Antibiotic selection in community-acquired pneumonia (CAP): appropriate benefit-risk profiles

Paul M. Tulkens, MD, PhD *

Françoise Van Bambeke, PharmD, PhD

Cellular and Molecular Pharmacology Unit

& Centre for Clinical Pharmacy

Université catholique de Louvain, Brussels, Belgium

co-workers: Ann Lismond, MSc (resistance studies) – S. Carbonnelle, MD, PhD (clinical studies)

* also

- Professor of Human Biochemistry and Biochemical Pathology Université de Mons/Hainaut, Mons, Belgium
- member of the EUCAST (European Committee for Antibiotic Susceptibility Testing) steering committee
- founding member and past-President of the International Society of Anti-infective Pharmacology

Einige Wörter...

- Ich bedauere, diese Darstellung nicht auf deutsch geben zu können...
- Die Deutsche Sprache ist jedoch sowohl sehr schön als auch sehr logisch...
- Und ich bin ein begeisteter Zuhörer von J.S. Bach's Passionnen oder Operns von Wagner ...
- Aber ich musste bereits alle Tage Französisch, Flämisch und Englisch sprechen... und Deutsch ist für einen Französigsprachigen schwierig...
- Ich werde versuchen, die Fragen auf deutsch zu verstehen ...

Die Lokalisierung der *Université catholique de Louvain* in Brüssel Die Gebäude der medizinischen Fakultät und das Krankenhaus Die Gruppe der Pharmakologie/Toxikologie der Antibiotika

Contents of the Presentation

- All antimicrobials used for CAP have associated toxicity risks ...
 - Major non-serious and serious side-effects associated with the main antimicrobials used in the treatment of CAP (β-lactams, macrolides, tetracyclines, fluoroquinolones).
- Adverse effects of moxifloxacin *vs* other agents
 - a comprehensive analysis
- The risk of bacterial failure
 - are guidelines "safe" ?
- Conclusions

All antimicrobials used for CAP have associated risks *

Class	Drugs	Frequent or serious side effects		
β-lactams	amoxicillin	 Anaphylactic reactions Clostridium difficile-associated colitis Digestive tract: diarrhoea, nausea CNS: agitation, anxiety, insomnia, confusion, convulsions, behavioural changes, and/or dizziness. 		
	amoxicillin - clavulanic acid	 Anaphylactic reactions Clostridium difficile-associated colitis Hepatic toxicity, including hepatitis and cholestatic jaundice Digestive tract: diarrhoea, nausea CNS : agitation, anxiety, insomnia, confusion, convulsions, behavioural changes, and/or dizziness 		
	cefuroxime	 Anaphylactic reactions and cutaneous eruptions Nephrotoxicity (aggrav. with loop diuretics) Hepatic toxicity Clostridium difficile-associated colitis 		
	ceftriaxone	 Anaphylactic reactions and cutaneous eruptions Digestive tract:diarrhoea, nausea Clostridium difficile-associated colitis Hematologic disturbances (éosinophilia, leucopenia, granulopenia, thrombopenia) Hepatic and biliary toxicities (precipitation of Ca⁺⁺ salt) CNS: cephalalgia, vertigo 		

* based on an analysis of the respective labelling (SmPC or equivalent)

All antimicrobials use for CAP have associated risks *

Class	Drugs	Frequent or serious side effects
Macrolides	clarithromycin	 Anaphylactic reactions <i>Clostridium difficile</i>-associated colitis Drug interactions (CYP450) Hepatic toxicity, including hepatitis and cholestatic jaundice Palpitations, arrhythmias including prolonged QTc Digestive tract: diarrhoea, nausea, vomiting, abnormal taste CNS: headache, confusion,
	azithromycin	 Anaphylactic reactions <i>Clostridium difficile</i>-associated colitis Drug interactions (CYP450), less frequent than with other macrolides Hepatic toxicity, including hepatitis and cholestatic jaundice Digestive tract: diarrhoea, nausea, abdominal pain CNS: dizziness, fatigue, vertigo, Genitourinary: nephritis, vaginitis
	telithromycin	 Anaphylactic reactions and allergic skin reactions <i>Clostridium difficile</i>-associated colitis Hepatotoxicity Visual disturbance Loss of consciousness Respiratory failure in patients with myastenia gravis QTc prolongation Drug interactions (CYP450) Digestive tract: diarrhoea, nausea, vomiting, dysgueusia CNS: headache, dizziness

* based on an analysis of the respective labelling (SmPC or equivalent)

All antimicrobials used for CAP have associated risks *

Class	Drugs	Frequent or serious side effects
fluoroquinolones	levofloxacin	 Anaphylactic reactions and allergic skin reactions <i>Clostridium difficile</i>-associated colitis Hematologic toxicity Hepatotoxicity Central nervous system effects: headache, insomnia, dizziness, convulsions Musculoskeletal: tendinopathies Peripheral neuropathy Prolongation of the QTc interval and isolated cases of torsade de pointes Digestive tract: nausea, diarrhoea
	moxifloxacin	 Anaphylactic reactions and allergic skin reactions <i>Clostridium difficile</i>-associated colitis Musculoskeletal: Tendinopathies Peripheral neuropathy Prolongation of the QT interval Central nervous system effects: headache, insomnia, dizziness, convulsions Digestive tract: nausea, diarrhoea

* based on an analysis of the respective labelling (SmPC or equivalent)

All antimicrobials used for CAP have associated risks *

Class	Drugs	Frequent or serious side effects
tetracyclines	doxycycline	 Anaphylactic reactions and allergic skin reactions Clostridium difficile-associated colitis Digestive tract: anorexia, glossitis, dysphagia, nausea, vomiting, diarrhoea esophagitis and esophageal ulcerations Blood cells: hemolytic anaemia, neutropenia, thrombocytopenia, eosinophilia Hepatotoxicity Photosensitivity

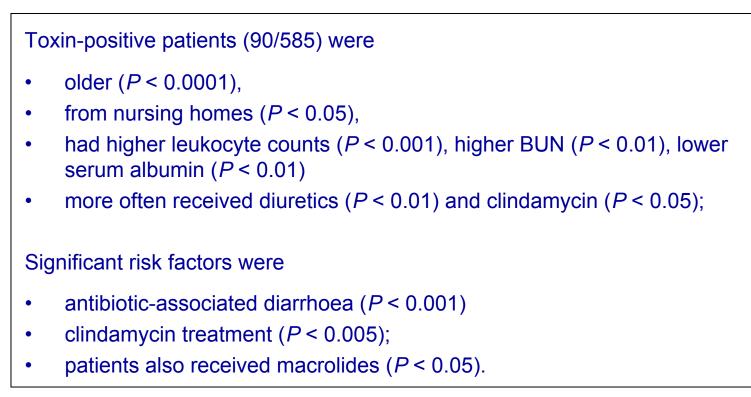
* based on an analysis of the respective labelling (SmPC or equivalent)

Conclusions (# 1):

- All antimicrobials used in RTI are associated with known toxicities
- The main point will be the recognition of patients at risk (exclusions)
- The next point will be a correct evaluation of the benefit / risk ratio in the specific environment and for the specific patient

A note about C. difficile *

in 1993-1994 ...


