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The pharmacologist's and toxicologist's
key question ...

e Can you model the complexity of the bacterial
iInfection in relation to host ?

e Can you model antibiotic toxicity ?

e Can you model drug cellular transport ?
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Are these questions important ?

* intracellular infection is probably a major cause of failure of
antibiotic therapy in "difficult to treat" infections (suboptimal
activity);

e it may also explain (partly) the emergence of resistance
(exposure to pharmacologically suboptimal concentrations)

« Toxicity is often a limitation to antibiotic usage ...

« If antibiotics are not transported at their site of action, they are
useless...
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Intracellular bacterial infections

* Obligatory or mainly intracellular:
— respiratory infections (pneumopathies):
» Chlamydia pneumoniae: 10% in children
» Legionella pneumophila: frequent if immunosuppression
* Mycobacterium spp.: frequent if immunosuppression
— sexually transmitted diseases
» Chlamydia trachomatis: most common pathogen in MST
— CNS infections + other sites:

 Listeria monocytogenes: pregnant women; immunosuppression
(mortality: > 30 %)

« Facultative or mainly extracellular:
— digestive tract infections
» Salmonella spp., Shigella spp.

— respiratory, cutaneous, etc...tract infections
» Streptococcus spp., Staphylococcus spp.
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Activity ...
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Antibiotic intracellular activity ?
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Question : which are the pharmacokinetic and
pharmacodynamic parameters governing the

activity of intracellular antibiotics
(Tulkens, 1991; Carryn et al., 2003)
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|s accumulation in cells the solution ?

TABLE 1. Uptake of azithromycin and erythromycin by various
phagocytic cells

Antibiotic
uptake
Cell type Antibiotic® Differential”

ve | #&10

cells

Human PMNs Azithromycin 4.9 79 1.58

Erythromycin 16 0.32

Murine PMNs Azithromycin 3.9 39 0.78

Erythromycin 10 0.20

Murine alveolar Azithromycin 5.9 170 18.66

macrophages Erythromycin 29 3.18

Rat alveolar Azithromycin 5.5 60 6.58

macrophages Erythromycin 11 1.21

Murine resident Azithromycin 15.5 62 6.81

peritoneal Erythromycin 4 0.43
macrophages

“ Cells were incubated for 2 h with 10 pg of the antibiotic per ml.
® Ratio of azithromycin uptake to erythromycin uptake. All values are
statistically significant.

Gladue et al.,
AAC 33:277-82, 1989
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The S. aureus problem ...

J Bone Joint Surg Br. 20035 Aug B5(61918-21.

Intracellular Staphylococcus aureuns. A mechanism for the indolence of
osteomyelitis.

Ellington JK, Harris M, Webh L, Smith B, Smith T, Tan K, Hudson M.

Derﬁﬁﬁf‘ﬁﬁﬂ‘f F Tt e ae e Sraertr Wilalre Bereot T Tt citr S e besd AF W e cdimine Wlnct e
ol Clin Infect Dis. 2001 Jun 1:32(113:1643-7. Epub 2001 Apr 30,

Intracellular persistence of Staphylococcus aureus small-colony variants
within keratinocytes: a cause for antibiotic treatment failure in a patient
with darier's disease.

von Eiff C, Becker K, Metze D, Lubritz 5, Hockmann J, Schwarz T, Peters .

P il Y, DN, IS, [ 'Y, MR, (S, [ ——. T o S B i, I, P o 10 D, U ni RS SO S Y, DUUSUUY S N, DA S

Institute
Germald 16t Tnmun, 1986 Dec,54(3):833-6.
Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial
cells: model for postadherence events in endovascular infections.

Hamill B.J, ¥ann JW, Proctor RA.
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Why does S. aureus has an intracellular life, and is dangerous ?

cytotoxicity
adhesion Internalisation and

cellular response
/77
cytokines‘..

D ® AN\

B-integrin a

actin polymerisation

fibronecting

Lowy, Trends Microbiol (2000) 8:341-342
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Alog CFU
fromtime O h

Settting up the model ...

