) AC, EB, FQ [514, 528]

Salmonella Typhimurium EmrAB ? DC, NA, NO [172]

MdfA ? CM, DR, NF,
TC

[172]

SmvA-OmpW ? MV [747]

Serratia marcescens SmfY ? AC, BC, DP,
EB, NF

[202]

Staphylococcus aureus MdeA ? BC, DQ, EB,
FU, HO, MU,
NO, QAC,
TPP, VM

[428, 748]

NorB MgrA (MarR),
NorG (GntR)

CT, EB, FQ [432–434, 436, 749]

NorC MgrA (MarR) FQ [432]

SdrM (Ec) ? AC, EB, NF [431]

Tet38 MgrA (MarR) TC [433, 436]

Staphylococcus lentus FexA (plasmidborne) ? CM, FP [438]
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Transporter family/Organism Efflux pump Regulator (Family) Substratesa References

Stenotrophomonas maltophilia Smlt0032 ? MC [306]

Smlt1528-1529-1530 ? Unknown [306]

Streptococcus agalactiae MefB, MefG ? MC [750]

Tet42 TetR TC [751]

Streptococcus suis SmrA ? FQ [752]

Vibro cholerae VceCAB VceR (TetR) CCCP, DC,
NA, PA, PC

[1, 210]

Xanthomonas albilineans AlbF ? AB [753]

Multidrug and Toxic Compound Extrusion (MATE) Family

Acinetobacter baumannii AbeM ? AC, AG, DN,
DR, FQ, HO,
RG

[298]

Brucella melitensis NorMI ? AC, BB, FQ,
GM, TPP

[348]

Clostridium difficile CdeA ? AC, EB [398]

Erwinia amylovora NorM ? AP, BB, EB,
CV, FQ, KM,
MB, PH

[754]

Haemophilus influenzae HmrM ? AC, BB, DC,
DN, DP, DR,
EB, HO, TPP

[322]

Neisseria gonorrhoeae NorM ? CC [339]

Neisseria meningitidis NorM ? CC [339]

Pseudomonas aeruginosa PmpM ? AC, BC, EB,
TPP

[263]

Ralstonia solanacearum DinF ? AC, AP, BB,
EB, TPP

[595]

Salmonella Typhimurium MdtK ? AC, DR, NF [172]

Staphylococcus aureus MepA MepR (MarR) CT, EB, FQ,
MDB, TG

[429, 430, 666]

Vibrio cholerae NorM ? EB, FQ [217]

VcmB, VcmD, VcmH, VcmN ? AG, EB, FQ,
HO

[215]

VcrM ? AC, DP, EB,
HO, RG, TPP

[213]

Vibrio parahaemolyticus VmrA ? AC, DP, EB,
TPP

[755]

Small Multidrug Resistance (SMR) Family

Acinetobacter baumannii Smr (A1S_0710) ? DC, SDS [299]

Escherichia coli MdtJI DC, SDS, SP [153]

Serratia marcescens SsmE ? AC, EB, NF [203]

Staphylococcus aureus SepA ? AC, BC, CH [435]

ATP-Binding Cassette (ABC) Superfamily

Bacillus subtilis YtsCD YtsA BA [756]

YvcC (BmrA) ? AA, DR, HO [409]

Drugs. Author manuscript; available in PMC 2010 August 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li and Nikaido Page 86

Transporter family/Organism Efflux pump Regulator (Family) Substratesa References

Bifidobacterium breve AbcAB ? NI, PM [507]

Enterococcus faecalis EfrAB ? AC, DA, DP,
DR, FQ, TC,
TPP

[463]

Enterococcus faecium MsrC ? MC, QP [467, 468]

Escherichia coli YojI Lrp MJ [150, 151]

Lactococcus lactis LmrCD LmrR (PadR) CL, DN, EB,
HO, RG

[451–454]

Mycobacterium bovis BCG Bcg0231 ? AP, CM, SM,
VC

[757]

Mycobacterium tuberculosis Rv0194 ? AP, EM, NO,
VC

[757]

Rv1258C (Tap) ? FQ, RF, TC [1, 523]

Rv2686c- ? FQ [521]

