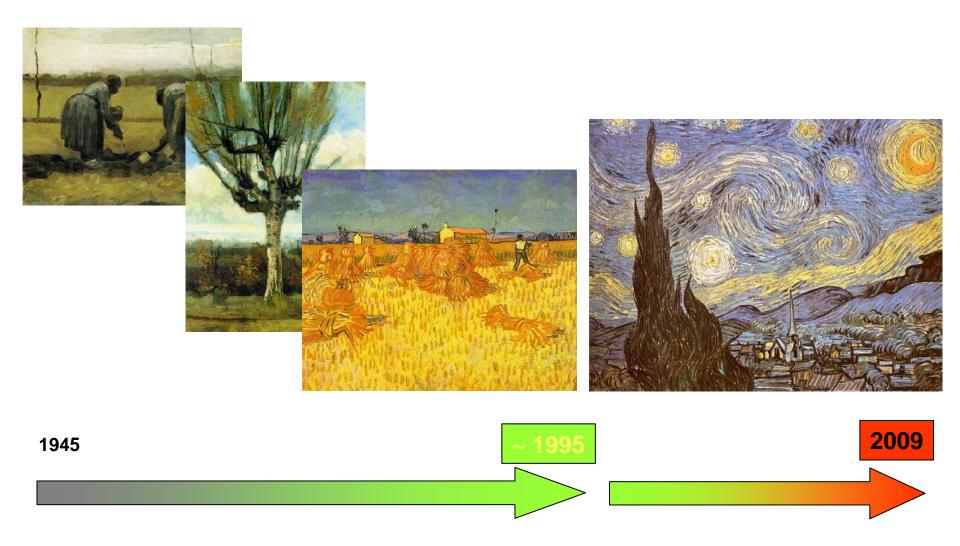
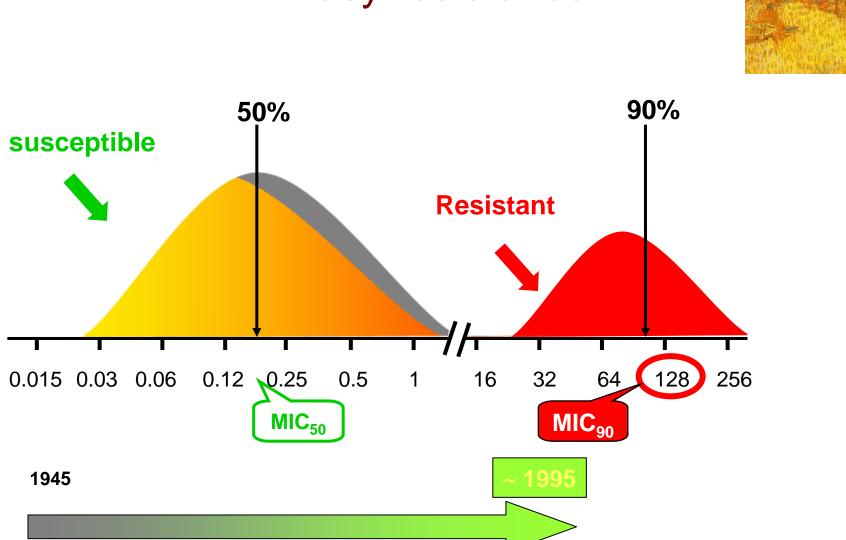
Updates on treatment of Staphylococcus aureus / MRSA