—O— extra
—Q0— intra

Seral et al. Antimicrob. Agents Chemother. 2003 47:2283-2292
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Using the model...
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Barcia-Macay et al. Antimicrob. Agents Chemother. 2006, in press
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Screening available antibiotics

growth killing
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What about a new antibiotic
(tigecycline and intracellular S. aureus...)

Concentration {ma/L)

400 - e mg/L.

-4 2 mg/L

- 5 mg/L

< 10 mg/L _
200

HHHA
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

Mean Log clu

—a— TGC 1 mg/L
—0— Controls

0 4 8 12 16 20 249

Time {hours)

accumulation in PMN:
about 20-30 fold

Ong et al. J Antimicrob Chemother. 2005 Sep;56(3):498-501.

activity in PMN:
about 1 log,,

at 1 mg/L
S. aureus ATCC 29213
(MIC = 0.25 mg/L)
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Screening available antibiotics

killing
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Cooperation
with host
defenses ...

The intracellular pathway
of Listeria monocytogenes ...

A-C: control
D-E: with gamma-interferon

Ouadrhiri et al. Antimicrob. Agents Chemother. (1999) 43:1242-1251
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Cooperation with host defenses ...

Influence of GM-CSF on
 TNF-a production by macrophages
e autocrine activation of Listericidal activity
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Carryn et al. J. Infect. Dis. (2004) 189:2101-2109
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Toxicity ...
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Aminoglycoside toxicity ...

AMINOGLYCOSIDE NEPHROTOXICITY CASCADE

)r

\ él _J-n-—T"
=~ Accumulation - N\ ;
in lysosomes r\

KIDNEY FAILURE

From: Tulkens, 19848 Amer. J Med. 80(Suppl 6B);105-114
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Apoptosis in kidney and renal cells ...

rat cortex LLC-PK1 cells

Morphological changes in rat renal
cortex (A,C,D) upon treatment with
gentamicin at low doses (10 mg/kg;
10 days) and in cultured LCC-PK1
renal cells (B) upon incubation with
gentamicin (under conditions
causing a drug accumulation
similar to that observed in rat renal
cortex of the animals treated as
indicated in A, B, and C [approx.

10 pg/g;

Servais et al. In: Toxicology of the Kidney (Target Organ Toxicology Series), 2004, chap. 16, pp 635-685,
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What is the mechanism of gentamicin—induced
apoptosis and its relation to necrosis in kidney cortex ?

VoL. 43, 1999 MINIREVIEWS 1005

FIG. 1. Ultrastructural alterations induced in proximal tubular cells during aminoglycoside treatment. { A) Control. Changes detected early on and at low doses (B)
consist mainly of the enlargement of lysosomes, which most likely occurs by fusion of preexisting structures and which is caused by the progressive deposition of polar
lipids which adopt a concentric lamellar disposition (myelin-like structures, most commonly referred to as myeloid bodies); the other subcellular structures are usually
well preserved. Later changes or changes observed with high doses (C) include the apparent rupture of lysosomes (with the release of myeloid bodies in the cytosol),
extensive mitochondrial swelling and damage, dilatation of the endoplasmic reticulum cisternae, shedding of the apical brush-border villi, pericellular membrane
discontinuities, and the occurrence of apoptotic nuclei. These alterations do not necessarily coexist in all cells. The figure is adapted from reference 76 and is based
on the typical descriptions given in references 38, 40, 71, 76, 77, 127, and 138,

Mingeot-Leclercq & Tulkens, Antimicrob. Agents Chemother. (1999) 43:1003-1012
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Are lysosomes disrupted by gentamicin ?

Fig. 4. Appearance of acridine orange-loaded LLC-PK1 cells in confocal microscopy. Cells were exposed to acridine orange (5 pg/ml) for 15 min and then
retumed to control medium for 3 h (A, B), or exposed to gentamicin (C and D, 3 mM, 3 h; E, 2 mM, 4 h) or MSDH (F, 25 pM, 3 h).