FREQUENT	INFREQUENT	RARE OR NO INDUCTION
Ampicillin and amoxicillin	Tetracyclines Sulfonamides	Parenteral aminoglycosides
Cephalosporins	Erythromycin	Bacítracin
Clindamycin	Chloramphenicol	Metronidazole
	Trimethoprim	Vancomycin
	Quinolones	

• Kelly CP, LaMont JT. Treatment of Clostridium difficile diarrhea and colitis. In: Wolfe MW, ed. Gastrointestinal pharmacotherapy. Philadelphia: W.B. Saunders, 1993:199-212

• Kelly CP, Pothoulakis C, LaMont JT Clostridium difficile Colitis. N Engl J Med 1994;330:257-262

C. difficile risk factors in hospitalized patients *

from an 2001 study in Israel (date of sample collection) ...

* data from in-patients from whom stool was sent to detect C. difficile toxin during the year 2001 (n=535)

Raveh D, Rabinowitz B, Breuer GS, Rudensky B, Yinnon AM. Risk factors for Clostridium difficile toxin-positive nosocomial diarrhoea. Int J Antimicrob Agents. 2006 Sep;28(3):231-7.

Are out-patients receiving anti-anaerobe fluoroquinolones more at risk ? *

from samples collected in 2002-2005 ...

TABLE 2. Fluoroquinolone use and hospitalization for C. difficile-associated disease							
Antibiotic	No. (%) with antibiotic use within 30 days		Odds ratio (95% CI)				
Antibiotic	Cases $(n = 96)$	Controls $(n = 941)$	Unadjusted	Adjusted ^a			
Levofloxacin Ciprofloxacin	28 (29) 44 (46)	266 (28) 286 (52)	1.00 (reference) 0.85 (0.52-1.41)	1.00 (reference) 1.00 (0.59–1.70)			
Gatifloxacin or moxifloxacin Gatifloxacin Moxifloxacin	24 (25) 8 (8.3) 16 (16.7)	189 (20) 57 (6.1) 132 (14.0)	1.23 (0.69–2.19) 1.33 (0.58–3.05) 1.18 (0.61–2.27)	1.37 (0.75–2.49) 1.46 (0.62–3.44) 1.32 (0.67–2.61)			

^a Multivariate adjustment includes terms for number of medications dispensed in the previous year; diabetes; end-stage renal disease; treatment with immunosuppressive medications, oral corticosteroid therapy, antineoplastic medications, proton-pump inhibitor, and H₂-receptor antagonists; residence in a nursing home; malignancy-related hospitalizations; and neighborhood socioeconomic status.

* Data based on a 3 year observation (2002-2005) of outpatients prescribed fluoroquinolones and admitted to hospital with a diagnosis of *Clostridium difficile*-associated disease (International Statistical Classification of Diseases and Related Health Problems, 10th revision [ICD-10-CA], code A04.7) within 30 days of the prescription-dispensing date

Dhalla IA, Mamdani MM, Simor AE, et al. Are broad-spectrum fluoroquinolones more likely to cause Clostridium difficile-associated disease? Antimicrob Agents Chemother (2006) 50:3216–9

C. difficile and fluoroquinolones ...

Main conclusion:

- The majority of studies found an association with of *C. difficile* associated diarrhoea and various antibiotics, but most limited in their ability to establish a causal relationship
- So far, association is mainly with clindamycin, cephalosporins, penicillins ...
- Yet, the participation of fluoroquinolone-resistant strains in hospital-acquired infections cannot be ignored (epidemic situation)
- Outside epidemic situations, antimicrobials and the risks for *C. difficile* associated diarrhoea remain very topical
- The role of infection control initiatives cannot be overstated.
- Thomas C, Stevenson M, Riley TV. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhoea: a systematic review. J Antimicrob Chemother (2003) 51:1339–50
- Blondeau JM. What have we learned about antimicrobial use and the risks for Clostridium difficile-associated diarrhoea? J Antimicrob Chemother. 2009 Feb;63(2):238-42

Adverse effects of moxifloxacin vs other agents

- Overall
- Hepatic
- QTc and cardiac toxicity
- Tendonitis
- Phototoxicity

Side effects (non-serious) from clinical trials: moxi vs. comparators (oral)

	Moxifloxacin: n (%)			comparators: n (%)			
event	< 65 y (n=4939)	65-74 y (n=842)	> 74 y (n=489)	< 65 y (n=4732)	65-74 y (n=479)	> 74 y (n=435)	
Tx effect	2161 (43.8)	382 (45.4)	221 (45.2)	2056 (43.4)	351 (44.2)	194 (44.6)	
Drug effect	1344 (27.2)	183 (21.7)	111 (22.7)	1154 (24.4)	169 (21.3)	93 (21.4)	
Nausea	381 (7.7)	40 (4.8)	19 (3.9)	260 (5.5)	35 (4.4)	11 (2.5)	
Diarrhea	274 (5.5)	39 (4.6)	29 (5.5)	236 (5.0)	28 (3.5)	21 (4.8)	
Vomiting	89 (1.8)	5 (0.6)	6 (1.2)	80 (1.7)	8 (1.0)	3 (0.7)	
Dyspepsia	72 (1.5)	8 (1.0)	1 (0.2)	59 (1.2)	8 (1.0)	3 (0.7)	
Liver test	58 (1.2)	11 (1.3)	3 (0.6)	55 (1.2)	6 (0.8)	9 (1.2)	
Flatulence	37 (0.7)	2 (0.2)	1 (0.2)	25 (0.5)	4 (0.5)	6 (1.4)	
GGTP ↑	8 (0.2)	0	0	11 (0.2)	1 (0.1)	5 (1.1)	
Headache	91 (1.8)	12 (1.4)	4 (0.8)	101 (2.1)	12 (1.5)	4 (0.9)	
Abdo. Pain	106 (2.1)	10 (1.2)	8 (1.6)	81 (1.7)	13 (1.6)	4 (0.9)	
Asthenia	48 (1.0)	7 (0.8)	4 (0.8)	43 (0.9)	3 (0.4)	4 (0.9)	
Dizziness	123 (2.5)	30 (3.6)	12 (2.5)	116 (2.5)	9 (1.1)	5 (1.1)	
Insomnia	23 (0.5)	0	5 (1.0)	32 (0.7)	2 (0.3)	3 (0.7)	
Rash	44 (0.9)	3 (0.4)	6 (1.2)	33 (0.7)	7 (0.9)	1 (0.2)	
Taste perv.	45 (0.9)	7 (0.8)	5 (1.0)	67 (1.4)	18 (2.3)	9 (2.1)	

Comparators: amoxi/clav, cefuroxime, cefexime, clarithro, azithro, trova, levo, sulfamethoxazole