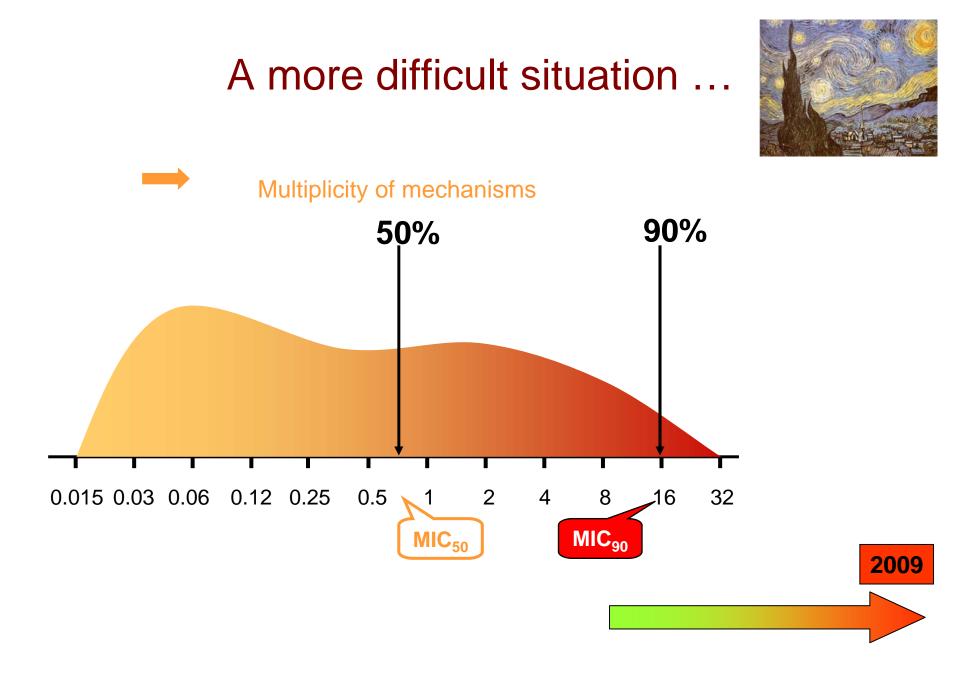
Paul M. Tulkens

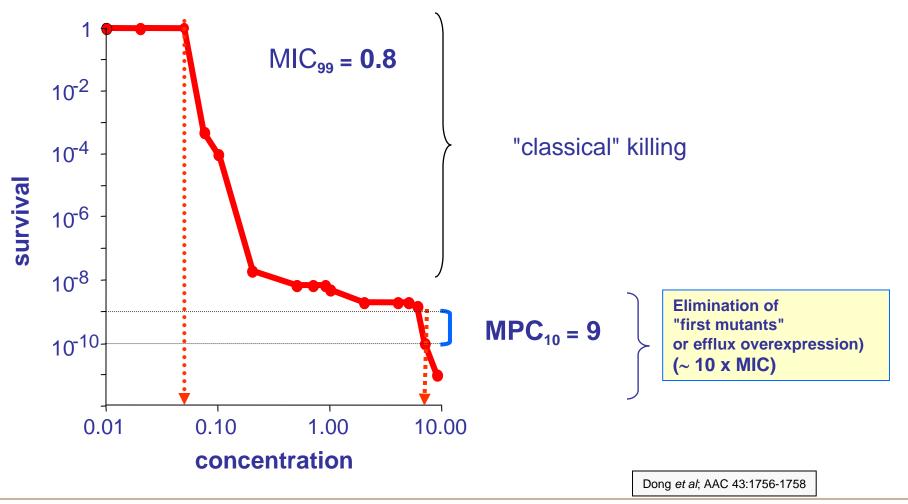
Unité de pharmacologie cellulaire et moléculaire


& Louvain Drug Research Institute

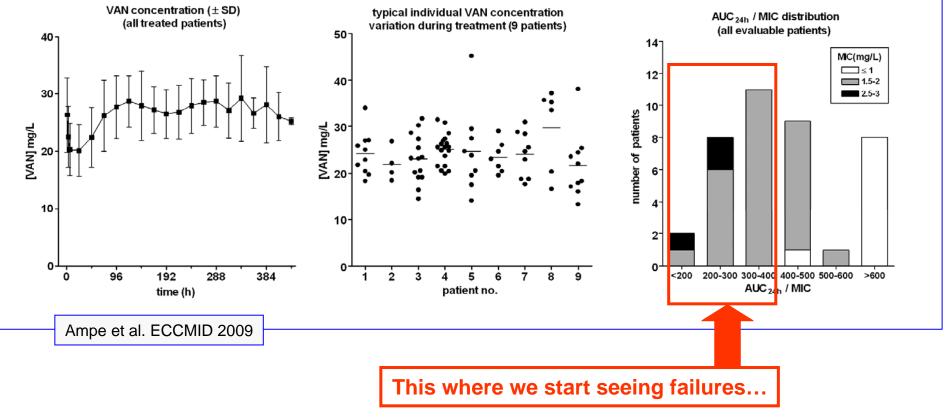

Université catholique de Louvain, Brussels, Belgium

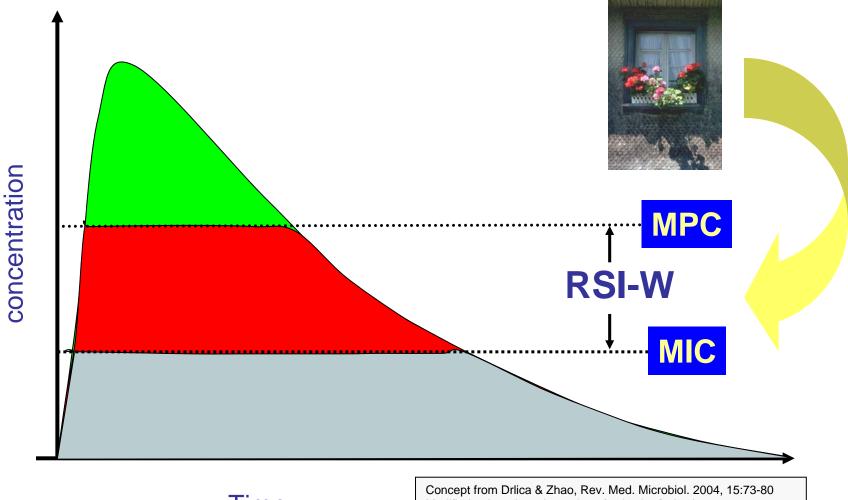
Tromsoe, Norway – 5 September 2009


Why do we need new antimicrobials ?


Easy resistance ...

Populations of decreased susceptibility


- Well known for S. pneumoniae (and, more recently with S. aureus [VISA])
- Rediscovered under the the acronym "MPC" (*Mutation Prevention Concentration*) for fluoroquinolones with *Mycobacteriae* (and since then, with several other microrganisms)


MIC creep

- Suggested to take place with vancomycin
- Viable according to reports (local or technique variations ?)
- Significance to be established, but ...

The concept of "Resistance/Selection/Induction Window"

Time

Modified to introduce the notion of selection/induction

New antibiotics ... a risky business...

- Registered in the EU (EMEA) and the U.S.A. (FDA)
 - Daptomycin http://www.emea.europa.eu/humandocs/Humans/EPAR/cubicin/cubicin.htm
 - Tigecycline <u>http://www.emea.europa.eu/humandocs/Humans/EPAR/tygacil/tygacil.htm</u>

- Registration pending in the US but EMEA status uncertain

Telavancin (Theravance / Astellas; may become available in the U.S.A.)

- Registration postponed in the US and EMEA status uncertain

• Ceftobiprole (Basilea / Johnson & Johnson; available in Canada, Switzerland and Ukraine)

- Withdrawn from both FDA and EMEA

Oritavancin (The Medicines Company; uncertain status)

- Rejected by EMEA

• Gemifloxacin (Oscient Pharm. In the US; but under chapter 11)

- Rejected by the FDA

Iclaprim

- Development on hold...