H. Servais et al. / Toxicology and Applied Pharmacology 206 (2005) 321-333
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What if you by-pass lysosomes ?

incubated electroporated

no GEN no GEN

Figure 1: Staining of nuclei of LLC-PK; cells by 4’,6'-diamidine-2’-phenylindole (DAPI). Incubated: cells were maintained for 24 h in the
absence of gentamicin (no GEN) or in the presence of gentamicin (GEN) at the concentration shown (3 mM; 1.3 g/L). Electroporated: cells
were electroporated in the absence (no GEN) or in the presence of gentamicin (GEN) at the concentration shown (0.03 mM; 13.9 mg/L), and
examined 24 h later. In the absence of gentamicin, both electroporated and incubated cells show a diffuse finely reticulated staining
characteristic of euchromatin of diploid interphase animal cells. In contrast, cells electroporated or incubated in the presence of gentamicin
show typical changes associated with apoptosis, consisting in the condensation and fragmentation of the nuclear material.

Servais et al., Antimicrob. Agents Chemother. in press
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-8 clectroporated —fr—incubated

apoptosis

Bypassing
lysosomes In
cultured cells ...

15+

10+

Apoptotic cells (%)

80+

necrosis

60+

404

LDH Release (%)

20+

) I
Servais et al., Antimicrob. Agents Chemother. in press 0 0803 0.03 0.3 3 mM
] 1.3 13.9 139 1,392 mg/L

gentamicin extracellular concentration
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Accumulation may not be without risks:
azithromycin may cause phospholipid accumulation ...

Ultrastuctural alterations
observed in cultured
fibroblats maintained with
0.03-0.1 mg/L of
azithromycin for 7 to 16
days.

| Van Bambeke et al., J. Antimicrob. Chemother. 42:761-767, 1968
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Oritavancin cellular toxicity ...

V macrophages
¥ fibroblasts

H
a 2004
=]
E
S
E 150-
£
7]
]
8 1001
(-H]
£
S 501
8
w
o
=]
€ 0

25 50

oritavancin cellular concentration (nmol/mg prot)

75

phospholipids in excess (nmol/mg prot)

cells incubated

at clinically
meaningful
concentrations
S
200- A macrophages S  200- O macrophages . .
A fibroblasts CEN @ fibroblasts ° ®
3
150- £ 1504
w
w
Q
100- £ 1004
@
£
©
50- 8 50
w
K
Q
=
C T T T o 0 T T T T
0 25 50 75 0 50 100 150 200

phospholipids in excess (nmolimg prot)

Van Bambeke et al. Antimicrob. Agents Chemotherapy (2005) 49:1695-1700.
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Transport ...

Cellular models
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transport
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FIG. 2. Apical-to-basolateral transepithelial transport of ampicillin, PIVA, and PIMA through a Caco-2 cell monolayer at 37°C. (Left panel)
Cells were incubated with PIVA, PIMA, or ampicillin (all at 0.2 mM) in the apical medium, and the appearance of ampicillin was monitored in
the basolateral medium; (right panel) cells were incubated with PIVA or PIMA, as described for the left panel, and the appearance of the
corresponding prodrug was monitored in the basolateral medium. At 3 h, the proportions of PIVA, PIMA, and mannitol present in the basolateral
side corresponded to 2.1, 1.6, and 2.0% of the total amount present in the apical side, respectively. Each datum point is the mean * standard
deviation of three determinations. This experiment was repeated three times, with similar results each time.