Andriole et al. (2005) Drug Safety 28:443-53

Serious side effects from clinical trials: moxi vs comparators (oral)

	moxifloxacin: n (%)			comparators: n (%)			
event	< 65 y (n=4939)	65-74 y (n=842)	> 74 y (n=489)	< 65 y (n=4732)	65-74 y (n=479)	> 74 y (n=435)	
Any system	24 (0.5)	5 (0.6)	5 (1.0)	26 (0.5)	5 (0.6)	4 (0.9)	
Body as a whole	11 (0.2)	1 (0.1)	0	9 (0.2)	1 (0.1)	0	
CV	3 (< 0.1)	1 (0.1)	1 (0.2)	3 (< 0.1)	1 (0.1)	1 (0.2)	
Dig.	4 (< 0.1)	0	1 (0.2)	5 (0.1)	2 (0.3)	1 (0.2)	
Endo	1 (< 0.1)	0	0	0	0	0	
Haemic	2 (< 0.1)	1 (0.1)	0	1 (< 0.1)	0	0	
Metabolic	0	0	0	2 (< 0.1)	1 (0.1)	0	
Nervous	1 (< 0.1)	0	0	2 (< 0.1)	0	1 (0.2)	
Respir.	4 (< 0.1)	2 (0.2)	3 (0.6)	5 (< 0.1)	1 (0.1)	0	
Skin	3 (< 0.1)	0	0	1 (< 0.1)	1 (0.1)	0	
Senses	1 (< 0.1)	0	0	0	0	0	
Urogenital	1 (< 0.1)	1 (0.1)	0	3 (< 0.1)	0	1 (0.2)	

Comparators: amoxi/clav, cefuroxime, cefexime, clarithro, azithro, trova, levo, sulfamethoxazole

Andriole et al. (2005) Drug Safety 28:443-53

Hepatic toxicity of antibiotics

- Usually idiosyncratic (can be associated with other allergic reactions). ¹
- Clavulanic acid: genetic deficiency in glutathione S-transferases ? ² (longer latency period than other antibiotics...)
- Macrolides: related to reactive metabolites (nitrosoalkanes) that covalently bind to proteins, forming modified antigens (immunoallergic hepatitis) ³
- Tetracyclines: related to inhibition of mitochondrial β -oxidation of fatty acids ⁴
- Fluoroquinolones: remains anecdotal and unpredictable,¹ except for for molecules with substituent-generating reactive intermediates
 - difluoroaniline (temafloxacin and trovafloxacin) ⁵
 - cyclopropylamine (trovafloxacin; for which co-exposure to lipopolysaccharide may also be critical)⁶
- 1. Robles M, Andrade RJ. Rev Esp Quimioter. 2008 Dec;21(4):224-33
- 2. Lucena et al., Hepatology. 2008 Aug;48(2):588-96.
- 3. Pessayre et al. J Antimicrob Chemother 1985 Jul; 16 Suppl A: 181-94
- 4. Freneaux et al. Hepatology 1988 Sep; 8(5): 1056-62
- Blum et al. Clin Infect Dis 1994 Jun; 18(6): 946-50; Chen et al. N Engl J Med 2000 Feb 3; 342(5): 359-60; Lucena et al. Clin Infect Dis 2000 Feb; 30(2): 400-1
- 6. Sun et al. Chem Res Toxicol 2008 Mar; 21(3): 711-9
- 7. Shaw et al. Toxicol Sci. 2009 Jan;107(1):270-80

Crude incidence rates of acute liver injury caused by antibiotics *

		Incidence			
Antibiotic	population	per 100,000 users	per 100,000 prescriptions	endpoint	reference
fluoroquinolones (w/o moxifloxacin)	Outpatient clinic, Sweden (1995-2005)	0.7 (0.5-1.1)		International consensus	[1]
moxifloxacin	Outpatient clinic, Sweden (1995-2005)	0.08 (0.0-0.5)		International consensus	[1]
cotrimoxazole	Saskatchewan Health Plan, Canada (1982- 1986)	1.0 (0.2-5.7)	4.9 (0.9-27.6)	International consensus, hospitalisati on	[2]
erythromycin	Saskatchewan Health Plan, Canada (1982- 1986)	2.0 (0.7-5.9)	14.0 (4.8-41.2)	International consensus, hospitalisati on	[2]
amoxicillin- clavulanic acid	General practice research database, United Kingdom (1991-1992)	22.5 (14.7-34.4)	17.4 (11.4-26.5)	International consensus	[3]

* see Van Bambeke & Tulkens, Drug Safety (in press) for full Table and details

1. De Valle et al. Aliment Pharmacol Ther 2006 Oct 15; 24(8): 1187-95

2. Perez et al. Epidemiology 1993 Nov; 4(6): 496-501

3. Garcia-Rodriguez et al. Arch Intern Med 1996 Jun 24; 156(12): 1327-32

FDA reporting rate per 10,000,000 prescriptions (spontaneous reports)

Antibiotic class	Acute liver failure ^a
Moxifloxacin	6.6
Levofloxacin	2.1
Trovafloxacin	58
Telithromycin	23

^a Empiric Bayes Geometric Mean (EBGM) study www.fda.gov/ohrms/dockets/AC/06/slides/2006-4266s1-01-07-FDA-Brinker.ppt presented December 2006 to FDA Advisory Committee

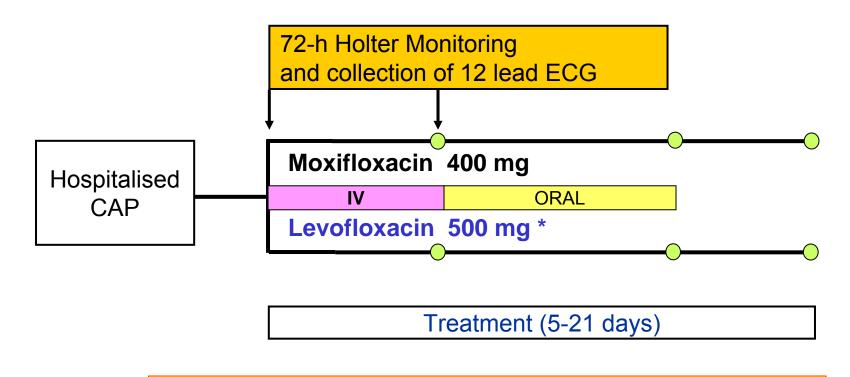
Liver failure was defined as "acute or severe liver injury with encephalopathy, liver transplant following acute illness, death in the setting of acute liver injury (hospital. with transaminase elevation, or hyperbilirubinaemia, or clinical jaundice)"

Moxifloxacin hepatotoxicity (in an nutshell)

- There is no evidence from currently available data that reactions are more frequent than with comparators
 - Clinical trials:
 - Apparent imbalance in drug-related "severe events" detected in the EU Periodic Safety Report was based on clinically non-severe, non-serious events (the number of serious, or clinically severe ADRs is too small for meaningful conclusions)
 - Spontaneous and registry data:
 - all data show a lower incidence for fluoroquinolones vs macrolides and amoxicillin/clavulanic acid
 - No signal in EBGM analysis conducted by FDA in 2006