Dalbavancin (Pfizer)

"Consistent with Basilea's earlier press releases, an FDA "Warning Letter" issued in August 20008 asserts that there was a failure to ensure proper monitoring of the studies as well as deficiencies in study conduct..." (Basilea Press Release August 18th, 2009)

1987

1993 1997

Discovery of daptomycin as a novel anti-Gram + lipopeptide

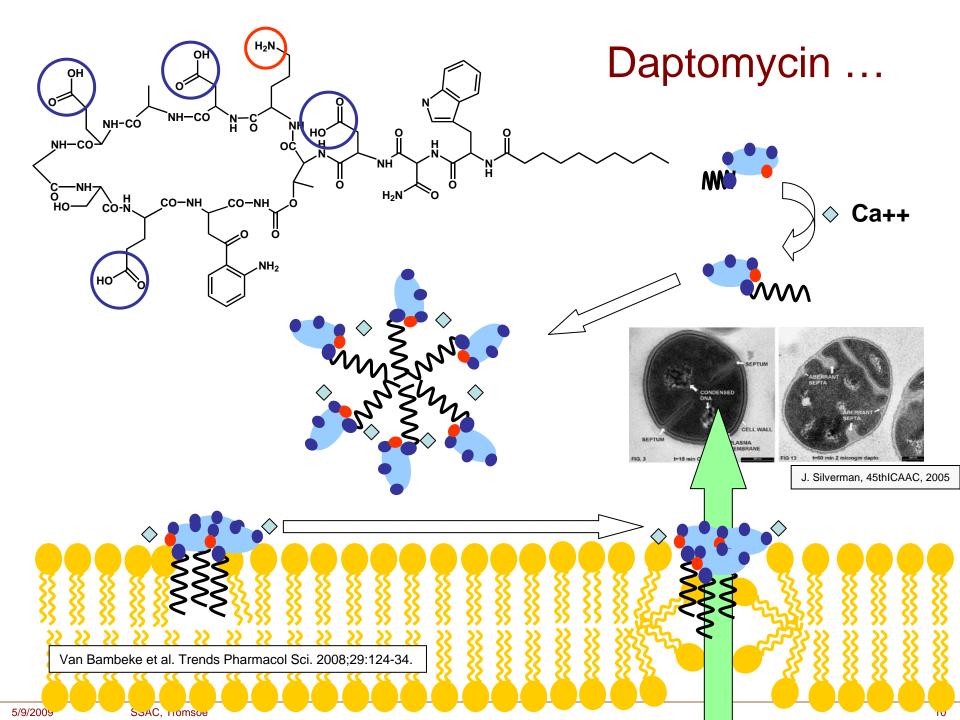
In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic. Eliopoulos *et al*, **1986** Antimicrob. Agents Chemother. 30, 532-5

Development halted

- lack of efficacy

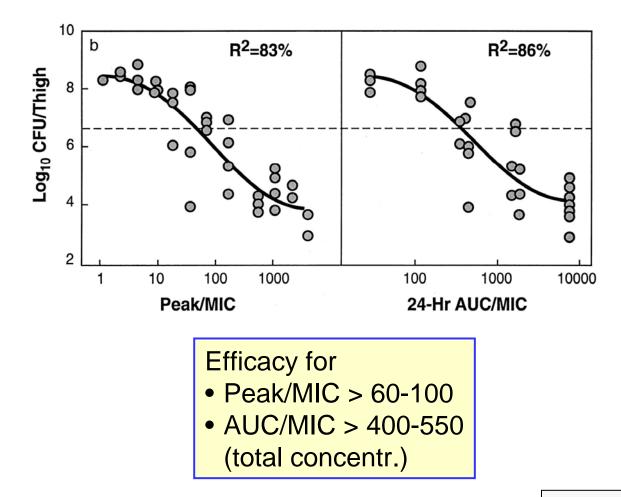
- toxicity

"Lilly was not satisfied with the overall clinical results observed with the twice-daily dosing regimen utilized in these studies"


Taking over by CUBIST

or "pharmacodynamics in action"

Once-daily dosing in dogs optimizes daptomycin safety. Oleson *et al*, **2000**, AAC. 44:2948-53.

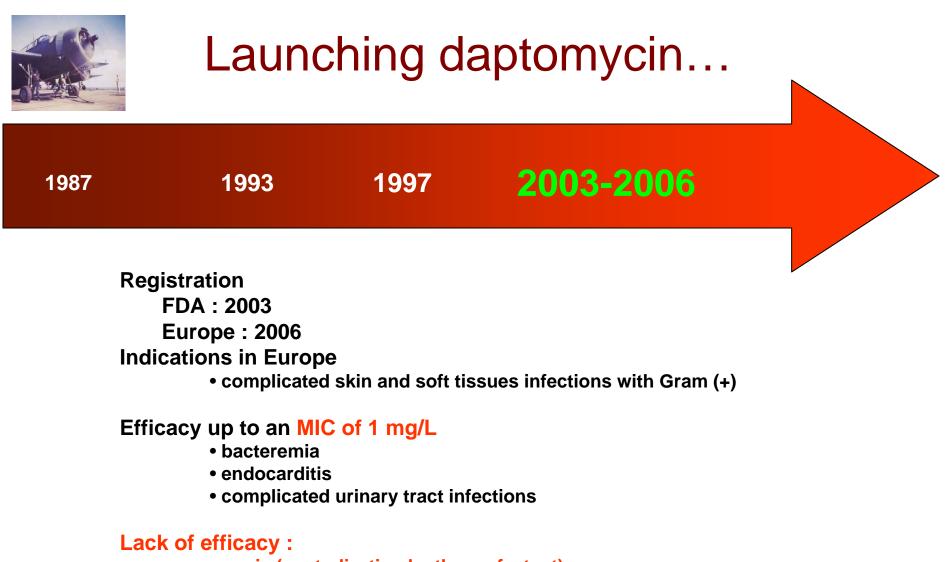

Daptomycin dose-effect relationship against resistant gram-positive organisms. Cha *et al*, **2003**, AAC 47:1598-603

