A year in review in community-acquired respiratory tract infections

Paul M. Tulkens, MD, PhD *

Cellular and Molecular Pharmacology & Center for Clinical Pharmacy
Louvain Drug Research Institute,
Catholic University of Louvain
Brussels, Belgium

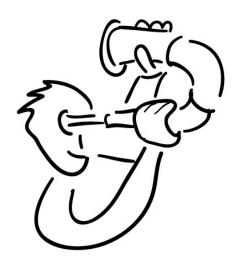
http://www.facm.ucl.ac.be

^{*} this presentation is largely inspired from a lecture and documents of Prof. A. Torres

الجمعية العلمية السعودية للطب الباطني Saudi Society of Internal Medicine

INSPIRATION: Global Perspectives and Local Insights in Infection Management Jeddah, Saudi Arabia, 15 November 2013

With approval of the Belgian Ethical Health Platform – visa no. 13/V1/4123/055866


Disclosures

Financial support from

- the Belgian Fonds de la Recherche Scientifique for basic research on pharmacology antibiotics and related topics
- Université catholique de Louvain for personal support
- Commercial Relationships:
 - AstraZeneca, GSK, Sanofi-Aventis, Bayer HealthCare, Cempra Pharmaceuticals, The Medicines Company, Northern Antibiotics...
- Other relationships in relation to this talk
 - Belgian Antibiotic Policy Coordination Committee
 - Belgian Transparency and Reimbursement Committees
 - Participation in EMA expert meetings for novel antibiotics and as Industry supporting expert for assessment of toxicity of older ones

Slides are available at http://www.facm.ucl.ac.be → Lectures

Looking back?

- Definitions (CAP, HCAP, HAP...)?
- Risk factors...
- Predictive factors...
- Improvements in diagnostics...
- Antibiotic combinations ...
- New antibiotics?
- And what about guidelines?
- An important review
- Other questions...

CAP: community acquired pneumonia HAP: hospital acquired pneumonia HCAP: health care associated pneumonia

Definitions 1

- Community-acquired pneumonia (CAP)
 - Patient has not been in hospital (true community)
 - No risk of HCAP
- Health-care associated pneumonia (HCAP)
 - Previous hospitalization (>48hrs) in the last 3 months
 - Long term care facilities
 - Domiciliary endovenous therapy
 - Chronic haemodialysis in the last 30 days
 - Domiciliary wound care
 - Close contact with a family member affected by a multidrug resistant infection
- Hospital-acquired pneumonia (HAP)
 - Patient hospitalized for at least 48-72h

- Different risks
- Different bacteria:
 - USA: Pseudomonas aeruginosa and MRSA
 - Europe: Streptococcus pneumoniae and less MDRM ²... but ...
- Longer stay, severity and mortality
- Need to look for MDRM

MRSA: methicillin-resistant Staphylococcus aureus MDRM: multidrug-resistant microorganism

Proposed by the American Thoracic Society [ATS] /Infectious Diseases Society of America [IDSA] Statement: Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. *Am J Respir Crit Care Med* 2005;171:388-416.
 Woodhead M. Thorax. 2013 Nov:68(11):985-6.

But are those correct and useful?

Editorial

Pneumonia classification and healthcare-associated pneumonia: a new avenue or just a cul-de-sac?

Mark Woodhead

Thorax. 2013 Nov;68(11):985-6.

- Initial US studies supported this classification. ¹
- However, several European studies did not find major differences in the spectrum of microbial causes between CAP and HCAP.
- But the HCAP concept may be useful to identify patients with a worse prognosis.
- The concept may also be applicable where resistance levels are high (USA, Asian countries...) but not in Europe.

^{1.} Kollef MH *et al.* Epidemiology and outcomes of healthcare-associated pneumonia: results from a large US database of culture positive pneumonia. *Chest* 2005;128:3854–62.

^{2.} See e.g. Polverino E et al. Nursing home-acquired pneumonia: a 10-year single-centre experience. Thorax 2010;65:354–9

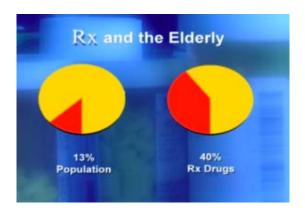
New (or well known) risk factors?

- Multi-resistant organisms
- Co-medications ...
- Serotypes and resistance

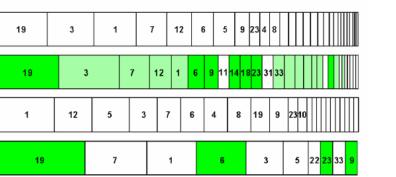
Total

≥60y -

20-59v


<5y -

Aspiration pneumonia



"Relax - MRSA will get you before the Asian Flu"

http://cooper.imb.ug.edu.au/community_background.html

Drug consumption by elderly patients in USA https://nccnews.expressions.syr.edu/?p=40169

75

S. pneumoniae serogroups in Belgium (2007-2009) Lismond A et al. Int J Antimicrob Agents 2012;39:208-16

SG frequencies (%)

Aspiration Pneumonia
Mineral Oil
http://www.meddean.luc.edu/

Multi-resistant organisms (in Europe) ...

Stratifying Risk Factors for Multidrug-Resistant Pathogens in Hospitalized Patients Coming From the Community With Pneumonia

Stefano Aliberti,^{1,2} Marta Di Pasquale,² Anna Maria Zanaboni,³ Roberto Cosentini,⁴ Anna Maria Brambilla,⁴ Sonia Seghezzi,⁴ Paolo Tarsia,² Marco Mantero,¹ and Francesco Blasi²

¹Dipartimento di Medicina Clinica e Prevenzione, University of Milan-Bicocca, Clinica Pneumologica, AO San Gerardo, Monza; ²Dipartimento Toraco-polmonare e Cardio-circolatorio, University of Milan, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan; ³Computer Science Department, University of Milan, and ⁴Emergency Medicine Department, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy

Aliberti S et al. Clin Infect Dis. 2012; 15;54:470-8.

- Observational, prospective study with 935 consecutive patients coming from the community and hospitalized with pneumonia.
- Data on admission and during hospitalization were collected.
- Logistic regression models to evaluate risk factors for acquiring MDR bacteria independently associated with the actual presence of a resistant pathogen and in-hospital mortality.

MDR: multi-drug resistant

Multi-resistant organisms (in Europe) ...

Stratifying Risk Factors for Multidrug-Resistant Pathogens in Hospitalized Patients Coming From the Community With Pneumonia

Resistant Pathogens in Patients With Pneumonia Community Who are Hospitalized		nza; ² Dipartimento Milan; ³ Computer Maggiore Policlin
Variable	Score	
No risk factors for MDR pathogen (including comorbidities)	0	
≥1 of the following: cerebrovascular disease, diabetes, COPD, antimicrobial therapy in preceding 90 days, immunosuppression, home wound care, home infusion therapy (including antibiotics)	0.5	
Residence in a nursing home or extended-care facility	3	
Hospitalization for ≥2 days in the preceding 90 days	4	
Chronic renal failure	5	

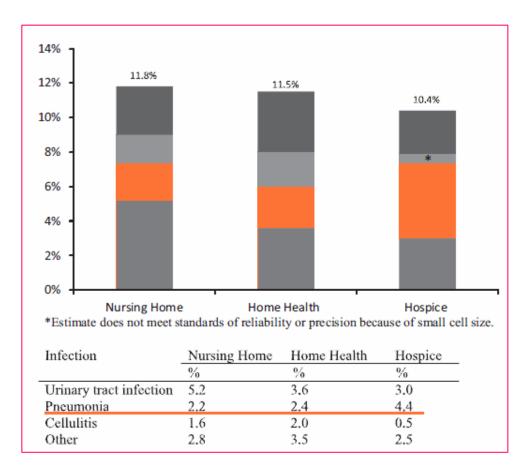
Scoring system used (as per ATS/IDSA)

Aliberti S et al. Clin Infect Dis. 2012; 15;54:470-8.

Multi-resistant organisms (in Europe) ...