QTc interval: observations and clinical impact

Moxifloxacin is known to cause modest QTc prolongation


→ 6 – 7 msec in healthy volunteers, Phase II/III – po and Phase II/III – iv
 But clinical impact of this is minor

Agent	Serious cardiac events * (no. per 10 millions patients treated or as indicated)
Moxifloxacin	4 ª (in 13 millions)
Ciprofloxacin	8
Ofloxacin	18
Levofloxacin	18
Gatifloxacin	27 (in 3 millions)
Sparfloxacin	> 100
Grepafloxacin	> 150

* Torsades de Pointes, ventricular tachycardia, or bradycardia ^a current observed rate is 5.8 per 10 millions

lanini (2004) Drug Benefit Trends (suppl) 34-41 PSUR Bridging Report July 18, 2008 See also: Owens & Ambrose (2005) CID 41S2: S144-57 Falagas et al (2007) Int. J. Antimicrob. Ag. 29:374-9 Veyssier et al. (2006) Med. Mal. Infect. 36:505-12

CAPRIE Study (10872 - CAP study in elderly patients) Design to test for cardiac safety

- very elderly (mean age >75 years)
- 60% patients with PSI Risk Class III or higher
- no difference in efficacy between groups

Anzueto A et al, Clin Infect Dis 2006.

^{*} Low dose by EUCAST standards

Caprie Study: analysis of all adverse events

Table 3. Overview of adverse events for hospitalized elderly patients eligible who received moxifloxacin or levofloxacin for the treatment of community-acquired pneumonia.

	No. (%) c		
Variable	Moxifloxacin arm (n = 195)	Levofloxacin arm (n = 199)	Ρ
Treatment-emergent adverse event	164 (84.1)	146 (73.4)	.01
Discontinued treatment due to adverse event	15 (7.7)	20 (10.1)	.5
Serious adverse event	46 (23.6)	45 (22.6)	.9
Death	15 (7.7)	11 (5.5)	.5
Any drug-related adverse event	51 (26.2)	45 (22.6)	.5
Drug-related adverse event reported by >1.5% of patients in either treatment group			
Diarrhea	11 (5.6)	10 (5.0)	1.0
Oral candidiasis	7 (3.6)	7 (3.5)	1.0
Nausea	3 (1.5)	4 (2.0)	1.0
Clostridium difficile infection/colitis	1 (0.5)	6 (3.0)	.1
Cardiac event	2 (1.0)	7 (3.5)	.2
Atrial fibrillation	0	3 (1.5)	
Ventricular tachycardia	1 (0.5)	1 (0.5)	
Acute myocardial infarction	0	1 (0.5)	
Atrial flutter	0	1 (0.5)	
Congestive heart failure	0	1 (0.5)	
Cardiorespiratory arrest	0	1 (0.5)	
Supraventricular tachycardia	1 (0.5)	0	
Torsade de pointes	0	1 (0.5)	
Chest pain	0	1 (0.5)	
Increased heart rate	0	1 (0.5)	

 Analysis of the safety data of the CAPRIE study* failed to demonstrate significant occurrence of cardiac toxicity of moxifloxacin vs the comparator in elderly patients

* Anzueto et al. Community-Acquired Pneumonia Recovery in the Elderly (CAPRIE): Efficacy and Safety of Moxifloxacin Therapy versus That of Levofloxacin Therapy Clin. Infect. Dis. 2006; 42:73–81

CAPRIE Study : Primary Composite Cardiac Safety End Point (Based only on Holter Monitor Findings [ECG])

Findings observed on Holter	Moxifloxacin N = 192 (%)	Levofloxacin N = 195 (%)		
Nonsustained VT ≥10 sec, ≤30 sec	14 (7.3)	9 (4.6)		
Sustained VT >30 sec	1 (0.5)	0 (0)		
Torsade de pointes	0	1 (0.5)		
Cardiac arrest	1 (0.5) [#]	0 (0)		
Total patients with findings	16 (8.3 [4.5 to 12.2])	10 (5.1 [2.1 to 8.2])		
VT: Ventricular tachycardia # Respiratory failure following DNR orders	Relative risk = 1.262 (NS) 95% Confidence Interval: 0.9149 to 1.741			

- no significant difference for primary composite safety variable between moxifloxacin and levofloxacin
- most Holter findings were asymptomatic (most often not reported as AEs by investigators)
- drug-related cardiac AEs reported in 2 (1%) of moxifloxacin- and 7 (3.5%) of levofloxacintreated patients (P = NS)

Morganroth et al, Chest 2005; 128:3398

Why a 6-10 msec QTc prolongation without clinical signs ?

Literature search shows discordance between QTc data and actual cardiac toxicity of moxifloxacin may result from

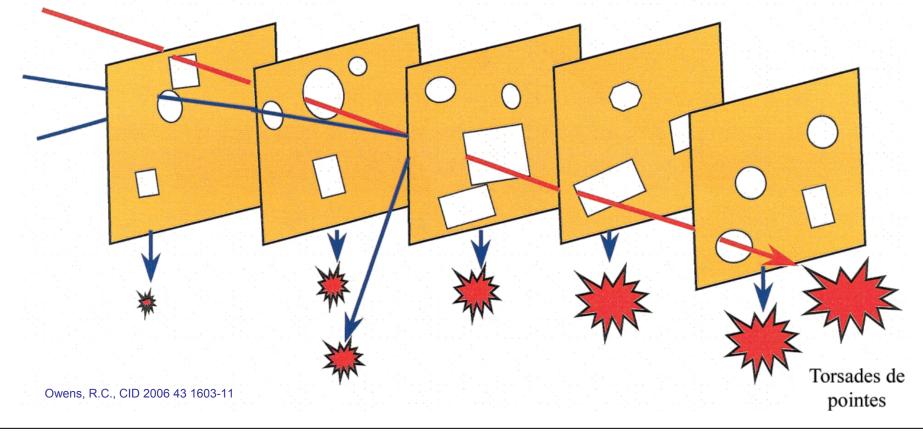
- its relatively large IC₂₀ towards the hERG* channel (31-35 μ M; ~12.6 mg/L **free** drug [corresponding to a serum total concentration of ~ 25 mg/L]), with significant risk of TdP demonstrated in animals at 100 μ M (40 mg/L free drug) (Chen et al., Br J Pharmacol. 2005;146:792-9.)**

Quoting: "the lack of TdP report by moxifloxacin in patients without other risk factors might be attributable to its well-behaved pharmacokinetic profile and other dose-limiting effects."

Infusion time (if > 30 min) is not of major concern.

- the fact that TdP is also related to at least one additional parameter (beat-to-beat alternations in monophasic action potential duration (MAPD) on which moxifloxacin has little effect (Wisialowski et al. J Pharmacol Exp Ther. 2006;318:352-9).
- absence of cytochrome P450 interactions (main cause for terfenadine or cisapride-induced TdP) (Roden DM. N Engl J Med 2004;350:1013-22.)

^{*} human Ether-a-go-go Related Gene (KCNH2) encoding the Kv11.1 potassium ion channel responsible for the repolarising IKr current in the cardiac action potential.