PK/PD of daptomycin - animal models

Mouse thigh - S. aureus

Safdar et al., AAC (2004) 48:63

PK/PD of daptomycin - application to humans


dose and route of administration	compartment	AUC	AUC/MIC (1 mg/L)
4 mg/kg iv	serum	417	417
(registered dose)	inflamm. exsudate	318	318
6 mg/kg iv	serum	747	747

Dose adjustment if creatinine clearance < 30 ml/min

EUCAST breakpoint: 1 mg/L

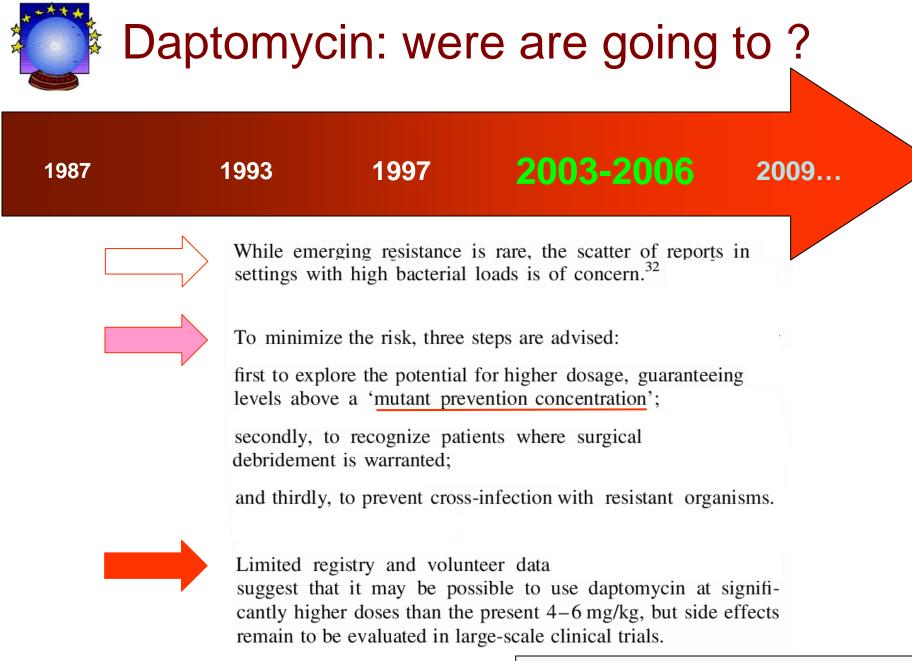
> Wise *et al.*, AAC (2002) 46:31-3 Dvorchik *et al.*, AAC (2003) 47:1318-23

SSAC, Tromsoe

- pneumonia (neutralization by the surfactant)
- VISA strains (no access to target)

Only available as intravenous form !

Carpenter & Chambers CID (2004) 38: 994-1000


4.1 Therapeutic indications

Cubicin is indicated for the treatment of the following infections in adults (see sections 4.4 and 5.1).

- Complicated skin and soft-tissue infections (cSSTI).
- Right-sided infective endocarditis (RIE) due to *Staphylococcus aureus*. It is recommended that the decision to use daptomycin should take into account the antibacterial susceptibility of the organism and should be based on expert advice. See sections 4.4 and 5.1.
- Staphylococcus aureus bacteraemia (SAB) when associated with RIE or with cSSTI.

Daptomycin is active against Gram positive bacteria only (see section 5.1). In mixed infections where Gram negative and/or certain types of anaerobic bacteria are suspected, Cubicin should be co-administered with appropriate antibacterial agent(s).

Consideration should be given to official guidance on the appropriate use of antibacterial agents.

Livermore DM. J Antimicrob Chemother. 2008;62 Suppl 3:iii41-iii49.

Tigecycline: historical landmarks

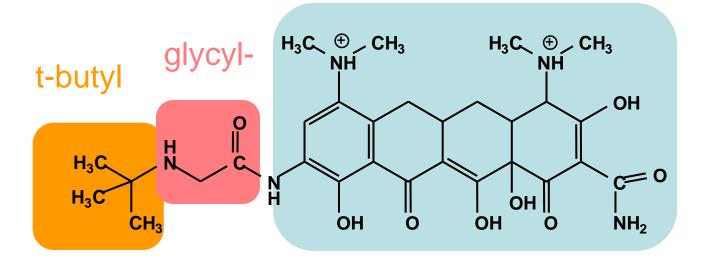
1993

1999

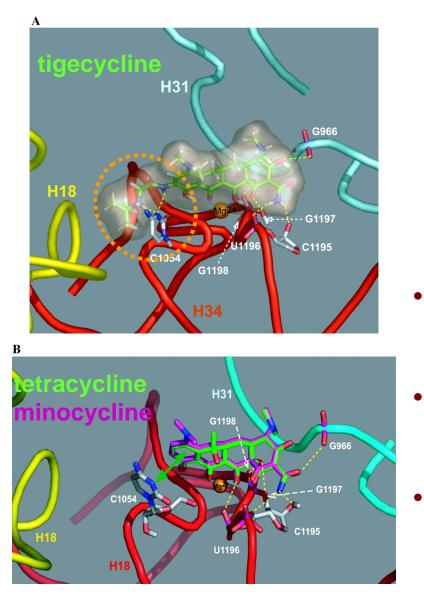
Disvovery of glycylcyclines as a novel class of antibiotics