Stratifying Risk Factors for Multidrug-Resistant Pathogens in Hospitalized Patients Coming From the Community With Pneumonia

• .	valuate the Presence of Multidrug- ents With Pneumonia From the red	Brambilla, ⁴ fonza; ² Dipartimento p, Milan; ³ Computer le Maggiore Policlinico,		
Variable	Score	ie maggiore Fonciinico,		
No risk factors for MDR pathogo (including comorbidities)	en 0			
≥1 of the following: cerebrovas diabetes, COPD, antimicrobia 90 days, immunosuppression home infusion therapy (include		lictors for In-Hospital Mort	tality in the Study	Population
Residence in a nursing home or extended-care facility Hospitalization for ≥2 days in the			OR (95% CI)	<i>P</i> Value
Chronic renal failure	Hospitalization for ≥2 days	in the preceding 90 days	1.63 (1.04–2.54)	.034
Abbreviations: COPD, chronic obstru resistant.	,	ne or extended-care facility	2.83 (1.54–5.21)	.001
	Pneumonia severity index		2.19 (1.58–3.03)	<.001
Scoring system us	Severe CAP		2.52 (1.61–3.93)	<.001
	Abbreviations: CAP, communit	y-acquired pneumonia; CI, confi	dence interval; OR, od	lds ratio.


Aliberti S et al. Clin Infect Dis. 2012; 15;54:470-8.

The risk of health care and polymedication for the elderly

Infections in Long-Term Care Populations in the United States

Lisa L. Dwyer, MPH,* Lauren D. Harris-Kojetin, PhD,* Roberto H. Valverde, MPH,* Joyce M. Frazier, MDiv,* Alan E. Simon, MD,* Nimalie D. Stone, MD, MS,[†] and Nicola D. Thompson, PhD[†]

J Am Geriatr Soc 61:341-349, 2013.

The risk of health care and poly-medication for elderly

Infections in Long-Term Care Populations in the United States

Lisa L. Dwyer, MPH,* Lauren D. Harris-Kojetin, PhD,* Roberto H. Valverde, MPH,* Joyce M. Frazier, MDiv,* Alan E. Simon, MD,* Nimalie D. Stone, MD, MS,[†] and Nicola D. Thompson, PhD[†]

J Am Geriatr Soc 61:341-349, 2013.

	NH Residents	Individuals Receiving HHC	Individuals Receiving Hospice Care
Characteristic	Point Pre	evalence (95% Confiden	ce Interval)
Location before admission or at time of care b			
Private residence	9.5 (8.4–10.8) ^a	N/A	6.5 (5.0-8.4)
Assisted living, board and care, group home, residential care ^c	9.7 (7.6–12.3) ^a	N/A	_
NH, hospital skilled nursing facility, rehabilitation facility	11.3 (9.8–12.8) ^a	N/A	14.5 (11.0–18.9)
Number of medications received at time of survey interview			
<10 (reference)	11.0 (10.0–12.0)	8.9 (6.9-11.3)	11.0 (8.7–13.9)
≥ 10	13.0 (11.8–14.3) ^a		9.8 (7.6–12.5)

Is serotype a main risk factor in CAP?

ORIGINAL ARTICLE

Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia

Pontus Naucler, ^{1,2} Jessica Darenberg, ³ Eva Morfeldt, ³ Åke Örtqvist, ^{4,5} Birgitta Henriques Normark ^{1,3,6}

Thorax 2013;68:571-579. doi:10.1136/thoraxjnl-2012-203106

Is serotype and resistance a main risk factor in CAP?

ORIGINAL ARTICLE

Contribution of host, bacterial factors are treatment to mortality in adult patients bacteraemic pneumococcal pneumonia

Pontus Naucler, ^{1,2} Jessica Darenberg, ³ Eva Morfeldt, ³ Åke Örtqv Birgitta Henriques Normark ^{1,3,6}

Thorax 2013;68:571-579. doi:10.1136/thoraxjnl-2012-203106

Key messages

What is the key question?

To what extent do host and bacterial factors contribute to mortality in bacteraemic pneumococcal pneumonia?

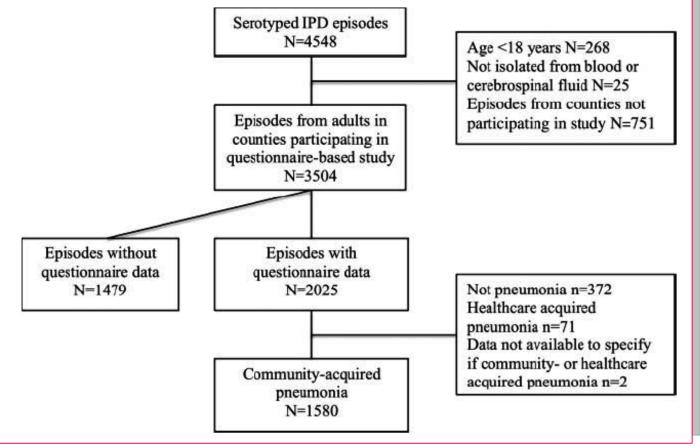
What is the bottom line?

► This study shows that host factors such as age, alcohol abuse, liver disease, renal disease and solid tumour contribute to mortality in patients with bacteraemic pneumococcal pneumonia, while the association between pneumococcal serotype and mortality is mitigated by adjustment for host factors.

Why read on?

► These findings suggest that host factors appear to be more important than specific serotype as determinants of mortality in patients with bacteraemic pneumococcal pneumonia, which supports targeted intervention strategies.

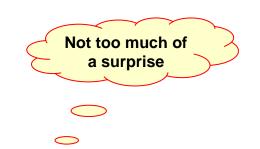
Is serotype and resistance a main risk factor in CAP?


ORIGINAL ARTICLE

Contribution of host, bacterial factors and antibiotic

treatment to mortality in adult patients with

bacteraemic pneu


Pontus Naucler, 1,2 Jessica D Birgitta Henriques Normark Thorax 2013:68:571–579. de

Is serotype and resistance a main risk factor in CAP?

ORIGINAL ARTICLE

Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia

Pontus Naucler 1,2 lessica Darenberg 3 Eva Morfeldt 3 Åke Örtgvist 4,5 Birgitta Thorax:

Table 1	Host factors associated with 30-	-day mortality in patients	with bacteraemic	pneumococcal pneumonia
	No of patients (column %)	No of deaths (row %)	Crude OR (95% CI)	Adjusted OR* (95% CI

	No of patients (column %)	No of deaths (row %)	Crude OR (95% CI)	Adjusted OR* (95% CI)
Age				
≥85	203 (12.9)	52 (26.1)	26.74 (8.20 to 87.12)	29.43 (9.00 to 96.27)
75-84	323 (20.4)	40 (12.4)	10.69 (3.27 to 35.02)	11.30 (3.45 to 37.06)
65-74	301 (19.1)	25 (8.3)	6.85 (2.04 to 22.99)	7.10 (2.12 to 23.85)
55-64	341 (21.6)	20 (5.9)	4.71 (1.38 to 16.05)	4.84 (1.42 to 16.49)
45-54	182 (11.5)	6 (3.3)	2.58 (0.64 to 10.46)	2.59 (0.64 to 10.50)
<45	230 (14.6)	3 (1.3)	1.00 (ref)	1.00 (ref)
≥65	827 (52.3)	118 (14.3)	4.16 (2.73 to 6.32)	4.29 (2.82 to 6.54)
<65	753 (47.7)	29 (3.9)	1.00 (ref)	1.00 (ref)
Alcohol abuse				
Yes	113 (7.2)	18 (15.9)	2.39 (1.40 to 4.08)	3.82 (1.85 to 7.85)
No	1214 (76.8)	93 (7.7)	1.00 (ref)	1.00 (ref)
N/S	253 (16.0)	36 (14.2)		

Is s

Table 2 Thirty-day mortality risk according to serotype and antibiotic resistance in patients

AP?

