Antibiotic efflux pumps in eucaryotic cells: consequences for activity against intracellular bacteria

Unité de Pharmacologie cellulaire et moléculaire

F. Van Bambeke

Magic bullets need to reach their target

Paul Ehrlich (1854–1915)

"...the goal is...to find chemical substances that have special affinities for pathogenic organisms and that, like *magic bullets*, go straight to their targets..."

Magic bullets need to reach their target

Target accessibility is critical for intracellular activity

Active efflux reduces antibiotic cellular concentration

physico-chemical properties are inadequate for reaching an intracellular target !

Extrusion by efflux pumps

general mean of protection

against cell invasion by diffusible molecules

Typical 'toxic' diffusible substances as substrates for efflux pumps

anticancer agents

Mechanisms of active efflux

Most antibiotics are amphiphilic !

Antibiotics as substrates of efflux pumps

Antibiotic class	bacte Gram (+)	ria Gram(-)	fungi	superior eucaryotes
β-lactams				
macrolides				
streptogramins				
tetracyclines				
aminoglycosides				
chloramphenicol				
rifamycins				
sulfamides				
trimethoprim				
fluoroquinolones				

Consequences of antibiotic efflux from eucaryotic cells

alteration of pharmacokinetics

- single cell: accumulation, localization
 - whole organism: absorption, distribution, elimination

alteration of pharmacodynamics

- cellular level: activity against intracellular bacteria
- body level: drug concentration in the infected compartment

Van Bambeke et al, JAC (2003) 51:1067-1077

Antibiotics as substrates of efflux pumps

Antibiotic class	bacte Gram (+)	ria Gram(-)	fungi	superior eucaryotes
β-lactams fusidic acid				
macrolides				
streptogramins				
tetracyclines				
aminoglycosides				
chloramphenicol				
rifamycins				
sulfamides				
trimethoprim				
fluoroquinolones				

Antibiotics as substrates of efflux pumps

Macrolides and quinolones as cell-associated antibiotics

Infection, 1995;23 Suppl 1:S10-4.

Clinical relevance of intracellular and extracellular concentrations of macrolides.

Carbon C.

C.H.U. Bichat-Claude Bernard, Paris, France.

The serum levels of the three macrolides-roxithromycin, clarithromycin and azithromycin-vary considerably. The prediction of the antibacterial effect against extracellular pathogens is based on circulating concentrations of free drug, peak and trough levels, the rate of killing, and the presence of a post-antibiotic effect. Intracellular activity depends on the distribution of the antibiotic and the localization of the bacteria, and is variable. Roxithromycin uptake is greater than that of erythromycin. The intracellular half-life may be long for some compounds (azithromycin > roxithromycin). The intracellular distribution is bimodal, both in the lysosomes and the cytoplasm, but the mechanisms of uptake have not yet been established. At low pH, accumulation is low and macrolides are less active in an acidic medium. Intracellular concentrations cannot readily be predicted on the basis of extracellular levels. Different models have shown that the greater the intracellular concentration, the better the clinical effect. In addition, the transport of macrolides by cells into the infected focus may play an important role in the therapeutic outcome. These factors influence the clinical indications for macrolides, their dosing regimens and breakpoints. In future, macrolides will be developed that are more selective for intracellular infections, while others, which will achieve significant serum levels, will be useful for a broader range of diseases. However, new compounds should be evaluated in different models of infection before clinical studies are instituted. The analysis of failures remains the most important approach in defining concentration/effect relationships.

Infection. 1991;19 Supp17:S365-71.

Quinolones in the treatment of lower respiratory tract infections caused by intracellular pathogens.

Chidiac C, Mouton Y.

Department of Infectious Diseases, University of Lille II, Central Hospital, Tourcoing, France.

Intracellular pathogens are inhibited to varying degrees, depending upon the strain of the organism and the quinolone tested. Quinolones achieve levels in the lower respiratory tract that equal or exceed serum concentrations, and they also achieve good intracellular concentrations. Experimental models of intracellular infection have demonstrated the efficacy of ciprofloxacin, difloxacin, fleroxacin, ofloxacin and pefloxacin. Animal models of experimental legionellosis have confirmed in vivo their efficacy in this field. Thus, quinolones appear to be a safe and efficacious alternative treatment in lower respiratory tract infection (LRTI) due to intracellular pathogens. Considering the in vitro and experimental studies, quinolones should play an important role in the treatment of LRTI caused by intracellular pathogens, and prospective controlled studies are strongly recommended.

Characterization of antibiotic efflux pumps in macrophages

Efflux pumps expressed in J774 macrophages

ABC multidrug transporters

How to inhibit ABC transporters ?

How to inhibit ABC transporters ?

How to inhibit ABC transporters ?