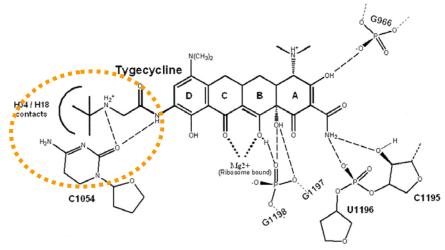
In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Testa *et al.* Antimicrob Agents Chemother. **1993** 37:2270-7

Demonstration of the spectrm of activity and candidate selection


In vitro and *in vivo* antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamide derivative of minocycline (GAR-936). Petersen *et al.* (1999) Antimicrob Agents Chemother. 43:738-44.

5/9/2009 SSAC, Tromsoe




Tigecycline: chemical structure

minocycline

Mode of action of tigecycline

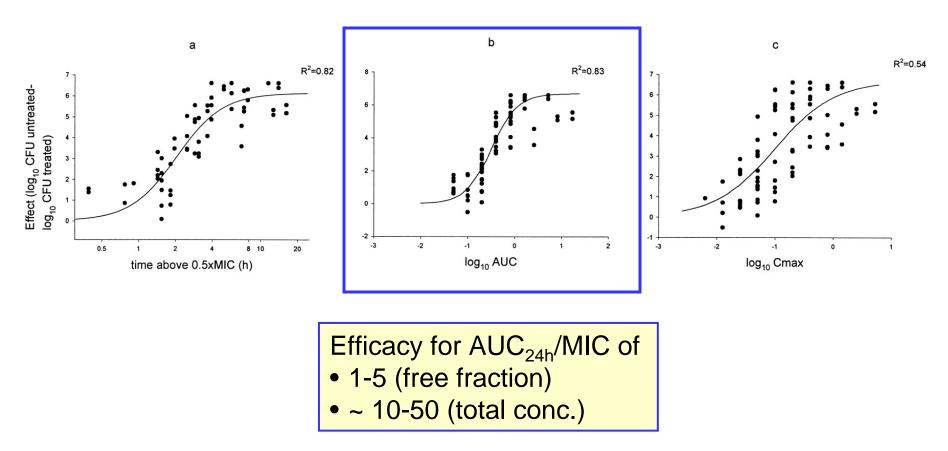
- same binding site as tetracyclines in ribosome 16S RNA; additional interaction site
- Unaffected by resistance due to
 - ribosomal protection
 - Tet efflux pumps;
- But remains susceptible to broad
 spectrum efflux pumps of Gram(-)
 (MexXY in *P. aeruginosa*)

Olson et al., AAC (2006) 50:2156-66

Tetra- and glycyl-cyclines: activity and resistance

species	phenotype	tetracycline	minocycline	tigecycline
E. coli	susceptible	1	1	0.25
	Efflux (Tet)	> 32	16	0.5
	Ribosomal protection	> 32	> 32	0.25
S. aureus	susceptible	0.12	0.06	0.25
	Efflux (Tet)	> 32	0.25	0.5
	Ribosomal protection	> 32	4	0.25

Petersen et al., AAC (1999) 43:738-44

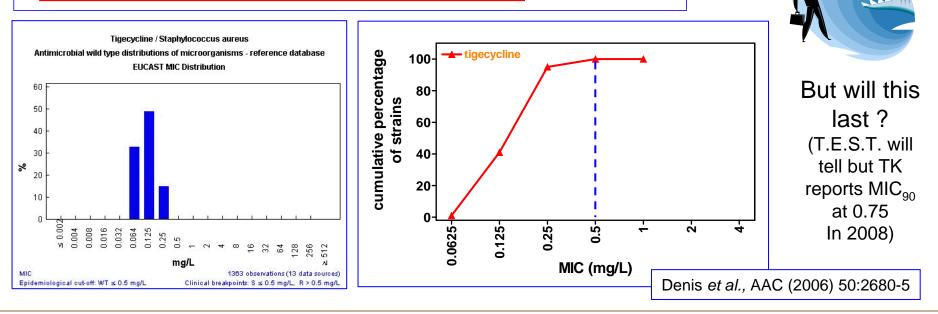

Tigecycline: pharmacokinetics

	tissue	AUC _{24h} (mg.h/L)	serum/tissue AUC ratio
	bile	2815	537
b E	bladder	120	23
100	colon	17.3	2.6
Single dose:	lung	9.19	2
gle d	bone	2.05	0.4
Sin	synovial fluid	1.68	0.31
	CSF	0.46	0.11
ng +) mg 2h	ELF	4.54	1.31
100 mg + 6x50 mg q12h	alveolar MΦ	268	77.5

Rodvold, JAntimicrob Chemother (2006) 58:1221-9 Conte et al., Int J Antimicrob Agents (2005) 25:523-9

PK/PD of tigecycline – animal models

Mouse thigh - S. pneumoniae



Tigecycline EUCAST breakpoints

Tetracyclines - EUCAST clinical MIC breakpoints 2008-06-19 (v 2.2)

Tetracyclines		Species-related breakpoints (S <u><</u> /R>)				
Click on antibiotic name to see wild type MIC distributions and on RD to see ratinale document.		Enterobac- teriaceae	Acineto- bacter	Staphylo- coccus	Entero- coccus	Strepto- coccus A,B,C,G
<u>Tigecycline</u>	<u>RD</u>	1/2 ^E	IE	0.5/0.5 ^{F,G}	0.25/0.5 ^G	0.25/0.5 ^G

- E. The S/I and I/R breakpoints were increased to avoid dividing wild type MIC distributions of relevant species.
- F. The S/I breakpoint was increased to avoid dividing wild type MIC distributions of relevant species.
- G. Strains with MIC values above the S/I breakpoint are very rare or not yet reported.