ORIGINAL ARTIC

Contribut treatment bacteraer

Pontus Naucler Birgitta Henriq

Thorax 2013;68

14516 2 1	ble 2 Thirty day mortality has decorating to scrotype and antibiotic resistance in patients				
	No of patients (column %)	No of deaths (row %)	Crude OR (95% CI)	Adjusted OR† (95% CI)	
Individual sero	otype				
9V	191 (12.1)	10 (5.2)	0.62 (0.28 to 1.40)	0.83 (0.36 to 1.93)	
7F	177 (11.2)	4 (2.3)	0.26 (0.09 to 0.79)	0.51 (0.16 to 1.59)	
4	158 (10.0)	8 (5.1)	0.60 (0.25 to 1.43)	0.88 (0.36 to 2.16)	
3	142 (9.0)	17 (12.9)	1.54 (0.76 to 3.12)	1.85 (0.87 to 3.93)	
23F	97 (6.1)	11 (11.3)	1.44 (0.65 to 3.21)	1.23 (0.54 to 2.81)	
22F	79 (5.0)	7 (8.9)	1.10 (0.44 to 2.76)	1.25 (0.48 to 3.23)	
6B	78 (4.9)	15 (19.2)	2.69 (1.27 to 5.69)	2.09 (0.96 to 4.57)	
6A	76 (4.8)	10 (13.1)	1.71 (0.75 to 3.92)	1.17 (0.49 to 2.75)	
19A	55 (3.5)	4 (7.3)	0.89 (0.29 to 2.75)	0.69 (0.21 to 2.22)	
14	209 (13.2)	17 (8.3)	1.00 (ref)	1.00 (ref)	
Other	318 (20.1)	44 (13.8)	-	-	
Serotype categ	gory according to CFR‡				
High	509 (32.2)	63 (12.4)	3.28 (1.89 to 5.70)	1.63 (0.89 to 2.98)	
Medium	484 (30.6)	35 (7.2)	1.81 (1.00 to 3.28)	1.27 (0.67 to 2.42)	
Low	412 (26.1)	17 (4.1)	1.00 (ref)*	1.00 (ref)**	
Serotype categ	gory according to invasiveness§				
Low	461 (29.2)	58 (12.6)	4.21 (1.89 to 9.40)	1.67 (0.70 to 4.00)	
Medium	591 (37.4)	40 (6.8)	2.13 (0.94 to 4.82)	1.19 (0.49 to 2.87)	
High	212 (13.4)	7 (3.3)	1.00 (ref)*	1.00 (ref)***	
PCV 13 seroty	pes ¶				
Yes	1277 (80.8)	107 (8.4)	0.60 (0.41 to 0.89)	0.78 (0.51 to 1.19)	
No	303 (19.2)	40 (13.2)	1.00 (ref)	1.00 (ref)	
Penicillin non-	susceptible††				
Yes	45 (2.9)	6 (13.3)	1.52 (0.63 to 3.65)	1.07 (0.42 to 2.74)	
No	1535 (97.2)	141 (9.2)	1.00 (ref)	1.00 (ref)	
Erythromycin I	non-susceptible††				
Yes	69 (4.4)	5 (7.4)	0.75 (0.30 to 1.90)	0.83 (0.32 to 2.16)	
No	1511 (95.6)	141 (9.4)	1.00 (ref)		

Wow!

CAP: community acquired

pneumonia

See notes in back-up slides

Aspiration pneumonia as a specific risk...

ORIGINAL ARTICLE

Impact of aspiration pneumonia in patients with community-acquired pneumonia and healthcare-associated pneumonia: A multicenter retrospective cohort study

KOSAKU KOMIYA,^{1,3} HIROSHI ISHII,¹ KENJI UMEKI,¹ SHUNJI MIZUNOE,⁴ FUMITO OKADA,² TAKESHI JOHKOH⁵ AND JUN-ICHI KADOTA¹

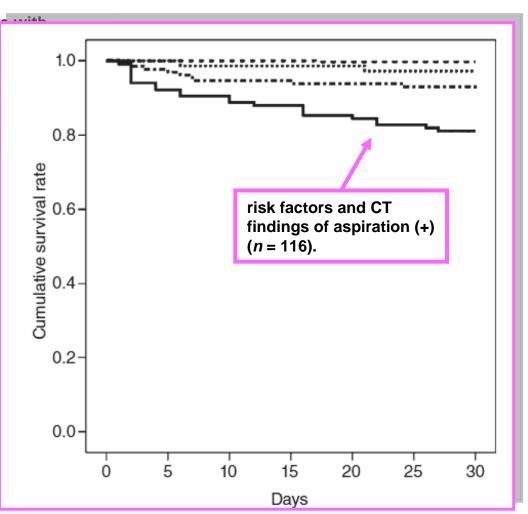
¹Internal Medicine 2 and ²Radiology, Faculty of Medicine, Oita University, ³Clinical Research Center of Respiratory Medicine, Tenshindo Hetsugi Hospital, ⁴Respiratory Medicine, Oita Prefectural Hospital, Oita, and ⁵Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Hyogo, Japan

Komiya K et al. Respirology. 2013 Apr;18(3):514-21.

SUMMARY AT A GLANCE

Aspiration pneumonia, which is defined as having risk factors for aspiration and evidence of gravity-dependent opacities on CT, was strongly associated with mortality after adjusting for the category of pneumonia, performance status and treatment failure due to resistant pathogens.

Aspiration pneumonia as a specific risk...


ORIGINAL ARTICLE

Impact of aspiration pneumonia in patient community-acquired pneumonia and healthcare pneumonia: A multicenter retrospective coh

KOSAKU KOMIYA, 1.3 HIROSHI ISHII, 1 KENJI UMEKI, 1 SHUNJI MIZUNOE, 4 F TAKESHI JOHKOH 5 AND JUN-ICHI KADOTA 1

¹Internal Medicine 2 and ²Radiology, Faculty of Medicine, Oita University, ³Clinical Research Ce Tenshindo Hetsugi Hospital, ⁴Respiratory Medicine, Oita Prefectural Hospital, Oita, and ⁵Radiolo Mutual Aid Association of Public School Teachers, Hyogo, Japan

Komiya K et al. Respirology. 2013 Apr;18(3):514-21.

CT: computed tomography

New Prognostic factors

Background:

- PSI and CURB65/CRB65 are not 100% sensitive or specific
- There is a definite percentage of patients with poor evolution that do not show initial severity, which leads to a delay in ICU admission
- These patients have two-fold mortality and it is therefore important to detect them very early

- Thrombocytosis
- Hyperglycaemia
- Vitamin D

Thrombocytosis as prognostic factor

CHEST

Original Research

CHEST INFECTIONS

Thrombocytosis Is a Marker of Poor Outcome in Community-Acquired Pneumonia

Elena Prina, MD; Miquel Ferrer, MD, PhD; Otavio T. Ranzani, MD; Eva Polverino, MD, PhD; Catia Cillóniz, PhD; Encarnación Moreno, RN; Josep Mensa, MD; Beatriz Montull, MD; Rosario Menéndez, MD, PhD; Roberto Cosentini, MD; and Antoni Torres, MD, PhD

Prina E et al. Chest. 2013 Mar;143(3):767-75

- 2423 hospitalized CAP patients
- 53 thrombocytopenia (< 100,000/ mm³),
 204 thrombocytosis (> 400,000/ mm³)
- More respiratory complications with thrombocytosis, more septic shock with thrombocytopenia
- Thrombocytosis added to mortality (OR 2.7), but there was a biphasic relationship

Thrombocytosis as prognostic factor

CHEST

Original Research

Thrombocytosis Is a Marker of Outcome in Community-Acque Pneumonia

Elena Prina, MD; Miquel Ferrer, MD, PhD; Otavio T. Ranza Eva Polverino, MD, PhD; Catia Cillóniz, PhD; Encarnación Josep Mensa, MD; Beatriz Montull, MD; Rosario Menéndez Roberto Cosentini, MD; and Antoni Torres, MD, PhD

Prina E et al. Chest. 2013 Mar;143(3):7

- 242
- 53
 - (< 1 400
- Mor thro thro
- Three but

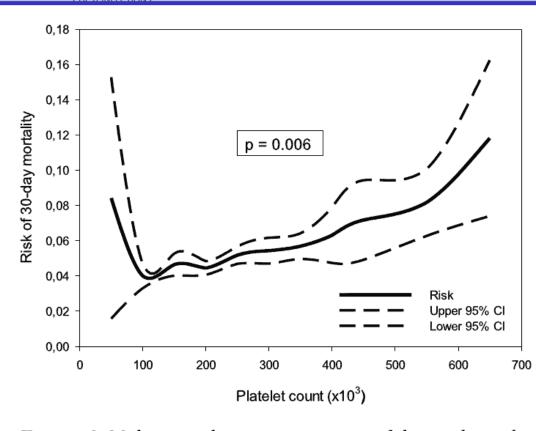


FIGURE 2. Multivariate logistic regression model to evaluate the association between platelet count as a continuous variable and mortality.