Rv2687c-

Rv2688c

Neisseria gonorrhoeae MacAB ? ML [338]

Oenococus oeni OmrA ? ML, SL [758, 759]

Salmonella Typhimurium MacAB ? EM [172]

Serratia marcescens SmdAB ? DP, HO, NF,
TC

[204]

Staphylococcus aureus AbcA MgrA (MarR),
NorG (GntR)

BL [434, 760]

Sav1866 ? EB, HO, TPP [101]

Stenotrophomonas maltophilia Smlt1537-1538-1539 ? MC [306]

Smlt2642-2643 ? MC [306]

Streptococcus pneumoniae PatA, PatB ? FQ [483–486]

SP2073/SP2075 ? AC, EB, FQ,
NO

[487]

Spr0812/Spr0813 BA [488]

Vibrio chlolera VcaM ? DN, DP, DR,
FQ, HO, TC

[214]

a
AA=7-aminoactinomycin D; AB=albicidin; AP=ampicillin; AT=actinomycin D; BA=bacitracin; BB=berberine; BC=benzalkonium chloride;

CC=cationic compounds; CCCP=carbonyl cyanide m-chlorphenylhrazone; CH= chlorhexidine; CL= cholate; CM=chloramphenicol; CT=cetrimide;
DA=daunorubicin, DN=Daunomycin; DP=4′,6-diamidino-2-phenylindole; DQ=dequalinium chloride; DR=doxorubicin; EB=ethidium bromide;
EM=erythromycin; FP=florphenicol; FQ=fluoroquinolones; FU=fusidic acid; GM=gentamicin; HO=Hoechst 33342; KM=kanamycin;
LC=lincosamides; MB=methylene blue; MC=macrolides; MDB=monovalent and divalent biocides; MJ=microcin J25; ML=metal salts;
MU=mupirocin; MV=methyl viologen; NF=norfloxacin; NI=nisin; NO=novobiocin; PA=phenymercuric acetate; PC=pentachorophenol;
PH=Phloretin; PM=polymyxin B; PU=puromycin; QAC=quaternary ammonium compounds; QP=quinupristin; RF=rifampin; SA=safranin;
SL=Sodium laureate; SM=streptomycin; SP=spermidine; TC=tetracyclines; TPP=tetraphenylphosphonium; VC=vancomycin; VM=virginiamycin;
VR=vancoresmycin; ?=the regulators remain unknown or no regulator genes linked to the transporter structural gene(s) are identified.
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Table 3

Compounds that induce expression of bacterial drug efflux pumps

Inducer Species Efflux pump References

Aminoglycosides P. aeruginosa MexXY [578, 579]

Benzoate B. fragilis, E. coli, K.
pneumoniae

Mar-associated pumps [673, 761]

Bile salts B. fragilis, Campylobacter
spp., E. coli, Salmonella spp.,
V. cholerae

AcrAB, Bme,
CmeABC, VexAB,
VexCD

[566, 569, 762–764]

Chloramphenicol B. cenocepacia, P.
aeruginosa, P. putida

RND pumps such as
MexXY, TtgABC

[274, 324, 578, 579]

Cytotoxic agents
(ethidium bromide,
rhodamine 6G and
tetraphenylphosphonium
chloride) and disinfectants
(benzalkonium chloride
and chlorhexidine)

B. subtilits, E. coli, P.
aeruginosa, S. aureus

Blt, Bmr, MexCD-OprJ,
MepA, NorA, QacA,
QacB

[1, 441, 442, 580, 631,
765]

Diazepam E. coli, K. pneumoniae Mar-associated pumps [761]

Ethanol E. coli AcrAB [566]

Fatty acids E. coli AcrAB [762]

Fluoroquinolones Salmonella spp., S.
pneumoniae

AcrAB, PatAB [483, 677]

Indole E. coli, Salmonella spp. AcrAB, AcrD, AcrEF,
CusB, EmrK, MdtA,
MdtE, MdtH

[685, 764, 766]

Macrolides P. aeruginosa MexXY [578]

Phenolic acids (salicylic
acid, t-cinnamic acid and
benzoic acid)

Erwinia chrysanthemi AcrAB, EmrAB [767]