4.1 Therapeutic indications

Tygacil is indicated for the treatment of the following infections (see sections 4.4 and 5.1):

- · Complicated skin and soft tissue infections
- Complicated intra-abdominal infections

Consideration should be given to official guidance on the appropriate use of antibacterial agents.

Paediatric patients

Tygacil is not recommended for use in children and adolescents below 18 years due to the lack of data on safety and efficacy (see sections 5.2 and 4.4).

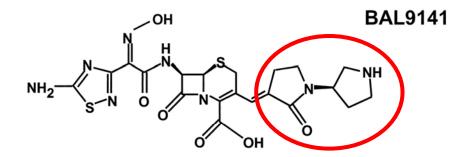
^{*} pediatric studies are ongoing and/or proposed to Regulatory Authorities

Other novel antibiotics (pipeline...[with leaks...])

• **Ceftobiprole** (Basilea / Johnson & Johnson)

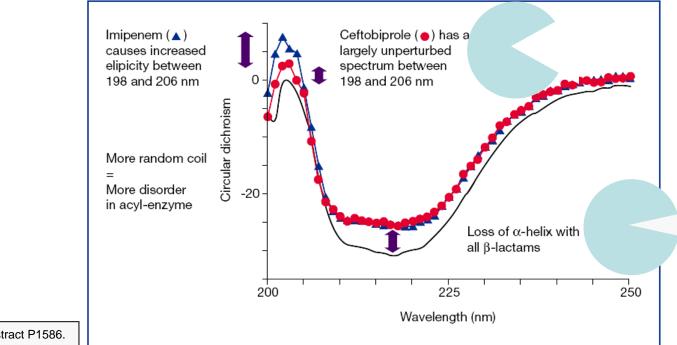
- first cephalosporin with anti-MRSA action (is also active against *P. aeruginosa*)
- 2 X 750 mg ou 3 x 500 mg ... (limited because of toxicity ?)
- "target attainment rate" : MIC of 4 mg/L (EUCAST breakpoint)
- submitted for "complicated skin and soft tissue infections" in EU and in the USA but no decision expected before end of 2009 or even later …
- failure in nosocomial pneumonia (reason still unclear ?)
- **Telavancin** (Theravance / Astellas)
 - first lipoglycopeptide with FDA "near approval"; status uncertain in EU (safety issues)
 - very bactericidal (but Gram + ONLY); once-daily dosing
 - trend towards superiority in "complicated skin and soft tissue"
 - success in nosocomial pneumonia (S. aureus)
- **Oritavancin** (The Medicines Company)
 - lipopeptide very active against Gram +, with activity against SCV [incl. cystic fibrosis] and biofilm
 - very long half-life and large cellular accumulation
 - uncertain future (new phase 3 study requested by the FDA plus additional safety studies; withdrawn from EMEA)

MIC of novel anti-Gram (+) antibiotics and EUCAST breakpoints


organism	ceftobiprole (4/4)	telavancin (1/1)**	oritavancin (0.125/0.25)**	vancomycin (2/2)**
MSSA	0.12-1	0.25/0.5	0.25/0.5	1/1
MRSA	0.25-4	0.25/0.25	0.25/0.5	1/1
VISA	0.5-2	0.5-1	1/1	4/4
VRSA	1-2	2-4	0.5	16
<i>S. pneumo</i> Pen non-S	0.25-1 *	≤ 0.06/≤ 0.06	≤0.002/0.004	≤ 0.25/≤ 0.5
<i>Enteroc.</i> Van S	0.064-16 *	0.12/0.5	0.12/0.5	1/2
<i>Enteroc</i> . Van R	*	4-16	0.03	16

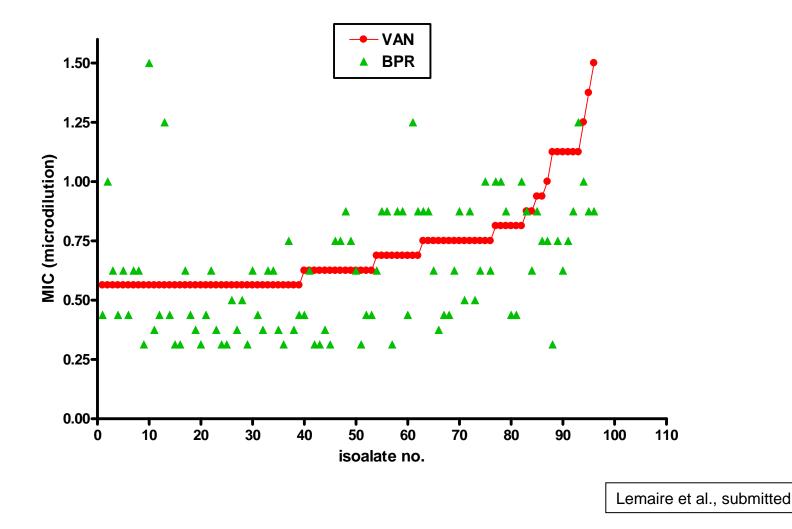
- * no EUCAST breakpoint set (insufficient evidence)
- ** draft (submitted for consultation)