Glucose as a predictive factor...

Lepper PM et al. BMJ. 2012;344:e3397.

Serum glucose levels for predicting death in patients admitted to hospital for community acquired pneumonia: prospective cohort study

© OPEN ACCESS

Philipp M Lepper consultant physician¹, Sebastian Ott consultant physician², Eveline Nüesch statistician³, Maximilian von Eynatten consultant physician⁵, Christian Schumann consultant physician⁶, Mathias W Pletz professor⁷, Nicole M Mealing statistician³, Tobias Welte professor⁸, Torsten T Bauer professor⁹, Norbert Suttorp professor¹⁰, Peter Jüni professor³, Robert Bals professor¹, Gernot Rohde professor¹¹, on behalf of the German Community Acquired Pneumonia Competence Network (CAPNETZ)

Increased serum glucose level at admission without pre-existing diabetes was a predictor of death at 28 and 90 days:

- 6-10.99 mmol/L → OR 90 days mortality: 1.56 [1.22 to 2.01]
- >14 mmol/L → OR 90 days mortality: 2.37 (1.62 to 3.46)

Higher serum glucose levels were associated with increased mortality in all patients

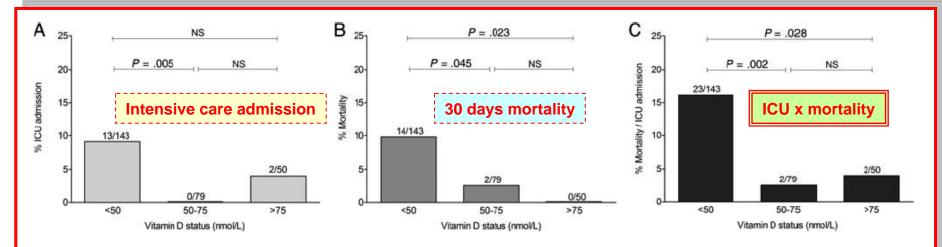
Adding vitamin D levels to other scores

Addition of Vitamin D Status to Prognostic Scores Improves the Prediction of Outcome in Community-Acquired Pneumonia

Hilde H. F. Remmelts,^{1,2,3} Ewoudt M. W. van de Garde,^{4,5} Sabine C. A. Meijvis,¹ Evelyn L. G. C. A. Peelen,^{6,7,8} Jan G. M. C. Damoiseaux,⁹ Jan C. Grutters,^{10,11} Douwe H. Biesma,^{1,2} Willem Jan W. Bos,¹ and Ger T. Rijkers^{12,13}

¹Department of Internal Medicine, St Antonius Hospital, Nieuwegein; ²Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht; ³Department of Internal Medicine, Gelderse Vallei Hospital, Ede; ⁴Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein; ⁵Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University; ⁶School for Mental Health and Neuroscience, ⁷Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Centre; ⁸Academic MS Centre Limburg, Orbis Medical Centre, Sittard; ⁹Laboratory for Clinical Immunology, Maastricht University Medical Centre; ¹⁰Department of Pulmonology, St Antonius Hospital, Nieuwegein; ¹¹Division of Heart and Lungs, University Medical Centre Utrecht; ¹²Department of Sciences, Roosevelt Academy, Middelburg, and ¹³Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands

Remmelts HHF et al. Clin Infect Dis. 2012; 55:1488-94.


- 272 hospitalized patients with CAP.
- At admission:
 - Levels of 25-hydroxyvitamin D, leukocytes, Creactive protein, and total cortisol
 - Pneumonia Severity Index (PSI) and CURB-65 measured on admission.
- Outcomes:
 - ➤ intensive care unit (ICU) admission
 - ≥ 30-day mortality.

Adding vitamin D levels to other scores

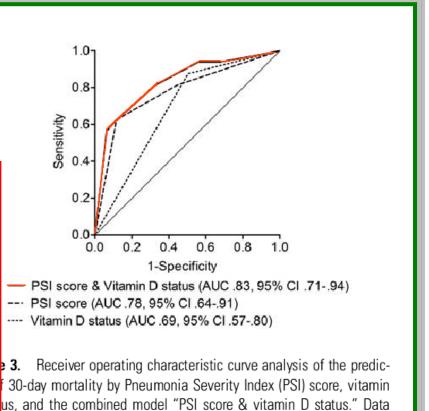
Addition of Vitamin D Status to Prognostic Scores Improves the Prediction of Outcome in Community-Acquired Pneumonia

Hilde H. F. Remmelts,^{1,2,3} Ewoudt M. W. van de Garde,^{4,5} Sabine C. A. Meijvis,¹ Evelyn L. G. C. A. Peelen,^{6,7,8} Jan G. M. C. Damoiseaux,⁹ Jan C. Grutters,^{10,11} Douwe H. Biesma,^{1,2} Willem Jan W. Bos,¹ and Ger T. Rijkers^{12,13}

¹Department of Internal Medicine, St Antonius Hospital, Nieuwegein; ²Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht; ³Department of Internal Medicine, Gelderse Vallei Hospital, Ede; ⁴Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein; ⁵Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University; ⁶School for Mental Health and Neuroscience, ⁷Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Centre; ⁸Academic MS Centre Limburg, Orbis Medical Centre, Sittard; ⁹Laboratory for Clinical Immunology, Maastricht University Medical Centre; ¹⁰Department of Pulmonology, St Antonius Hospital, Nieuwegein; ¹¹Division of Heart and Lungs, University Medical Centre Utrecht; ¹²Department of Sciences, Roosevelt Academy, Middelburg, and ¹³Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands

Figure 2. The rate of intensive care unit admission (*A*), 30-day mortality (*B*), and the composite endpoint mortality/ICU admission (*C*) stratified by serum 25-hydroxyvitamin D levels measured on presentation in patients with community-acquired pneumonia. Numbers above the bars indicate the number of patients with an adverse outcome. Abbreviations: ICU, intensive care unit; NS, not significant.

Remmelts HHF et al. Clin Infect Dis. 2012; 55:1488-94.

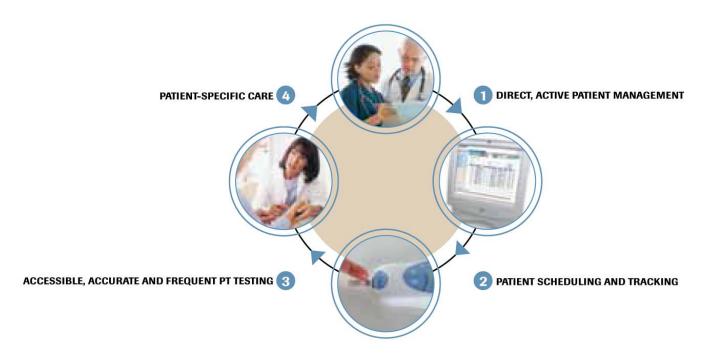

Adding vitamin D levels to other scores

Addition of Vitamin D Status to Prognostic Scores Improves the Prediction of Outcome in Community-Acquired Pneumonia

Hilde H. F. Remmelts,^{1,2,3} Ewoudt M. W. van de Garde,^{4,5} Sabine C. A. Meijvis,¹ Ev Jan G. M. C. Damoiseaux,⁹ Jan C. Grutters,^{10,11} Douwe H. Biesma,^{1,2} Willem Jan

¹Department of Internal Medicine, St Antonius Hospital, Nieuwegein; ²Department of Internal Medicine Centre Utrecht; ³Department of Internal Medicine, Gelderse Vallei Hospital, Ede; ⁴Department of Clini ⁵Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University; ⁶School for Mental Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Centre, Sittard; ⁹Laboratory for Clinical Immunology, Maastricht University Medical Centre; ¹⁶Hospital, Nieuwegein; ¹¹Division of Heart and Lungs, University Medical Centre Utrecht; ¹²Departmen and ¹³Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Internal Medicine, Properties of Pharmacoepia (Papartment of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Internal Medicine, Properties (Papartment of Medical Microbiology)

- Vitamin D deficiency is associated with adverse outcome in CAP.
- Vitamin D status on presentation is a significant predictor for 30-day mortality, and more specific when combined with other biomarkers or prognostic scores.
- Vitamin D supplementation might be a promising candidate for adjuvant treatment in CAP.


day of admission are shown. Abbreviations: AUC, area under the

Cl. confidence interval: PSI, Pneumonia Severity Index.