Cellular models

Chanteux et al. Antimicrob. Agents Chemother. (2005) 49:1279-88.
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Modeling transintestinal VA Re 5N O
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FIG. 3. Accumulation of ampicillin (ampic.), PIVA, and PIMA in cells incubated with PIVA and PIMA and with free ampicillin in Caco-2 cells.
(Left panel) Cells were incubated with PIVA, PIMA, or ampicillin (abscissa) in the apical medium for 2 h, as described in the legend to Fig. 2.
The ordinate shows the accumulation of ampicillin in each case and of PIVA and PIMA when they were incubated with the corresponding ester.
(Right panel) Kinetics of accumulation of ampicillin and PIVA in cells incubated with PIVA, as in the left panel. In both panels, the dotted
horizontal line indicates the cell drug content which would correspond to a 10-fold accumulation of PIVA or PIMA (compared to either the actual
ampicillin concentration in the same medium [cells incubated with ampicillin] or the concentration of ampicillin that would be created in the same
medium if all prodrug was converted to ampicillin [cells incubated with PIVA or PIMA]). Each datum point is the mean * standard deviation of
three determinations. This experiment was repeated three times, with similar results each time. prot, protein.

Chanteux et al. Antimicrob. Agents Chemother. (2005) 49:1279-88.
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Modeling transintestinal transport of ampicillin pro-drugs:
3) oriented efflux of intracellularly released drug

ampicillin efflux

159 O control

B-arp T
104 E + probenecid

(D + MK 571

concentration (pM)
observed after 2 h

enterocyte 0 i =
MDR1 MRP1 apical basolateral
MRP2 pepTil ampi MIRP3 FIG. 7. Appearance of ampicillin in the apical or basolateral me-
dium of Caco-2 cells incubated for 1 h at 37°C with 0.2 mM PIVA in
MCT1 the apical medium (pulse) and then transferred for 2 h in fresh me-

dium (chase). The drug concentrations observed in the corresponding
medium at the end of the chase are shown. Control, cells without other
treatment; —ATP, cells preincubated for 1 h with 5 mM NaN; and 60
mM 2-D-deoxyglucose to obtain ATP depletion (these conditions were
maintained during the pulse and chase periods), +probenecid and
+MEK-571, cells incubated with these MRP inhibitors (5 mM and 100
M, respectively) in both the apical and basolateral media only during
the chase period. Each datum point is the mean * standard deviation
of three determinations. This experiment was repeated three times,
with similar results each time.

Chanteux et al. Antimicrob. Agents Chemother. (2005) 49:1279-88.
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Model of trans-intestinal transport
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Chanteux et al. Antimicrob. Agents Chemother. (2005) 49:1279-88.
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Efflux and transport of antibiotics in eucaryotic cells
ll. trans-barrier passage and intracellular accumulation
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Van Bambeke et al. J. Antimicrob. Chemother. (2003) 51:1067-1077
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Azithromycin accumulation in macrophages is sub-optimal because of effflux
through P-glycoprotein
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Kinetics of uptake (A) and release (B) of azithromycin in J774 murine macrophages with (open
squares) or without (closed squares) 20 uM verapamil.

Seral et al. Antimicrob. Agents Chemother. (2003) 47:1047-1051
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Ciprofloxacin (a fluoroguinolone) is subject to MRP-mediated efflux
In macrophages

O control ¥ probenecid 10 mM

= -100

- 0 o
25 20 - A s~
R L75 S
8 € o o
= .0 3 9
= 2]
X 5 © c
£ 10- %0 €3
oE =
- o . ~c
s 2 - 25 -
ER-) =
=l ¥ | Q.
3 0 . o— —= 0

0 30 60 90 120 0 10 20 30
time (min)

Michot et al. Antimicrob. Agents Chemother. (2004) 48:2673-2682
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Making MRP-overexpressing cells

WT: wild type
RS: MRP-overexpressing cells
control ATP-depletion
c e WT
2 1000- ‘- R;L
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=3 250-
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Michot et al. Antimicrob. Agents Chemother. 2006 (in press)
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Assessing the intracellular activity of ciprofloxacin in

MRP-overexpressing cells

WT: wild type
RS: MRP-overexpressing cells

control + probenecid
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Michot et al. Antimicrob. Agents Chemother. 2006 (in press)
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Conclusions

Cell lines are useful to adress many questions related
to antibiotic development and assessment

activity against intracellular pathogens...
cooperation with host defenses...
cellular toxicity ...

drug transport...

a bk~ w0 D

... and probably many others if the models are
chosen appropriately
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