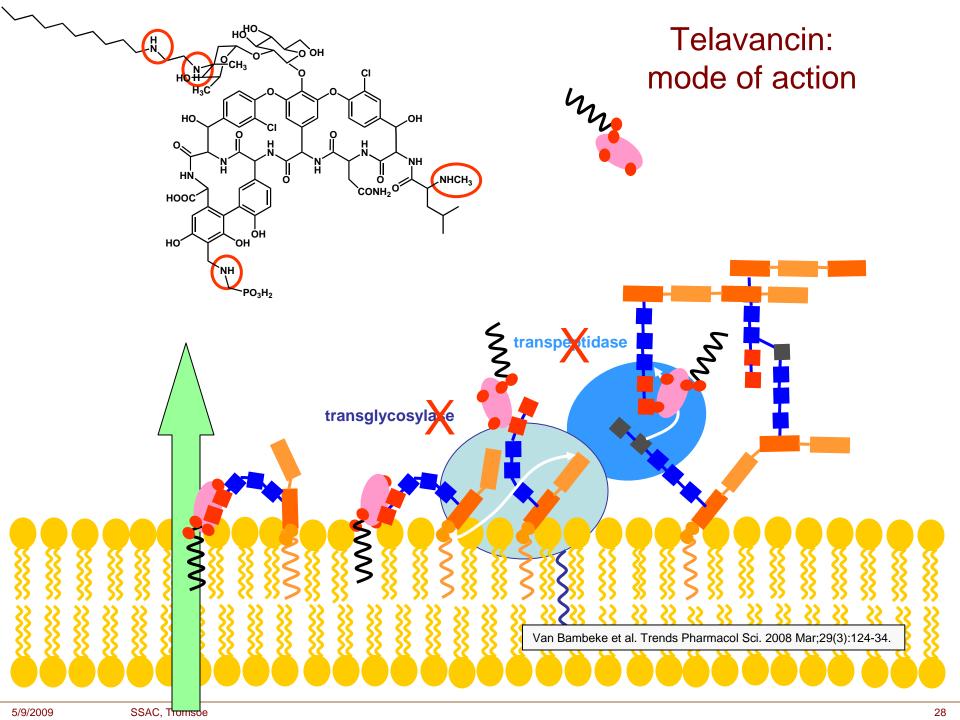
SSAC, Tromsoe


Pillar et al., JAC (2008)61:595-602; Ge et al., AAC (2008) 52:3398-404; Draghi et al., AAC (2008) 52:2383-2388; ICAAC (2008) C1-146, 150, 151; Lemaire et al. AAC (2009) Mar 16. [Epub]

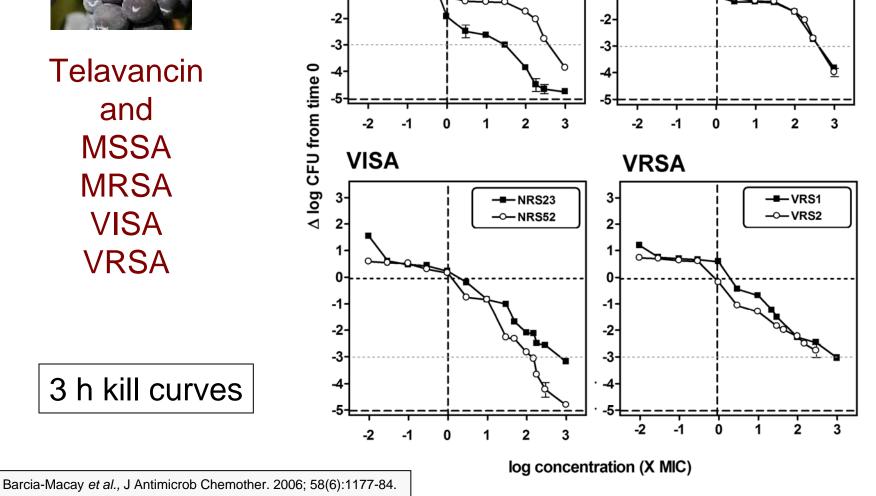
Ceftobiprole: mode of action

ceftobiprole and PBP2a





Lovering et al. ECCMID 2006, Abstract P1586.