CAP community acquired pneumonia

Remmelts HHF et al. Clin Infect Dis. 2012; 55:1488-94.

Improvements in diagnostics ...

http://www.roche-diagnostics.us/PublishingImages/coagImage1.png accessed on 6/10/13

Point of care Ultrasonography

Ultrasonographic diagnosis in children and adults

ARTICLE

IOURNAL CLUB

Prospective Evaluation of Point-of-Care Ultrasonography for the Diagnosis of Pneumonia in Children and Young Adults

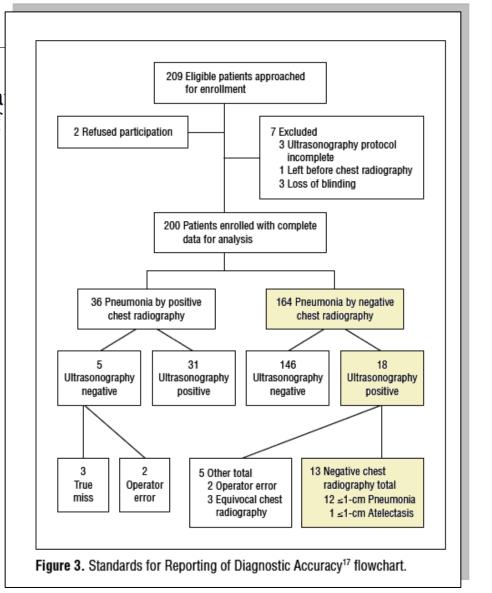
Vaishali P. Shah, MD; Michael G. Tunik, MD; James W. Tsung, MD, MPH

JAMA Pediatr. 2013;167(2):119-125. Published online December 10, 2012. doi:10.1001/2013.jamapediatrics.107

Shah VP et al. JAMA Pediatr. 2013 Feb;167(2):119-25.

Ultrasonographic diagnostic in children and adults

ARTICLE


JOURNAL CLUB

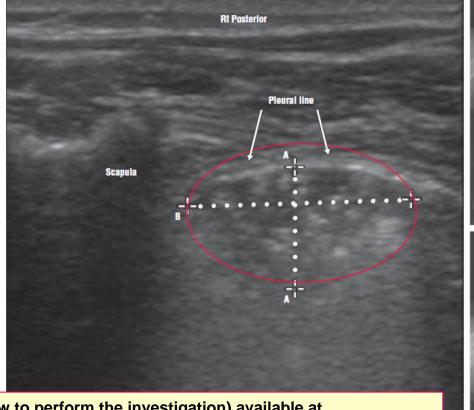
Prospective Evaluation of Point-of-Ca Ultrasonography for the Diagnosis of in Children and Young Adults

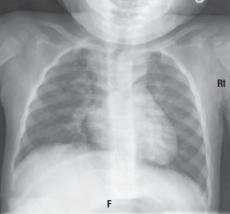
Vaishali P. Shah, MD; Michael G. Tunik, MD; James W. Tsung, MD, MPH

JAMA Pediatr. 2013;167(2):119-125. Published online December 10, 2012. doi:10.1001/2013.jamapediatrics.107

Shah VP et al. JAMA Pediatr. 2013 Feb;167(2):119-25.

Ultrasonographic diagnostic in children and adults


ARTICLE


Prospective Ev Ultrasonograp in Children an

Vaishali P. Shah, MD; Michael (

JAMA Pediatr. 2013;167(2):119-Published online December 10, 20 doi:10.1001/2013.jamapediatrics

Shah *VP et al. JAMA Pediatr.*2013
Feb;167(2):11925.

Video (explaining how to perform the investigation) available at http://archpedi.jamanetwork.com/multimediaPlayer.aspx?mediaid=4888767 accessed on 6/10/13

Figure 2. Lung consolidation of 1 cm or less with sonographic air bronchograms on ultrasonography not detected by chest radiography. F indicates frontal view; RT, right; and red oval, lung consolidation. A is caliper A measurement, and B is caliper B measurement.

Antibiotic combinations...

• The controversy about the necessity to add a macrolide to a β-lactam continues...

Medical controversies by Honoré Daumier (1837) From 'Histoire de la médecine et des médecins' by J.C. Sournia (Ed. Larousse, Paris, 1991)

Adding a macrolide in adults?

AUDIT, RESEARCH AND GUIDELINE UPDATE

Single versus combination antibiotic therapy in adults hospitalised with community acquired pneumonia

Chamira Rodrigo, ¹ Tricia M Mckeever, ² Mark Woodhead, ³ Wei Shen Lim, ¹ on behalf of the British Thoracic Society

Rodrigo C et al. Thorax. 2013; 68:493-5.

- 5240 adults hospitalised with CAP from 72 secondary care trusts across England and Wales.
- The overall 30-day inpatient (IP) death rate was 24.4%.
- Combination therapy was prescribed in 3239 (61.8%) patients.

Adding a macrolide in adults?

AUDIT, RESEARCH AND GUIDELINE UPDATE

Single versus combination antibiotic therapy in adults hospitalised with community acquired pneumonia

Chamira Rodrigo, ¹ Tricia M Mckeever, ² Mark Woodhead, ³ Wei Shen Lim, ¹ on behalf of the British Thoracic Society

Rodrigo C et al. Thorax. 2013; 68:493-5.

Table 1 Multivariate analyses of the association between antibiotic therapy and clinical outcomes					
Outcome measures		-lactam therapy n=2001)	β-lactam/ macrolide therapy (n=3239)	Adjusted OR (95% CI)	p Value
30 day IP death rate	1281 (24.4)	536 (26.8)	745 (23.0)	0.72 (0.60 to 0.85)*	< 0.001
ICU admission	419 (8)	136 (6.8)	282 (8.7)	0.94 (0.72 to 1.22)†	0.635
Need for MV	151 (2.9)	58 (2.9)	93 (2.9)	0.99 (0.71 to 1.38)†	0.508
Need for INS	130 (2.5)	42 (2.1)	88 (2.7)	0.87 (0.55 to 1.38)†	0.544
30-day IP death rate stratif	ied by pneumonia sev	erity			
Low severity (CURB65=0-1	201/2247 (8.9)	95/908 (10.5)	106/1339 (7.9)	0.80 (0.56 to 1.16)‡	0.238
Moderate severity (CURB65	5=2) 370/1480 (25)	171/561 (30.5)	199/919 (21.7)	0.54 (0.41 to 0.72)‡	< 0.001
High severity (CURB65≥3)	710/1513 (46.9)	270/532 (50.8)	440/981 (44.9)	0.76 (0.60 to 0.96)‡	0.025

Multivariate analyses of the association between antibiotic therapy and clinical outcomes

IP: in-patient - MV: mechanic ventilation - INS: intropic support - CURB65: see asbtract and Lim et al. Thorax 2003; 58:377-82

See notes in back-up slides

Adding a macrolide in children?

THE JOURNAL OF PEDIATRICS • www.jpeds.com

<u>ORIGINAL</u> ARTICLES

Comparative Effectiveness of Empiric β -Lactam Monotherapy and β -Lactam–Macrolide Combination Therapy in Children Hospitalized with Community-Acquired Pneumonia

Lilliam Ambroggio, PhD, MPH^{1,4}, Jennifer A. Taylor, PhD, MPH², Loni Philip Tabb, PhD¹, Craig J. Newschaffer, PhD¹, Alison A. Evans. ScD¹ and Samir S. Shah, MD. MSCE^{3,4,5}

Ambroggio L et al. J Pediatr. 2012;161:1097-103.

- 20743 patients hospitalized with CAP.
- 24% received b-lactam and macrolide combination therapy on admission.

Adding a macrolide in children?