^{**} independently, Patmore et al. (Eur. J. Pharmacol. 2000; 406:449-452) showed rank order of potency sparfloxacin > grepafloxacin = moxifloxacin > ciprofloxacin.

Multiple risk factors that increase the probability of torsades de pointes [23]

- Genetic risks →LQTS 1-7 →Unidentified channelopathies
- Underlying cardiac disease → Bradycardia → Congestive heart failure → Myocardial ischemia

→Atrial fibrillation

- Electrolyte
- derangements
- → Hypokalemia
 → Hypomagnesemia
- → Hypocalcemia
- , injperaneonin
- Drug with QT liability given and failure to dose adjust in the presence of organ impairment → Renal insufficiency → Severe hepatic disease
- Drug with QT liability and metabolic liability → Genetic polymorphism → Concurrent CYP inhibitor administered
- Administration of multiple drugs with QT liability

Risk of Torsade de pointes and inhibitors of CYP450 metabolism

Table 1

QT interval prolonging drugs metabolized by CYP 3A4, which may possibly interact both pharmacokinetically and phamacodinamically with macrolides and imidazole antifungals.

Antiarrhythmics	Amiodarone (with roxithromycin [23]), quinidine (with erythromycin [116]), disopyramide (with clarithromycin [117, 118])
Antifungals	Fluconazole, ketoconazole, itraconazole, miconazole
Prokinetics	Cisapride (with clarithromycin, [119, 120], with erythromycin [121])
Antihistamines	Terfenadine (with erythromycin [122, 123], with troleandomycin [124]), astemizole (with erythromycin [125]), loratidine
Antipsychotics	Pimozide (with clarithromycin [126, 127]), chlorpromazine, haloperidol, ziprasidone, risperidone, clozapine, quetiapine
Immunsuppressive drugs	Tacrolimus
Opioid agonists	Methadone
Antimalarials	Quinine, chloroquine, halofantrine

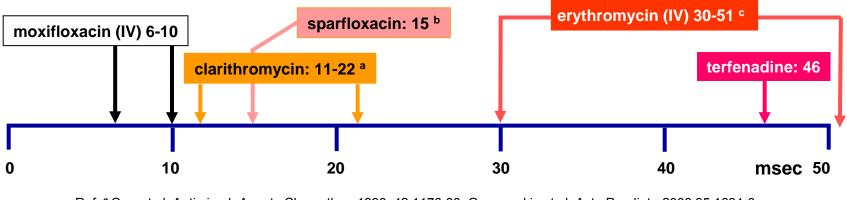
Case reports on torsades de pointes or QT prolongation during coadministration of macrolide agents and other repolarization prolonging drugs are in brackets

Simkó et al., Infection 2008;36:194-206

The use of macrolides without paying attention to other drugs may put patients at risk ...

Torsade de pointes: case reports (PubMed)

PubMed Search for "<drug name> AND Torsade de pointes" limited to "Case Reports" (search performed on 21-02-2009)


- Moxifloxacin: 4
 - Koide et al. Cases J. 2008 Dec 19;1(1):409. PMID: 19099576
 - Sherazi et al. Cardiol J. 2008;15(1):71-3. PMID: 18651388
 - Altin et al. Can J Cardiol. 2007 Sep;23(11):907-8. PMID: 17876386
 - Dale et al. Ann Pharmacother. 2007 Feb;41(2):336-40. PMID: 17284508
- levofloxacin: 3 (2001-2004)
- ciprofloxacin: 5 (2004-2007)
- erythromycin: 54 (1985-2008)
- clarithromycin: 12 (1997-2008)
- azithromycin: 5 (2001-2007)

In an update of his 2001 study, and using 16,868 U.S. FDA ADE reports, Frothingham noted the following numbers of unique US *Torsades de pointes*: 3 ciprofloxacin, 51 levofloxacin, 37 gatifloxacin, and 20 moxifloxacin (Emerg. Infect. Dis. 2005;11:986-987)

Moxifloxacin IV Cardiac Safety: Conclusions and Discussion

- Moxifloxacin IV produces a predictable increase in QT_c interval only marginally incremented by increasing its concentration (within clinically-meaningful limits)
- The frequency of cardiac adverse events and drug-related cardiac adverse events are similar for moxifloxacin- and comparator-treated patients
- <u>No increased risk</u> of cardiac morbidity or mortality was seen in hospitalised patients with CAP (including high risk ones) treated with IV moxifloxacin

Moxifloxacin is used as a positive control for QT_c effect(s) in Phase I studies because it offers a positive signal without risk of clinical adverse events to the volunteers.

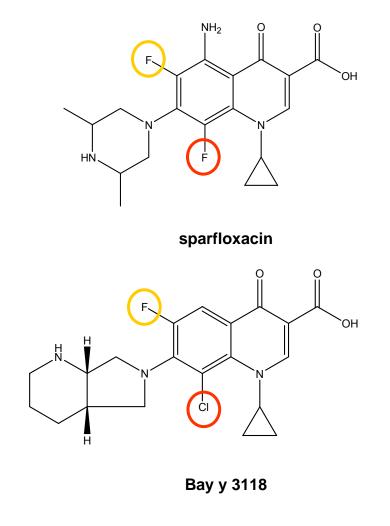
Ref.:^a Carr et al. Antimicrob Agents Chemother. 1998; 42:1176-80; Germanakis et al. Acta Paediatr. 2006;95:1694-6. ^b Jaillon et al. J Antimicrob Chemother. 1996; 37 Suppl A:161-7; Jaillon et al. Br J Clin Pharmacol. 1996; 41:499–503.c ^c Tschida et ak. Pharmacotherapy. 1996;16(4):663-74; Oberg et al. Pharmacotherapy. 1995;15:687-92

Tendonitis

- well known effect of fluoroquinolones (included now in all US labelling)
- mechanism remains uncertain...
 - direct toxicity for collagen fibers and formation of reactive oxygen species ...
 - increased expression of matrix metalloproteinases ...
 - complexation of Mg²⁺ ions in joint and cartilages (class effect ?)...
- incidence: 0.14 to 0.4 % ^[1]
- Risk factors: age, corticoid use, renal failure, diabetes mellitus, gout, hyperparathyroidism, peripheral vascular disease, sportive activities, or rheumatic disease ^[2]
- more frequently mentioned in <u>spontaneous reporting systems</u> for levofloxacin than for ciprofloxacin or norfloxacin ^[3]
- isolated cases reported with moxifloxacin but no tendon rupture noted in MOSAIC study (COPD patients; 63.8 ± 9.7 y; concomitant use of corticosteroids [57 %]) ^[4]

^{1.} Mehlhorn & Brown. Ann Pharmacother 2007 Nov; 41(11): 1859-66

^{2.} van der Linden et al. Arch Intern Med 2003 Aug 11; 163(15): 1801-7; Khaliq & Zhanel. Clin Infect Dis 2003 Jun 1; 36(11): 1404-10