Phytoalexins: naringenin
and phloretin

Erwinia amylovora AcrAB [596]

Salicylate B. cenocepacia, B. fragilis; E.
coli, C. jejuni, C. coli, K.
pneumoniae, M. tuberculosis,
Salmonella spp., V. cholerae

AcrAB, CeoAB-OpcM,
CmeABC, VceCAB,
Mar-regulated pumps;
MgrA/SarRA-regulated
pumps, and unidentified
pumps

[1, 210, 325, 673, 681,
761, 768–770]

Salt (NaCl) A. baumannii,
Chromohalobacter spp., E.
coli

HrdC associated pump
(s), AcrAB and other
RND pumps

[566, 734, 771]

Tetracyclines E. coli, P. aeruginosa, P.
putida

Tet pumps, MexXY,
TtgABC

[274, 578, 579]
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Table 4

Bacterial efflux pump inhibitors

Inhibitors Efflux pump(s) targeted

Antibacterials
with activity
enhanceda References

Gram-negative bacteria

Arylpiperazines: 1-(1-naphthylmethyl)-
piperazine and others.

RND pumps of A.
baumannii, Citrobacter
freundii, E. aerogenes, E.
coli, K. pneumoniae, V.
cholerae

FQ, MA, TC [713, 719, 772–774]

Carbonyl cyanide m-
chlorophenylhydrazone (CCCP)

Secondary transporters
such as RND, MFS and
MATE pumps

MA [1]

Dipeptide amides (synthetic): Phe-Arg-β-
naphthylamide (MC-207,110),
MC-02,595, and MC-04,124

RND-type pumps of
Gram-negative bacteria
including Mex pumps of P.
aeruginosa and AcrAB-
TolC of E. coli

FQ, MA, plant
antimicrobials

[1, 230, 356, 715,
718, 719, 773]

EA-371alpha and EA-371delta of
Streptomyces

MexAB-OprM of P.
aeruginosa

LF [1]

Extracts of Berberis aetnensis E. coli, P. aeruginosa, S.
aureus pumps not reported

CP [775]

Extracts of Commiphora molmol,
Centella asiatica, Daucus carota, Citrus
aurantium and Glycyrrhiza glabra

AcrAB-TolC of E. coli CM, NA, TC [697]

Phenothiazines E. coli pumps MA [711]

Pyridopyrimidine series MexAB-OprM of P.
aeruginosa

AZ, FQ, [703–707]

Quinoline derivatives AcrAB-TolC of E.
aerogenes, E. coli, K.
pneumoniae

MA [181, 189, 693, 776]

Tetracycline analogues Tet pumps TC [1]

Thanatin Pumps of E. aerogenes and
K. pneumoniae

CM, NF, TC [777]

Gram-positive bacteria

3-aryl piperidines MepA and NorA of S.
aureus

FQ [778]

Baicalein (trihydroxy flavone) Tet(K) and unidentified
pump(s)/mechanisms of S.
aureus

AP, CA, OX,
TC

[779]

Berberine NorA of S. aureus FQ [1]

Catechin gallates: epicatechin gallate and
epigallocatechin gallate

NorA and Tet(K) of S.
aureus

NF, TC [722, 780, 781]

Diterpenes: abietane (carnosic acid and
carnosol), isopimarane and
geranylgeranyl diterpenes

Msr(A) and Tet(K) of S.
aureus

EM, TC [782, 783]

Diterpenes: ferruginol, pisiferol, 5-
epipisiferol, formosanoxide, trans-
communic acid, torulosal, the
sesquiterpene oplopanonyl acetate and the
germacrane 4 beta-hydroxygermacra-1
(10)-5-diene

NorA of S. aureus OX [784]

Extracts of Mezoneuron benthamianum
and Securinega virosa

S. aureus pumps EM, FQ, TC [785]
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Inhibitors Efflux pump(s) targeted

Antibacterials
with activity
enhanceda References

Extracts of Mirabilis jalapa Linn.: N-
trans-feruloyl 4′-O-methyldopamine and
synthetic N-trans-3,4-O-
dimethylcaffeoyl tryptamine