THE JOURNAL OF PEDIATRICS • WWW.

Comparative Effectiven and β -Lactam–Macro Hospitalized with

Lilliam Ambroggio, PhD, MPH^{1,4}, Jennifer A. Alison A. Evans

Ambroggio L *et al. J Pediatr.* 2012;161:1097-103.

- 20743 pati
- 24% received combination

Antibiotic category	Unadjusted relative risk (95% CI)	Adjusted relative risk (95% CI)* ^{,†,‡}
Main analysis		
Monotherapy	Reference	Reference
Combination therapy	0.91 (0.87-0.96)	0.80 (0.75-0.86)
Age category, y		
1-5	N/A	0.96 (0.86-1.06)
6-11	N/A	0.85 (0.79-0.91)
12-18	N/A	0.69 (0.49-0.98)
Monotherapy		
Aminopenicillin	Reference	Reference
Second-generation cephalosporin	1.06 (0.96-1.17)	1.01 (0.91-1.12)
Third-generation cephalosporin	1.16 (1.05-1.28)	1.03 (0.94-1.14)
Combination therapy	, ,	,
Aminopenicillin + macrolide	Reference	Reference
Second-generation	1.03 (0.93-1.15)	1.01 (0.90-1.13)
cephalosporin + macrolide	,	,
Third-generation	0.88 (0.77-1.01)	0.91 (0.79-1.04)
cephalosporin + macrolide	(3.1.1.1.1)	(511 5 110 1)

See notes in back-up slides

Adding a macrolide in children?

Comparative Effectiver and β -Lactam–Macro Hospitalized with

THE JOURNAL OF PEDIATRICS • WWW.

Lilliam Ambroggio, PhD, MPH^{1,4}, Jennifer A. Alison A. Evans

Ambroggio et al. J Pediatr. 2012:161:1097-103.

Table	e IV.	LOS	according	to empir	ic antibio	otic therapy
-------	-------	-----	-----------	----------	------------	--------------

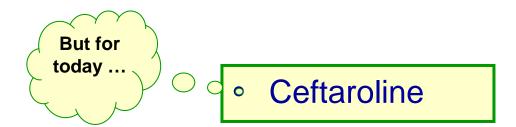
Antibiotic category	Unadjusted relative risk (95% CI)	Adjusted relative risk (95% CI)*,†,‡
Main analysis		_
Monotherapy	Reference	Reference
Combination therapy	0.91 (0.87-0.96)	0.80 (0.75-0.86)
Age category, y		
1-5	N/A	0.96 (0.86-1.06)
6-11	N/A	0.85 (0.79-0.91)
12-18	N/A	0.69 (0.49-0.98)
Monotherapy	•••••	
Aminoponicillin	Doforonco	Poforonco

Authors' final words:

These findings suggest the need for a randomized clinical trial comparing β -lactam and macrolide therapies in treating children hospitalised with CAP to identify populations or subpopulations that may benefit from combination antibiotic therapy.

> See notes in back-up slides

20743 pati



New antibiotics?

THEME: COMBATTING ANTIBIOTIC NEWDRUGS4BADBUGS (ND4BB)

RESISTANCE:

Is ceftaroline a useful new antibiotic for CAP?

Diagnostic Microbiology and Infectious Disease 75 (2013) 298-303

Contents lists available at SciVerse ScienceDirect

Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio

Clinical Study

Assessment of ceftaroline fosamil in the treatment of community-acquired bacterial pneumonia due to *Streptococcus pneumoniae*: insights from two randomized trials **, ***, ***

Andrew F. Shorr ^{a,*}, Marin Kollef ^b, Paul B. Eckburg ^c, Lily Llorens ^d, H. David Friedland ^d

- ^a Pulmonary and Critical Care Medicine, Washington Hospital Center, Rm 2A-68, 110 Irving St NW, Washington, DC 20010, USA
- b Washington University School of Medicine, St Louis, MO, USA
- c Stanford University School of Medicine, Stanford, CA, USA

Shorr AF et al. Diagn Microbiol Infect Dis. 2013 Mar;75(3):298-303.

CAP: community acquired pneumonia

^d Cerexa, Inc. (a wholly owned subsidiary of Forest Laboratories, Inc., New York, NY), Oakland, CA, USA

Is ceftaroline a useful new antibiotic for CAP?

Diagnostic Microbiology

Contents lists av

Diagnostic Microbi

journal homepage: ww

Clinical Study

Assessment of ceftaroline fosamil in t pneumonia due to *Streptococcus pneu* trials **, ** ** **

Andrew F. Shorr a,*, Marin Kollef b, Paul B. Eckl

Shorr AF et al. Diagn Microbiol Infect Dis. 2013 Mar;75(3):298-303. Table 2

Clinical and microbiological response rates in patients with *Streptococcus pneumoniae* as a baseline pathogen in the integrated FOCUS studies (mMITTE population).

Response rates by pathogen	Ceftaroline fosamil, n/N (%)	Ceftriaxone, n/N (%)	Weighted difference % (95% CI)	ce,
Clinical cure All S. pneumoniae (baseline isolates)	59/69 (85.5)	48/70 (68.6)	P = 0.009	
MDDCD	4/4/100\	2 (0 (22 2)	17.0 (2.9 to 30.7)	
MDRSP	4/4 (100)	2/9 (22.2)	77.8 (N/A)	
Positive by urinary antigen only	25/28 (89.3)	23/31 (74.2)	15.1 (-5.7 to 34.9))
Positive by culture ^a	34/41 (82.9)	25/39 (64.1)	18.9 (-0.7 to 37.7)
Plus atypical pathogens	8/10 (80.0)	6/9 (66.7)	13.3 (-27.3 to 51.	.3)
Favorable ^b microbiological re	sponse		•	,
All S. pneumoniae (baseline isolates)	60/69 (87.0)	51/70 (72.9)	P = 0.0003	
			14.1 (0.6 to 27.4)	
MDRSP	4/4 (100)	4/9 (44.4)	55.6 (N/A)	
Positive by urinary antigen only	25/28 (89.3)	23/31 (74.2)	15.1 (-5.7 to 34.9)
Positive by culture ^a	35/41 (85.4)	28/39 (71.8)	13.5 (-4.8 to 31.8	3)

 $CI = confidence interval; MDRSP = multidrug-resistant S. pneumoniae, defined as S. pneumoniae strains resistant to <math>\geq 2$ antimicrobial classes; mMITTE = modified microbiological intent-to-treat efficacy; N/A = not available.

CAP: community acquired pneumonia

^a Pulmonary and Critical Care Medicine, Washington Hospital Center, Rm 2A-68,

b Washington University School of Medicine, St Louis, MO, USA

^c Stanford University School of Medicine, Stanford, CA, USA

^d Cerexa, Inc. (a wholly owned subsidiary of Forest Laboratories, Inc., New York,

^a Includes *S. pneumoniae* isolates that were identified from a respiratory or blood specimen.

Eradicated or presumed eradicated.

Is ceftaroline a useful new antibiotic for CAP?

Diagnostic Microbiology and Infectious Disease 75 (2013) 298-303

Contents lists available at SciVerse ScienceDirect

Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio

The S/R EUCAST breakpoint for ceftriaxone is ≤0.5 / > 2 mg/L

Clinical Study

Assessment of ceftaroline for pneumonia due to *Streptoco* trials **, ***, ***

Andrew F. Shorr a,*, Marin Kollef

- a Pulmonary and Critical Care Medicine, Washington Hos
- Washington University School of Medicine, St Louis, MO.
 Stanford University School of Medicine, Stanford, CA, USA
- d Cerexa, Inc. (a wholly owned subsidiary of Forest Labora

Shorr AF et al. Diagn Microbiol Infect Dis. 2013 Mar;75(3):298-303.

Table 3

Clinical response rates by baseline ceftaroline fosamil and ceftriaxone MIC for CABP isolates of *Streptococcus pneumoniae* in the integrated FOCUS studies (mMITTE population).

