Antibiotic combinations vs. monotherapy in critical care

P.M. Tulkens

Cellular and Molecular Pharmacology, Catholic University of Louvain, Brussels, Belgium

and

International Society of Anti-infective Pharmacology (ISAP)

- enlarge the spectrum
 - empiric therapy in situations where the offending organism is unknown or largely uncertain
 - nosocomial infections in Intensive Care units in absence of preemptive sampling;
 - patient with infection from difficult to trace origin
 - suspicion of polymicrobial infection
 - patient with previous antibiotic therapy and suspected of infection with multi-mechanisms of resistance
- improve antibacterial efficacy
 - additive/synergistic effects
 - combination of complementary pharmacodynamic properties
 - addition of pharmacodynamic effects
- reduce the rate and/or odds of emergence of resistance

something probably to think more and more about ...

accepted by everyone, but should be associated with step-down approaches, which is not alsways done ...

open to much controversies related to *in vitro* → *in vivo* translation ...

- CAP type 2 with co-morbidities
 - S. pneumonia + H. influenzae + an "atypical" organism
 - amoxicilin + clavulanic acid + macrolide ...
 - but what about monotherapy with moxifloxacin / levofloxacin ?
- CAP type 3 or 4
 - S. pneumonia + H. influenzae + a Gram (-) organism
 - ceftriaxone + ciprofloxacin
 - but what about meropenem / imipenem ...
- Nosocomial pneumonia (first 3 days of therapy)
 - S. aureus many Gram (-) negative organisms P. aeruginosa ...
 - ceftazidime + amikacin
 - but perhaps meropenem/ imipenem ...
 - add vancomycin in case of suspicion of MRSA
- Polytraumatized patient (empiric therapy)
 - skin flora + gut flora (including anaerobes...)
 - vancomycin, ceftazidime, metronidazole, aminoglycoside ...

Improving antibiotic efficacy ...

FIC index = MIC (A+B) / MIC (A) + MIC (B+A) / MIC (B)

- probably critical for co-trimoxazole and synergistins (SYNERCID®)...
- for other antibiotics, clear in vitro evidence only for β -lactams plus aminoglycosides in poorly susceptible bacteria (true biochemical synergy) ...
 - → potential applications in
 - endocarditis (enterococci...; supported by clinical studies)
 - pseudomonal infections (only partially supported by clincical studies...
 - impaired host (neutropenia)

most other antibiotics show indifference or antagonism... and the clinical significance of these is unclear and even doubtful (except for physical or chemical incompatibilities...)

Combination of useful pharmacodynamic properties

time-dependent and concentration-dependent antibiotics
→ β-lactams plus aminoglycosides ...

concentration

The rate of kill IS important...

A simple experiment ...

- put bacteria in broth
- add antibiotic at increasing concentrations
- look at the reduction of the inoculum

Combination may be most useful when PK/PD indices are low

Combination of useful pharmacodynamic properties

- addition of pharmacodynamic parameters
 - $-\beta$ -lactams plus fluoroquinolones ...

Combination of bactericidal antibiotics ...

Activities of daptomycin (6 mg/kg/day) alone and in combination with gentamicin versus MRSA 494.

- GC, growth control; G1, gentamicin in 1-mg/kg doses q8h; G5, gentamicin in 5-mg/kg doses q24h;
- D6, daptomycin in 6-mg/kg doses given q24h;
- D6 + G1x3, daptomycin plus gentamicin (three 1-mg/kg doses); D6 + G5x1, daptomycin plus gentamicin in one 5-mg/kg dose.

Tsuji & Rybak, Antimicrob Agents Chemother. 2005 Jul;49(7):2735-45 (In vitro pharmacodynamic infection model).

Combination of pharmacodynamic indices ?

- limitations:
 - can pharmacodynamic indices be simply added ?
 - AUC_{24h}/MIC drug A + AUC_{24h}/MIC drug B ?
 - AUC_{24h}/MIC drug A + time > MIC drug C ?
 - C_{max}/MIC drug D + time > MIC drug B ?
 - can we use a surrogate common pharmacodynamic index ?
 - AUC_{24h}/MIC ?

hint: if you do NOT use different schedules,

 C_{max}/MIC , AUC_{24h}/MIC , and time > MIC are co-variates and are directly interrelated...

Please, follow the demonstration at the blackboard in order not to get confused ...

What is a AUC/MIC ?

What is a AUC/MIC ?

You want an AUC/MIC = 125 ...

A simple rule...

24h-AUC/MIC =

• 30 → 1.25 x MIC for 24h

• 125 → 5.2 x MIC for 24h

• 400 → 16 x MIC for 24h

Résistance...

Reducing the rate / odds of resistance ?

Α 9 GC 8 RIF Log₁₀ CFU/mL LIN LIN+RIF 3 VAN VAN+RIF 2 MOX 1 12 24 36 48 0 Hours Cha & Rybak, Antimicrob Agents Chemother. 2003 Jun;47(6):1984-7.

Simulations of activities against *S. pneumoniae* clinical isolate 79.

GC, growth control; **RIF, rifampin;** LIN, linezolid; VAN, vancomycin; MOX, moxifloxacin.

April 6th, 2006

Failure of rifampicin to eradicate S. pneumoniae ...

Mutant Prevention Concentration ...

AB Biodisk Laboratory for Education April 6th, 2006

"Window" where selection of mutants/resistants may take place ...

Time after administration

concept from Drlica & Zhao, Rev. Med. Microbiol. 2004, 15:73-80

April 6th, 2006

Adapted from D. Croisier, 2005, Bondeau et al., 2001, and Hansen et al, 2003

The MPC is (practically) about 4-10 x the MIC ... and the MIC can be used as a guide ...

Efflux and MIC ?

- efflux is a universal mechanism for cell protection against membrane-diffusing agents
- many drugs diffuse though membranes and become opportunistic substrates of efflux pumps
- for AB, efflux decreases the amount of drug in bacteria and impairs activity, increasing the MIC ...
- insufficient drug exposure favors the selection of less sensitive organisms
- but
 - recognition by efflux varies widely among closely related drugs (e.g. levofloxacin >> moxifloxacin)
 - the increase in MIC is modest and often leaves the strain categorized (falsely ...) as "sensitive"...
- true MIC determination may, therefore, become more and more critical ...

Van Bambeke et al. J Antimicrob Chemother. 2003;51:1055-65.

Why is MIC important for detecting efflux ?

Efflux and S. pneumoniae

Typical increase in MIC of *S. pneumoniae* (wild type) towards CIP upon successive 24h incubations in the presence of CIP at concentrations equal to half the MICobserved each day

Efflux and S. pneumoniae

Typical increase in MIC of *S. pneumoniae* (wild type) towards CIP upon successive 24h incubations in the presence of CIP at concentrations equal to half the MICobserved each day

Heteroresistance and MIC: the case of vancomycin ?

Combination: the Helicobacter pylori paradigm

→ Importance of multiple drug associations

- seems a logical approach for optimizing therapy;
- has received a lot of attention from microbiologists, but clinical data remain scanty and controversial except for a defined number of clear-cut situations;
- still lacks sound, detailed pharmacodynamic rulings for efficacy;
- should not be neglected ... as a useful approach IF step down therapy is part of your procedures (if not, try to implement it ...);
- should not be implemented for reasons of toxicity only ... (this was not developed but is open to discussion...)