Ceftobiprole: susceptibility in Belgium

Comparison of 96 MRSA isolates from wound and skin-structure infections

MSSA

3

2

-1

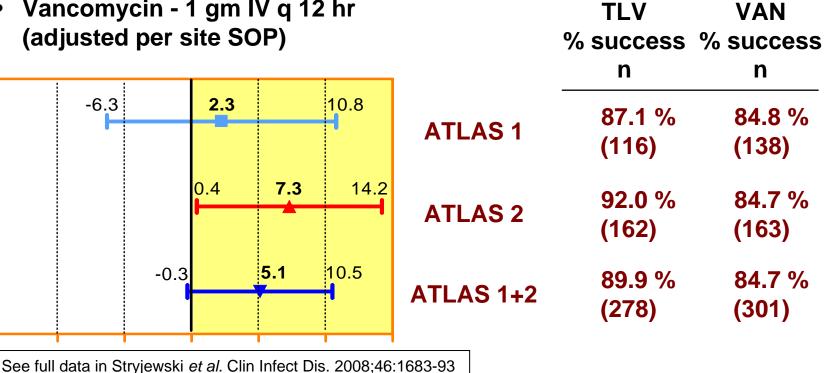
MRSA

3-

2

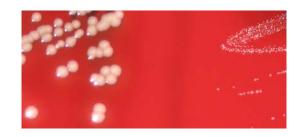
-1

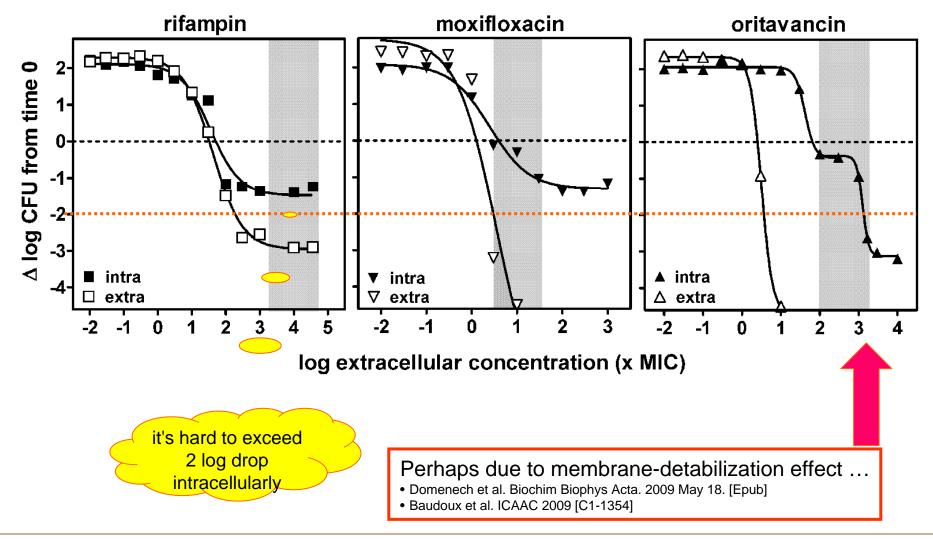
-E-ATCC33591


-E-ATCC25923

Telavancin: clinical trials in cSSI caused by MRSA

Therapeutic regimens


- Telavancin 10 mg/kg IV q 24hr; or
- Vancomycin 1 gm IV q 12 hr (adjusted per site SOP)



Telavancin data presented at the FDA (public hearing – November 2008)

- comparable to standard therapy for the cSSI
- Trials finalized for S. aureus pneumonia and bacteremia
- adverse effects: taste disturbance, foamy urine, headache, procedural site pain, nausea, renal toxicity (3 %), QTc prolongation without clinical effect, potentially teratogenic

Oritavancin and SCV

Drugs with a (still) more incertain future ?

anti MRSA β-lactams

- **ceftaroline**: low MICs but still from 0.25 to 2 mg/L
- less favorable pharmacokinetics than ceftobiprole ($t_{1/2}$ = 2.6h vs. 3-4h)
- what will be the dose (presently 600mg q12h) and the breakpoint ?

glycopeptides

dalbavancin: very long half life (t_{1/2} ~ 7 days); no useful activity against VRSA and doubtful against VISA development on hold...

trimethoprim derivatives

 iclaprim: "impossible" pharmacokinetics; inferior to linezolid in phase 3 trials; further development uncertain...and lively discussions about the future of the compound at the last General Assembly of investors (August 19th, 2009)

As conclusion...

- Many molecules in development over the last years ...
- But ...
 - only narrow low margins between acceptable levels of drug exposure (safety) and what is needed to really stay above EUCAST breakpoints (aka = PK/PD plus clinical trials)...
 - difficulties in demonstrating superiority with the clinical trials as they are performed now for registration purposes, and, therefore, in substantiating clinically the superiority properties anticipated from the microbiological and pre-clinical studies
 - toxicity concerns has stopped several products...
 - We see faster than anticipated emergence of resistance...
- So far, only daptomycin and tigecycline are available as new anti-MRSA agents...
- I'm afraid vancomycin has still a lot of work to do ... if you have MRSA ...

I did not find this by my-self...

It is always difficult to see important things without help

But when someone knowing comes along, you get the picture

It is all a team work...

And here is the team...

A few papers to help ...

- Van Bambeke et al. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci. 2008 Mar;29(3):124-34 *
- Appelbaum PC. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA).
 Int J Antimicrob Agents. 2007 Nov;30(5):398-408.
- Lemaire S et al. Activity of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages, keratinocytes) forms of Methicillin-Sensitive (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) * Antimicrobial Agents and Chemotherapy (2009) 53:2289-2297
- Nguyen et al. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus Small Colony Variant isolated from a cystic fibrosis patient : 1. Pharmacodynamic evaluation and comparison with isogenic normal phenotype and revertant strains. Antimicrobial Agents and Chemotherapy (2009) 53:1434–1442 *
- Appelbaum PC. MRSA--the tip of the iceberg. Clin Microbiol Infect. 2006; Suppl 2:3-10.
- Barcia-Macay et al. Evaluation of the Extracellular and Intracellular Activities (human THP-1 macrophages) of Telavancin vs. Vancomycin against Methicillin-susceptible, Methicillin-resistant, Vancomycin-intermediate and Vancomycin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy (2006) 58:1177–1184 *

"Was auch als Wahrheit oder Fabel In tausend Büchern dir erscheint, Das alles ist ein Turm zu Babel, Wenn es die Liebe nicht vereint."

J.W. von Goethe

Disclosures

Financial support from

- the Belgian *Fonds de la Recherche Scientifique* (and other federal and regional funding agencies) for basic research on pharmacology and toxicology of antibiotics and related topics
- the Public Federal Service "Public Health" for "Appropriate antibiotic use" studies in General Practice
- Pharmaceutical Industry for specific drug-related studies

Note:

- all work, irrespective the source of funding, is published in peer-reviewed journals and is available from our web site *
- P.M. Tulkens is member of the Committee organising public campaigns for appropriate use of antibiotics in Belgium since 2000 ** and member of the streering committee of EUCAST***

http://www.facm.ucl.ac.be/publicat_facm.htm

^{**} http://www.antibiotiques.org

^{** &}lt;u>http://wwweucast.org</u>