Baseline ceftriaxone	Total				
MIC (µg/mL)	Ceftaroline fosamil, n/N (%)	Ceftriaxone, n/N (%)			
≤0.015	6/7 (85.7)	4/4 (100)			
0.03	20/25 (80.0)	13/19 (68.4)			
0.06	3/4 (75.0)	1/1 (100)			
0.12	1/1 (100)	0/1 (0)			
0.25	0	4/6 (66.7)			
1	1/1 (100)	0/4 (0)			
2	1/1 (100)	1/1 (100)			

CABP = Community-acquired bacterial pneumonia.

CAP: community acquired pneumonia

What are the indications for ceftaroline*?

1.2 Community-Acquired Bacterial Pneumonia

Teflaro is indicated for the treatment of community-acquired bacterial pneumonia (CABP) caused by susceptible isolates of the following Gram-positive and Gram-negative microorganisms: *Streptococcus pneumoniae* (including cases with concurrent bacteremia), *Staphylococcus aureus* (methicillin-susceptible isolates only), *Haemophilus influenzae*, *Klebsiella pneumoniae*, *Klebsiella oxytoca*, and *Escherichia coli*.

4.1 Therapeutic indications

Zinforo is indicated in adults for the treatment of the following infections (see sections 4.4 and 5.1):

Community-acquired pneumonia (CAP)

Consideration should be given to official guidance on the appropriate use of antibacterial agents.

Teflaro prescribing information (USA) available at: http://www.frx.com/pi/teflaro_pi.pdf accessed on 6/10/13

Zinforo Summary of Product Characteristics available at:
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-
Product Information/human/002252/WC500132586.pdf accessed on 6/10/13

^{*} in relation to respiratory tract infections

What is new about guidelines?

http://pharmamkting.blogspot.com/2010/10/call-for-pharma-social-media.html accessed on 5/11/13

Do they change something in your practice?

Guidelines in paediatrics

PEDIATRICS'

Influence of Hospital Guidelines on Management of Children Hospitalized With Pneumonia

Mark I. Neuman, Matt Hall, Adam L. Hersh, Thomas V. Brogan, Kavita Parikh, Jason G. Newland, Anne J. Blaschke, Derek J. Williams, Carlos G. Grijalva, Amy Tyler and Samir S. Shah

Pediatrics 2012;130;e823; originally published online October 22, 2012; DOI: 10.1542/peds.2012-1285

Neuman MI et al. Pediatrics. 2012 Nov;130(5):e823-30.

43 freestanding tertiary care children's hospitals with emergency departments located in noncompeting markets of 27 states plus the District of Columbia and accounting for 15% of all pediatric hospitalizations in the United States in 2009 (677 291 of 4 508 323 admissions)

WHAT'S KNOWN ON THIS SUBJECT: There are limited data on current testing and treatment patterns for children hospitalized with pneumonia, and on whether institutional guidelines affect care.

WHAT THIS STUDY ADDS: The use of institutional clinical practice guidelines was not associated with changes in diagnostic testing, hospital length of stay, or costs for children hospitalized with pneumonia, but was associated with increased use of narrow-spectrum antibiotics.

Guidelines in paediatrics

PEDIATRICS

Influence of Hospital Guidelines on Management of Children Hospitalized With Pneumonia

Mark I. Neuman, Matt Hall, Adam L. Hersh, Thomas V. Brogan, Kavita Parikh, Jason G. Newland, Anne J. Blaschke, Derek J. Williams, Carlos G. Grijalva, Amy Tyler and Samir S. Shah

Pediatrics 2012;130;e823: originally published online October 22, 2012

DOI

Guidelines seem not very useful...

Neuman MI *et al. Pediatrics*. 2012 Nov;130(5):e823-30.

TABLE 3 Outcomes of Patients Based on Presence of a Pneumonia CPG

Group	Median [IQR]	Ρ	Mean Difference (95% CI)	Pa
Length of hospitalization, d				
No guideline	2 [1-3]	.269	Ref	
Guideline	2 [1-3]		-0.05 (-0.29 to 0.20)	.745
Total cost, index hospitalization, \$				
No guideline	10 0 15 [6304-15 931]	.773	Ref	
Guideline	9361 [6274-14989]		1667 (-1747 to 5081)	.339
Total cost, episode of illness, \$				
No guideline	13 265 [6477-16 281]	.553	Ref	
Guideline	9478 [6332–15 292]		1843 (–1861 to 5547)	.329
Group	Percent (95% CI)	Р	OR (95% CI)	Pь
Readmission rate, %				
No guideline	2.3 (2.0-2.6)	.367	Ref	
Guideline	2.1 (1.7-2.5)		0.89 (0.69 to 1.14)	.396

a P values comparing medians are unadjusted and aggregate (combining across hospitals).

b P values are adjusted for hospital clustering.

Guidelines in paediatrics

PEDIATRICS

Influence of Hospital Guidelines on Management of Children Hospitalized With Pneumonia

Mark I. Neuman, Matt Hall, Adam L. Hersh, Thomas V. Brogan, Kavita Parikh, Jason G. Newland, Anne J. Blaschke, Derek J. Williams, Carlos G. Grijalva, Amy Tyler and Samir S. Shah

Pediatrics 2012;130;e823; originally published online October 22, 2012;

DOI: 10.1542/peds.2012-1285

But OK for penicillins... in a few hospitals

Neuman MI et al. Pediatrics. 2012 Nov;130(5):e 823-30.

TABLE 5 Antimicrobial Use Based on CPG Specific Recommendations								
Group	Hospitals, n (%)	Patients, n	% Received	Pa	OR (95% CI)	Рь		
Penicillin/Aminopenicillins				,				
No CPG	28 (68.3)	13 265	23.9	<.0001	Ref			
CPG: recommend as first-line	7 (17.1)	3710	46.3		2.7 (1.4-5.5)	.005		
agent								
CPG: not addressed	6 (14.6)	2735	19.8		0.8 (0.5-1.3)	.37		
Macrolide (>5 y old)								
No CPG	28 (68.3)	4013	55.2	<.0001	Ref			
CPG: recommends macrolide use for children ≥5 y	10 (24.4)	1633	58.2		1.1 (0.7–1.9)	.64		
CPG: no recommendation for macrolide use	3 (7.3)	286	41.3		0.6 (0.3–0.9)	.026		

^{*} P values comparing differences in proportion of patients receiving antibiotics based on specific mention in the CPG are unadjusted and aggregate (combining across hospitals).

b P values are adjusted for hospital clustering.

And to finish: an important review...

Published: 01 October 2013 © 2013 Faculty of 1000 Ltd

Major advances in managing community-acquired pneumonia

Waseem Asrar Khan and Mark Woodhead*

Address: Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester

* Corresponding author: Mark Woodhead (mark.woodhead@cmft.nhs.uk)

F1000Prime Reports 2013, 5:43 (doi:10.12703/P5-43)

Abstract

This article is a non-systematic review of selected recent publications in community-acquired pneumonia, including a comparison of various guidelines. Risk stratification of patients has recently been advanced by the addition of several useful biomarkers. The issue of single versus dual antibiotic treatment remains controversial and awaits a conclusive randomized controlled trial. However, in the meantime, there is a working consensus that more severe patients should receive dual therapy.

Asrar Khan & Woodhead F1000Prime Rep. 2013 Oct 1;5:43.

Other questions (no time to address them but ask questions ...)

- Does the new conjugated vaccine effectively cover important serotypes such as those associated with pleural effusion and noninvasive pneumococcal pneumonia
 - > Yes, but bacteria "adapt" to the new situation...
- Is the administration of corticosteroids in CAP useful and safe
 - This remains disputable (and disputed...)
- Are fluoroquinolones better than macrolides in the empirical treatment of CAP
 - > They probably are but with a low margin...

Back-up slides

Naucler P *et al. Thorax.* 2013;68(6):571-9.