NorA of S. aureus NF [786]

Extracts of Punica granatum NorA of S. aureus AP, CM, GM,
OX, TC

[787]

Flavones: 5′-methoxyhydnocarpin NorA of S. aureus FQ [1, 718]

Flavonolignans: flavonoid tricin and
silybin

NorA of S. aureus BB, FQ [1, 788]

Fluoroquinolone derivatives MepA and NorA of S.
aureus

FQ [789]

GG918 (synthetic) Unidenitifed pump(s) of S.
aureus (but known to
target P-glycoprotein)

FQ [790]

Grapefruit oil (coumarin, abergamottin
epoxide and coumarin epoxide
derivatives)

S. aureus pump(s) not
reported

EB, NF [791]

Indoles: 2-aryl-5-nitro-1H-indoles NorA of S. aureus BB [792]

Indoles: 5-nitro-2-phenyl-1H-indole
(INF55) and others

NorA of S. aureus FQ [1, 717]

Kaempferol glycoside from Herissantia
tiubae

NorA of S. aureus EB, FQ [793]

Methoxylated flavones/isoflavones:
chrysosplenol-D, chrysoplenetin,
genistein, orobol and biochanin A,
pterocarpan

NorA of S. aureus BB, FQ [794–796]

Oligosaccharides murucoidins and
stoloniferin

NorA of S. aureus NF [797]

Penta-substituted pyridine: 2,6-
dimethyl-4-phenyl-pyridine-3,5-
dicarboxylic acid diethyl ester

MsrA of S. aureus FQ [709]

Phenothiazines: chlorpromazine and
thioridazine

Unknown but may be
associated with NorA, Erm
(A) and Erm(B) of S.
aureus

MA [697, 711, 798–801]

Piperine: 1-piperoyl-piperidine and
analogs

NorA of S. aureus CP, EB, FQ [714, 802]

Piperidine alkaloids: julifloridine,
juliflorine and juliprosine

NorA of S. aureus FQ [702]

Polyacylated neohesperidosides NorA of S. aureus BB, FQ, RH [803]

Polyacylated oligosaccharides: orizabins NorA of S. aureus NF [804]

Porphyrin pheophorbide a NorA of S. aureus BB, FQ [788]

Pyrrolo [1,2-a] quinoxaline derivatives
(omeprazole analogues; synthetic)

NorA of S. aureus NF [805]

Reserpine (alkaloid) Bmr of B. subtilis, EfrAB
of E. faecalis, NorA and
Tet(K) of S. aureus, PmrA
and PatAB of S.
pneuomoniae

FQ, TC [1, 463]

Resin glycosides of Ipomoea
murucoides (murucoidins, pescaprein and
stoloniferin)

NorA of S. aureus FQ [797]

Spinosan A (arylbenzofuran aldehyde) NorA of S. aureus BB [796]
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Inhibitors Efflux pump(s) targeted

Antibacterials
with activity
enhanceda References

Stilbene (phenolic metabolite) NorA of S. aureus BB, EM, TC [708]

Totarol (phenolic diterpene) NorA of S. aureus EB, FQ [806]

Mycobacteria

CCCP M. tuberculosis SM [807]

Chlorpromazine M. avium EB, EM [808]

Dipeptide amide (synthetic): Phe-Arg-β-
naphthylamide

M. tuberculosis FQ [515]

Isoflavonoid (biochanin A), flavone
(luteolin(and stilbene(resveratrol)

M. smegmatis EB [809]

Reserpine M. smegmatis, M.
tuberculosis

EB, FQ [515, 809]

Thioridazine M. avium, M. tuberculosis EB, EM [732, 801, 808]

Verapamil M. avium, M. smegmatis,
M. tuberculosis

EB, EM, SM [807, 809]

a
AP=Ampicillin; AZ=aztreonam; BB=berberine; CA=cefmetazole; CM=chloramphenicol; CP=ciprofloxacin; FQ=fluoroquinolones;

GM=gentamicin; LF=levofloxacin; MA=multiple antibacterials; NA=nalidixic acid; NF=norfloxacin; OX=oxacillin; RH=rhein; SM=streptomycin;
TC=tetracyclines.
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