^{3.} Leone et al. Drug Saf 2003; 26(2): 109-20; Khaliq & Zhanel. Clin Infect Dis 2003 Jun 1; 36(11): 1404-10

^{4.} Wilson et al. Chest 2004 Mar; 125(3): 953-64

Phototoxicity

Associated to certain fluoroquinolones only

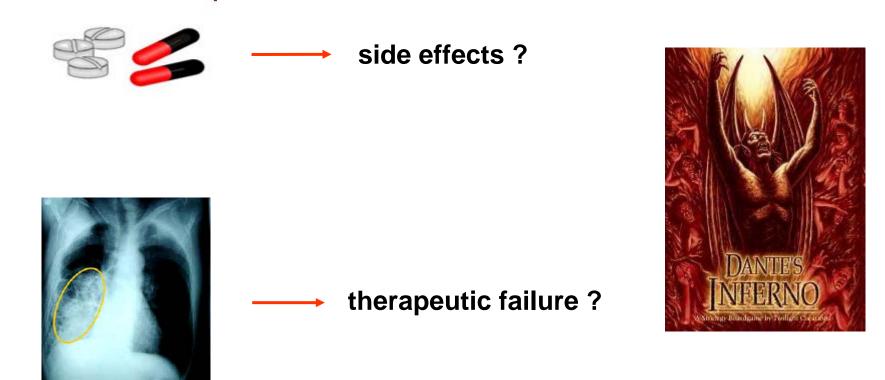
- favoured by the F substituent in position 6
- markedly enhanced for molecules with additional halogen substituent (Cl or F) in position 8 (sparfloxacin, BAY y 3118, e.g.)
- lomefloxacin > fleroxacin > enoxacin > pefloxacin > ciprofloxacin > grepafloxacin > gemifloxacin > levofloxacin > norfloxacin > ofloxacin > moxifloxacin ^[1]
- incidences:
 - ciprofloxacin: < 1 %) [2]
 - moxifloxacin or gemifloxacin: < 0.1 % in the absence of excessive exposure to light ^[3].

in moxifloxacin, the CI is replaced by a methoxy

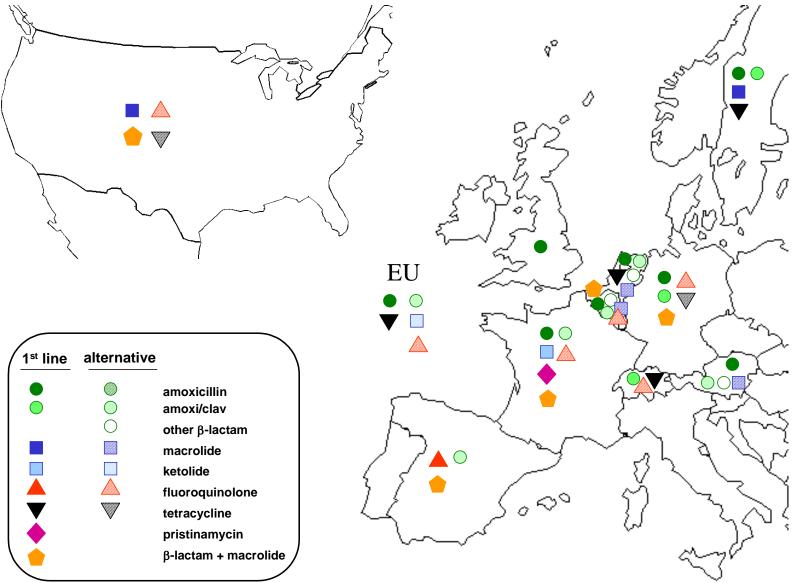
- 1. Owens & Ambrose PG. Clin Infect Dis 2005 Jul 15; 41 Suppl 2: S144-S157
- 2. US Cipro® Package insert (http://www.univgraph.com/bayer/inserts/ciprotab.pdf)
- 3. US Avelox® Package insert (http://www.univgraph.com/bayer/inserts/avelox.pdf) US Factive® Package insert (http://www.factive.com/pdf/prescribing_info.pdf)

Populations at risk *

Class	Drugs	Populations at higher risk of side effects		
β-lactams	amoxicillin	Allergic patients		
	amoxicillin/	Allergic patients		
	clavulanic acid	 Erythematous skin rash: patients with mononucleosis 		
		 Hepatic toxicity: patients with hepatic dysfunction 		
		Nephrotoxicity: elderly patients		
azithromyci	clarithromycin	 Cardiac effects: patients taking other drugs with effects on QTc or class 1A or III antiarrythmics 		
		Pregnancy		
		 Patients with severe renal impairment with or without coexisting hepatic impairment 		
		 Patients taking drugs metabolized by CYP450 		
	azithromycin	Hepatotoxicity: patients with liver failure		
	telithromycin	 Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia 		
		Myopathies : co-administration of statins		
		 Patients with severe renal impairment 		
		Pregnancy		
		Children (no studies so far)		

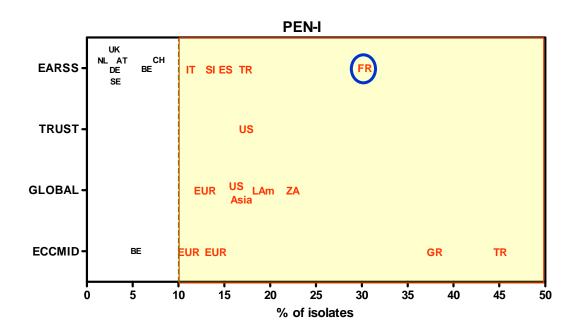

* as defined by the corresponding labelling

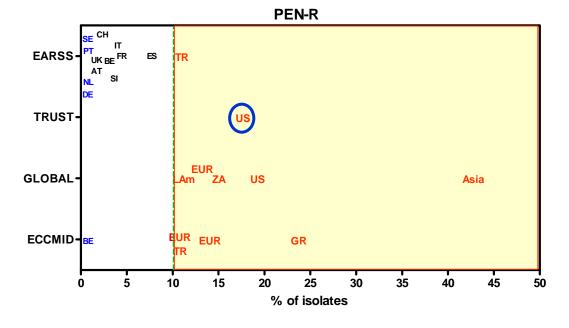
Populations at risk *


Class	Drugs	Populations at higher risk of side effects
fluoroquinolones	levofloxacin	 Tendon disorders: elderly, patients taking corticoids, or with kidney, heart or lung transplants
		 Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia
		 CNS effects: patients at risk of epilepsy
		Dysglycemia: diabetic patients
		 Pregnancy, lactation, infants
	moxifloxacin	 Tendon disorders: elderly, patients taking corticoids, or with kidney, heart or lung transplants
		 Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia
		 CNS effects: patients at risk of epilepsy
		Pregnancy, lactation, infants
tetracyclines	doxycycline	Pregnancy, lactation, infants

* as defined by the corresponding labelling

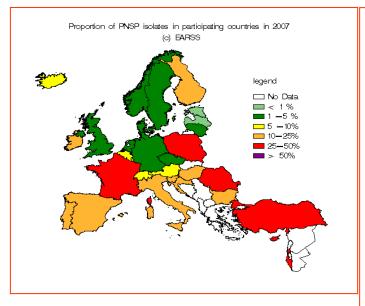
But what is "risk" ?