Table 2 Thirty-day mortality risk according to serotype and antibiotic resistance in patients with bacteraemic pneumococcal pneumonia

	No of patients (column %)	No of deaths (row %)	Crude OR (95% CI)	Adjusted OR† (95% CI)
Individual serotype	2			
9V	191 (12.1)	10 (5.2)	0.62 (0.28 to 1.40)	0.83 (0.36 to 1.93)
7F	177 (11.2)	4 (2.3)	0.26 (0.09 to 0.79)	0.51 (0.16 to 1.59)
4	158 (10.0)	8 (5.1)	0.60 (0.25 to 1.43)	0.88 (0.36 to 2.16)
3	142 (9.0)	17 (12.9)	1.54 (0.76 to 3.12)	1.85 (0.87 to 3.93)
23F	97 (6.1)	11 (11.3)	1.44 (0.65 to 3.21)	1.23 (0.54 to 2.81)
22F	79 (5.0)	7 (8.9)	1.10 (0.44 to 2.76)	1.25 (0.48 to 3.23)
6B	78 (4.9)	15 (19.2)	2.69 (1.27 to 5.69)	2.09 (0.96 to 4.57)
6A	76 (4.8)	10 (13.1)	1.71 (0.75 to 3.92)	1.17 (0.49 to 2.75)
19A	55 (3.5)	4 (7.3)	0.89 (0.29 to 2.75)	0.69 (0.21 to 2.22)
14	209 (13.2)	17 (8.3)	1.00 (ref)	1.00 (ref)
Other	318 (20.1)	44 (13.8)	-	-
Serotype category	according to CFR‡			
High	509 (32.2)	63 (12.4)	3.28 (1.89 to 5.70)	1.63 (0.89 to 2.98)
Medium	484 (30.6)	35 (7.2)	1.81 (1.00 to 3.28)	1.27 (0.67 to 2.42)
Low	412 (26.1)	17 (4.1)	1.00 (ref)*	1.00 (ref)**
Serotype category	according to invasiveness§			
Low	461 (29.2)	58 (12.6)	4.21 (1.89 to 9.40)	1.67 (0.70 to 4.00)
Medium	591 (37.4)	40 (6.8)	2.13 (0.94 to 4.82)	1.19 (0.49 to 2.87)
High	212 (13.4)	7 (3.3)	1.00 (ref)*	1.00 (ref)***
PCV 13 serotypes	1			
Yes	1277 (80.8)	107 (8.4)	0.60 (0.41 to 0.89)	0.78 (0.51 to 1.19)
No	303 (19.2)	40 (13.2)	1.00 (ref)	1.00 (ref)
Penicillin non-susc	eptible††			
Yes	45 (2.9)	6 (13.3)	1.52 (0.63 to 3.65)	1.07 (0.42 to 2.74)
No	1535 (97.2)	141 (9.2)	1.00 (ref)	1.00 (ref)
Erythromycin non-s	susceptible††			
Yes	69 (4.4)	5 (7.4)	0.75 (0.30 to 1.90)	0.83 (0.32 to 2.16)
No	1511 (95.6)	141 (9.4)	1.00 (ref)	

Significant results in bold.

p Value trend: *<0.001, **0.09, ***0.11.

[†]Adjusted ORs: individual serotypes and antibiotic resistance adjusted for age, sex and Charlson Index score; grouped serotypes adjusted for age, sex, smoking, alcohol and comorbidities associated with mortality at a p value of <0.1 in univariate analyses (ie, heart disease, pulmonary disease, liver disease, renal disease and solid tumour). ‡Serotypes classified as associated with low (serotype 1, 4, 5, 7F, 8), medium (serotypes 9V, 12F, 14, 22F) and high (serotypes 3, 6A, 6B, 9N, 19A, 19F, 23F) case fatality rate in a recent meta-analysis. There were 175 patients infected with serotypes not included in this classification.

[§]Serotypes classified as associated with high (serotype 1, 5 and 7F), medium (serotype 4, 9V, 14 and 18C) and low (serotype 3, 6A, 6B, 8, 19F and 23F) invasiveness.⁸ There were 316 patients infected with serotypes not included in this classification.

[¶]Serotypes included in 13-valent pneumococcal conjugate vaccine: 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F.

^{††}Non-susceptibility for penicillin was defined as minimal inhibitory concentration ≥0.12 mg/l and for erythromycin a zone diameter of ≤21 mm.²².

CFR, case-fatality rates; PCV, pneumococcal vaccine.

Rodrigo et al. Table 1 with notes

Table 1 Multivariate analyses of the association between antibiotic therapy and clinical outcomes

Outcome measures T		3-lactam therapy n=2001)	β-lactam/ macrolide therapy (n=3239)	Adjusted OR (95% CI)	p Value
30 day IP death rate	1281 (24.4)	536 (26.8)	745 (23.0)	0.72 (0.60 to 0.85)*	<0.001
ICU admission	419 (8)	136 (6.8)	282 (8.7)	0.94 (0.72 to 1.22)†	0.635
Need for MV	151 (2.9)	58 (2.9)	93 (2.9)	0.99 (0.71 to 1.38)†	0.508
Need for INS	130 (2.5)	42 (2.1)	88 (2.7)	0.87 (0.55 to 1.38)†	0.544
30-day IP death rate stratified by pneumonia severity					
Low severity (CURB65=0-1)	201/2247 (8.9)	95/908 (10.5)	106/1339 (7.9)	0.80 (0.56 to 1.16)‡	0.238
Moderate severity (CURB65=	2) 370/1480 (25)	171/561 (30.5)	199/919 (21.7)	0.54 (0.41 to 0.72)‡	< 0.001
High severity (CURB65≥3)	710/1513 (46.9)	270/532 (50.8)	440/981 (44.9)	0.76 (0.60 to 0.96)‡	0.025

Values given as n (%).

Rodrigo C et al. Thorax. 2013;68(5):493-5.

^{*}OR adjusted for age, sex, binary variables within CURB65 excluding age (confusion, urea>7 mmol/l, respiratory rate ≥30/min, systolic blood pressure<90 mmHg or diastolic blood pressure ≤60 mmHg), individual comorbidities, intravenous antibiotic use, nursing home residency and ICU admission.

[†]OR adjusted for age, sex, binary variables within CURB65 excluding age (confusion, urea>7 mmol/l, respiratory rate ≥30/min, systolic blood pressure<90 mmHg or diastolic blood pressure ≤60 mmHg), individual comorbidities, intravenous antibiotic use and nursing home residency.

[‡]OR adjusted for sex, individual comorbidities, intravenous antibiotic use, nursing home residency and ICU admission.

ICU, intensive care unit; IP, inpatient; MV, mechanical ventilation; INS, inotropic support.

Ambroggio et al. Table IV with notes

Ambroggio L *et al. J Pediatr.* 2012;161(6):1097-103.

Table IV. LOS according to empiric antibiotic therapy

Antibiotic category	Unadjusted relative risk (95% CI)	Adjusted relative risk (95% CI)*,†,‡
		(32,72,21)
Main analysis		
Monotherapy	Reference	Reference
Combination therapy	0.91 (0.87-0.96)	0.80 (0.75-0.86)
Age category, y		
1-5	N/A	0.96 (0.86-1.06)
6-11	N/A	0.85 (0.79-0.91)
12-18	N/A	0.69 (0.49-0.98)
Monotherapy		, ,
Aminopenicillin	Reference	Reference
Second-generation cephalosporin	1.06 (0.96-1.17)	1.01 (0.91-1.12)
Third-generation cephalosporin	1.16 (1.05-1.28)	1.03 (0.94-1.14)
Combination therapy	,	
Aminopenicillin + macrolide	Reference	Reference
Second-generation	1.03 (0.93-1.15)	1.01 (0.90-1.13)
cephalosporin + macrolide	,	,
Third-generation	0.88 (0.77-1.01)	0.91 (0.79-1.04)
cephalosporin + macrolide		2.2.1 (2.2.0 1.0.1)

*Results for main analysis were adjusted for age category, principal payer, prior hospitalization for asthma, receipt of chronic asthma therapy, systemic corticosteroid medication, β -agonist therapy, testing for arterial blood gases, intensive imaging testing, and interaction of therapy and age. The results are also stratified by age as the interaction of therapy and age was statistically significant.

†Results for monotherapy subanalysis were adjusted for age, principal payer, prior hospitalization for asthma, receipt of chronic asthma therapy, systemic corticosteroid medication, β -agonist therapy, testing for arterial blood gases, and intensive imaging testing.

 \ddagger Results for combination therapy subanalysis were adjusted for age, principal payer, prior hospitalization for asthma, receipt of chronic asthma therapy, systemic corticosteroid medication, β -agonist therapy, testing for arterial blood gases, and intensive imaging testing.