Which guidelines do you need to follow ?



Populations at risk of bacteriological failure with penicillins*

*analysis of resistance of 1st line antibiotics (penicillins) for CAP as reported by the surveillance systems or publications (*S. pneumoniae*)


- EARSS: European Antimicrobial Surveillance system
- **TRUST**: Tracking Resistance in the United States Today
- **GLOBAL**: Global Landscape On the Bactericidal Activity of Levofloxacin
- ECCMID: abstracts of the 18th European Congress of Clinical Microbiology and Infectious Diseases

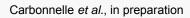
Can we treat pneumococcal CAP with penicillin throughout Europe ?

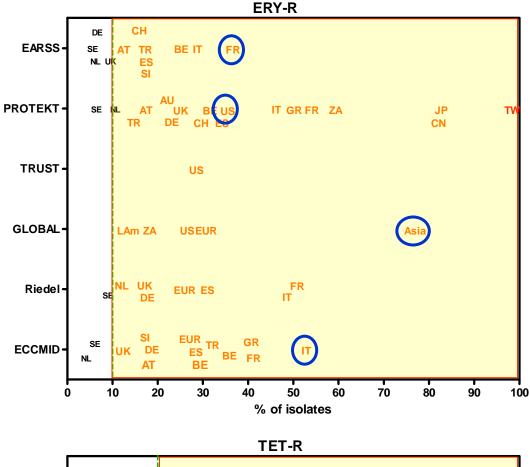
About half of EARSS countries have between 10 and 50 % of "poorly susceptible" *S. pneumoniae* Penicillins - EUCAST clinical MIC breakpoints 2008-06-27 (<u>version</u> 1.2)

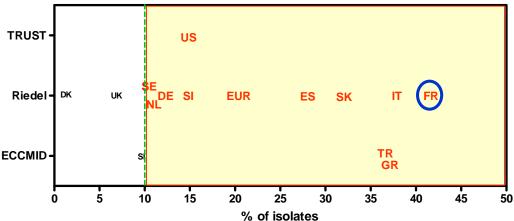
Penicillins			Spe <u>cies-relat</u> ed breakpoints			
Click on antibiotic name to see wild type MIC distributions.		Strepto- coccus A,B,C,G ^F	S.pneu- moniae ^G	Other strepto- cocci ^H	H.influ- enzae ^l	
Benzylpenicillin	RD	0.25/0.25	0.06/2	0.25/2	IE	
Ampicillin ^N	RD	NoteF	0.5/2	0.5/2	1/1	
Amoxicillin	RD	NoteF	Note ^G	0.5/2	1/1	
Amoxicillin/clavulanate ⁰	RD	NoteF	Note ^G	Note ^H	1/1	

G. Streptococcus pneumoniae:

In pneumonia, strains with with MIC ≤0.5 mg/L should be regarded as susceptible to benzylpenicillin at doses of at least 1.2 g x 4, with MIC ≤1 mg/L at doses of 2.4 g x 4 or 1.2 g x 6 and strains with MIC ≤2.0 mg/L susceptible at doses of 2.4 g x 6.

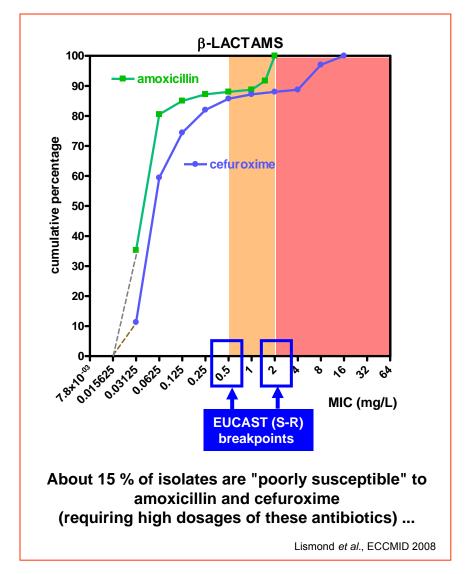

EUCAST, 2008

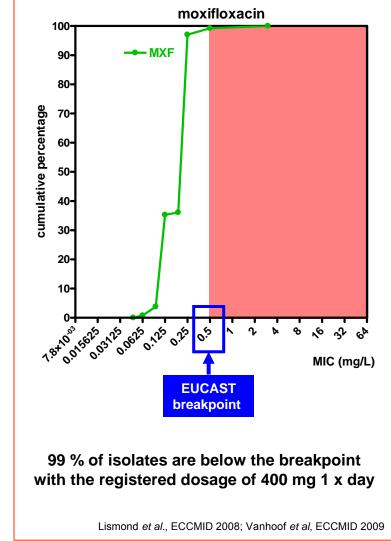

EUCAST will tell you that in order to cover *S. pneumoniae* with penicillin in the "orange" and "red" countries, its dose need to be pushed from 1.2 g every 6h (4.8 g/day) to 2.4 g every 4 h (14.4 g/day)...

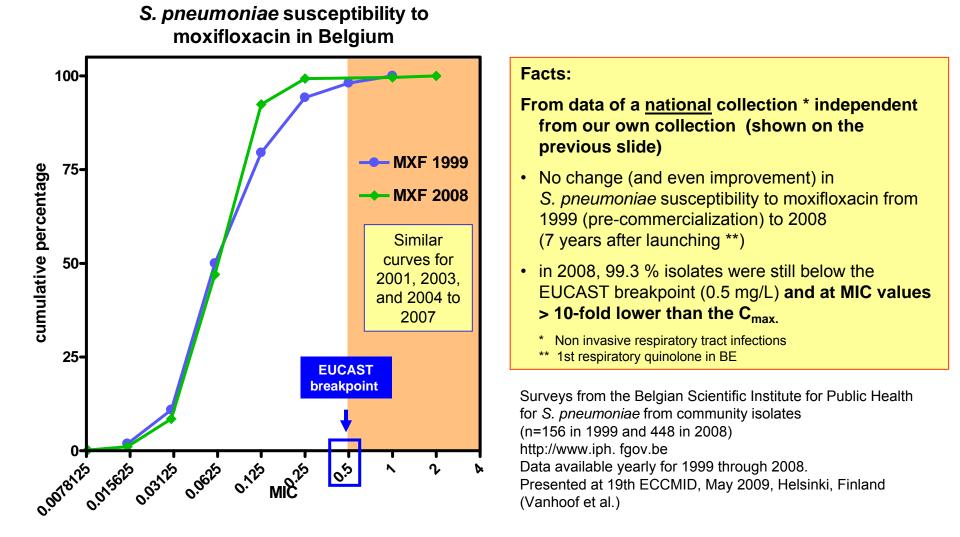

Populations at risk of bacteriological failure with macrolides and tetracyclines*

*analysis of resistance of often recommended 1st line antibiotics for CAP (macrolides, doxycycline) as reported by surveillance systems or publications (*S. pneumoniae*)

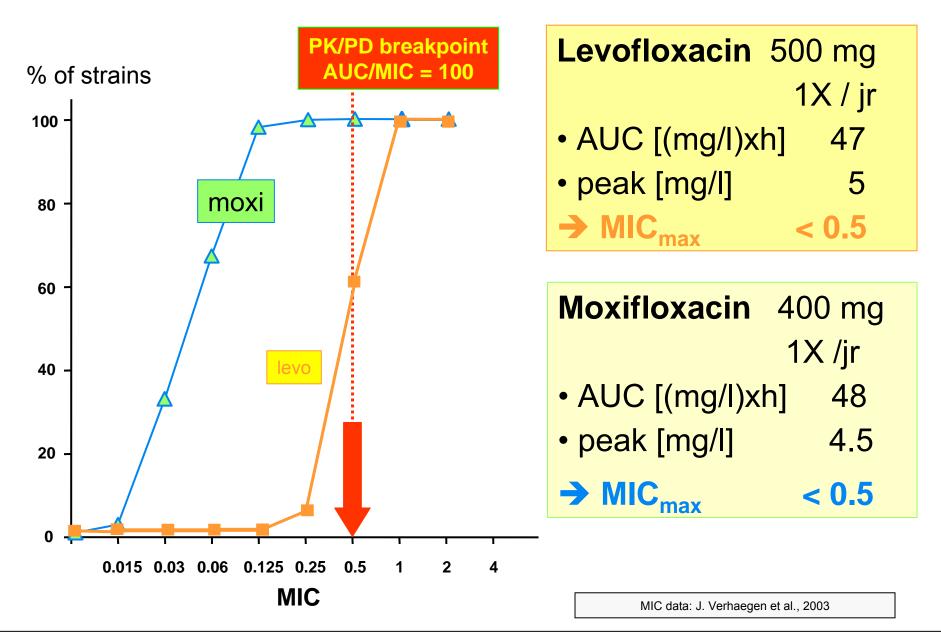
- EARSS: European Antimicrobial Surveillance system
- **PROTEKT**: Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin
- **TRUST**: Tracking Resistance in the United States Today
- GLOBAL: Global Landscape On the Bactericidal Activity of Levofloxacin
- Riedel: Eur J Clin Microbiol Infect Dis. 2007 Jul;26(7):485-90.
- ECCMID: abstracts of the 18th European Congress of Clinical Microbiology and Infectious Diseases



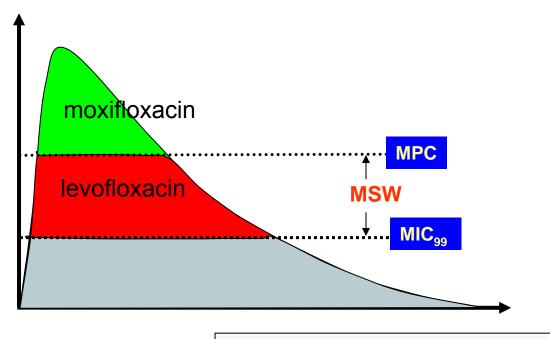



β -lactams are reaching their limits in Belgium for CAP

(which is the reason why physicians tend to use moxifloxacin more frequently)



Moxifloxacin MIC's against *S. pneumoniae* have not increased in Belgium from 1999 to 2008



Pharmacokinetics and breakpoint

Why has moxifloxacin remained active for so many years even if used as in Belgium

Its registered dosage (400 mg) ensures a C_{max} that goes far above the MIC of all target organisms, and reaches and exceeds the so-called "*mutant prevention concentration* [MPC; about 10 x the MIC]) *,**

concept from Drlica & Zhao, Rev. Med. Microbiol. 2004, 15:73-80

- * this may include first mutants as well as efflux-overexpressing bacteria (Avrain et al., JAC 2008; ...)
- ** this is NOT the case for levofloxacin, which may explain its MIC creep in the U.S.A. and some places in EU

Conclusions (1 of 2)

- The overall safety profile of fluoroquinolones (and moxifloxacin in particular) is similar or better than comparators from clinical trials and spontaneous report systems. More specifically, and with regard to recent questions:
 - Hepatic events reactions are well within range of other commonly used antibacterials, or lower than amoxicillin/clavulanic acid or macrolides
 - QTc prolongation is well characterized but cardiac events/TdP are not different from other fluoroquinolones and lower than those of macrolides
 - Specific toxicities (tendonitis, e.g.) are well known and can be taken care of
 - skin events are very rare and, in any case, much less frequent than with β -lactams

Conclusions (2 of 2)

- Fluoroquinolones (and moxifloxacin in particular, for PK/PD reasons) are a useful alternative in those countries (or specific situations) where resistance to so-called "1st line antibiotics" (for CAP or COPD) is becoming worrying, or where or when a fast-acting agent may be advantageous;
- The safety profiles of higher doses of β-lactams or of levofloxacin (needed to meet the resistance levels patterns of *S. pneumoniae*) are not well characterised, and potentially worse than established profiles from low doses studies.
- Conversely, and based on all available evidence, the use of moxifloxacin should not be vitiated by excessive toxicity if it is prescribed for the correct indications and with due attention to the contraindications and warnings mentioned in the labeling

(Van Bambeke & Tulkens, Drug Saf. 2009;32(5):359-78)

Flämischer Maler Hieronymus Bosch (c1450-1516) zeigt großer Fantasie in seinem Triptychon Altarpiece "das letzte Urteil" (c1510-15, Akademie, Wien)

"Was auch als Wahrheit oder Fabel In tausend Büchern dir erscheint, Das alles ist ein Turm zu Babel, Wenn es die Liebe nicht vereint."

Disclosures

Financial support from

- the Belgian *Fonds de la Recherche Scientifique* (and other federal and regional funding agencies) for basic research on pharmacology and toxicology of antibiotics and related topics
- the Public Federal Service "Public Health" for "Appropriate antibiotic use" studies in General Practice
- Pharmaceutical Industry for specific drug-related studies

Note:

- all work, irrespective the source of funding, is published in peer-reviewed journals and is available from our web site *
- P.M. Tulkens is member of the Committee organising public campaigns for appropriate use of antibiotics in Belgium since 2000 **
 - * http://www.facm.ucl.ac.be/publicat_facm.htm
 - ** http://www.antibiotiques.org/

Selected publications in relation to this presentation:

- Van Bambeke F, Tulkens PM. Safety profile of the respiratory fluoroquinolone moxifloxacin: comparison with other fluoroquinolones and other antibacterial classes. Drug Saf. 2009;32(5):359-78. PubMed PMID: 19419232.
- Van Bambeke F, Reinert RR, Appelbaum PC, Tulkens PM, Peetermans WE. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs. 2007;67(16):2355-82. Review. PubMed PMID: 17983256.
- Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infect. 2005 Apr;11(4):256-80. Review. Erratum in: Clin Microbiol Infect. 2005 Jun;11(6):513. PubMed PMID: 15760423.