Differential recognition by MDR pumps

Influence of ATP-depletion and pump inhibitors on accumulation at equilibrium

AZM 3 h; CIP 2 h

Michot et al. AAC (2004) 48:2673-82

Efflux of macrolides: azithromycin

Kinetics of accumulation

Azithromycin accumulates to high levels in eucaryotic cells

extracell. conc. 5 mg/L

Seral et al (2003) AAC 47:1047-51

Macrolide subcellular distribution

Macrolides accumulate in the lysosomal compartment

Carlier et al, JAC (1987) 20 Suppl B:47-56

Mechanism of accumulation for macrolides

Macrolide accumulation proceeds by diffusion / segregation

De Duve et al, Biochem Pharmacol. (1974) 23: 2495-531

Kinetics of accumulation and efflux for azithromycin

Azithromycin concentration is high but still suboptimal ...

extracell. conc. 5 mg/L

Seral et al (2003) AAC 47:1047-51

Kinetics of accumulation and efflux for azithromycin

Inhibition of P-gp by verapamil increases accumulation

Seral et al (2003) AAC 47:1047-51

extracell. conc. 5 mg/L; verapamil 20 μM

Kinetics of accumulation and efflux for azithromycin

Accumulation markedly increased; efflux marginally affected

extracell. conc. 5 mg/L; verapamil 20 μ M

Seral et al (2003) AAC 47:1047-51

Azithromycin, 'kick-back' model

Gaj et al. (1998) Biochem. Pharmacol. 55:1199-211

Efflux of quinones (ciprofloxacin, moxifloxacin)

Kinetics of accumulation

Quinolones accumulate to moderate levels in eucaryotic cells

Carlier et al JAC (1990) 26 Suppl B:27-39
Quinolone subcellular distribution

Quinolones are found in the soluble fraction

Carlier et al JAC (1990) 26 Suppl B:27-39

Kinetics of accumulation and efflux for ciprofloxacin

both accumulation and efflux markedly affected

extracell. conc. 17 mg/L; probenecid 5 mM

Michot et al. AAC (2004) 48:2673-82

Ciprofloxacin, classical model

Kolaczkowski & Goffeau (1997) Pharmacol. Ther. 76:219-42

Kinetics of accumulation and efflux for moxifloxacin

neither accumulation nor efflux affected

extracell. conc. 17 mg/L; probenecid 5 mM

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin

Quinolones as inhibitors of ciprofloxacin efflux

ciprofloxacin efflux inhibited by ciprofloxacin
moxifloxacin not affected

Quinolones as inhibitors of ciprofloxacin efflux • ciprofloxacin efflux inhibited by ciprofloxacin

Moxifloxacin, 'futile-cycle' model

Eytan et al. (1996) JBC 271:12897-902

Influence of efflux pumps on antibiotic activity against intracellular infections

Efflux from eucaryotic cells and intracellular activity

Carryn et al, Infect Dis Clin North Am. (2003) 17:615-34

Models of intracellular infection

L. monocytogenes

cytosol

phagolysosomes

azithromycin and L. monocytogenes

verapamil 20 µM; 24 h

azithromycin and S. aureus

verapamil 20 µM; 24 h

ciprofloxacin and L. monocytogenes

gemfibrozil 250 µM; 24 h

ciprofloxacin and S. aureus

gemfibrozil 250 µM; 24 h

Influence of pump inhibitors on antibiotic distribution

verapamil enhances azithromycin concentration in cytosol and vacuoles

Influence of pump inhibitors on antibiotic distribution

gemfibrozil enhances ciprofloxacin cytosolic content

Perspectives for the future of chemotherapy

Perspectives for the future of chemotherapy

- use of poor substrates of efflux pumps (moxi vs cipro)
- development of specific inhibitors of efflux pumps
- caution for « cross resistance » with other substrates (over – expression of efflux pumps)

Quinolones differ by the susceptibility to efflux

Quinolones differ by their activity against intracellular Listeria

Seral et al. JAC (2005) 5:511-7

Perspectives for the future of chemotherapy

- use of poor substrates of efflux pumps (moxi vs cipro)
- development of specific inhibitors of efflux pumps
- caution for « cross resistance » with other substrates (over – expression of efflux pumps)

Specific inhibitors

GF120918 : a specific MDR inhibitor currently in clinical evaluation in cancer chemotherapy

Specific inhibitors

GF120918 increases efficacy of doxorubicin in mice with resistant tumors

Hyafil *et al,* Cancer Res. (1993) 53: 4595-4602

Specific inhibitors

GF120918 is more potent than verapamil to increase azithromycin cellular accumulation

Seral et al, AAC (2003) 47:1047-1051

Perspectives for the future of chemotherapy

- use of poor substrates of efflux pumps (moxi vs cipro)
- development of specific inhibitors of efflux pumps
- caution for « cross resistance » with other substrates (over – expression of efflux pumps)

Over-expression of efflux pumps as mechanism of resistance

א antibiotic ?????

anticancer agent

antibiotic L

עע anticancer agent ?????

antibiotic ?????

Over-expression of efflux pumps as mechanism of resistance

How to get resistant cells ?

multifactorial multidrug resistance

Gottesman et al, Methods Enzymol. (1998) 292: 248-58

Over-expression of efflux pumps as mechanism of resistance

Ciprofloxacin accumulation is reduced in resistant cells

Over-expression of efflux pumps as mechanism of resistance influence of probenecid on quinolone accumulation

in wild-type cells

Over-expression of efflux pumps as mechanism of resistance

influence of probenecid on quinolone accumulation in wild-type and CIP-resistant cells

Over-expression of efflux pumps as mechanism of resistance

CIP is ineffective in CIP-resistant cells infected by *L. monocytogenes*

Heremans et al. ECCMID 2005

Over-expression of efflux pumps as mechanism of resistance Probenecid restores CIP activity in CIP-resistant cells infected by *L. monocytogenes*

Heremans et al. ECCMID 2005

Over-expression of efflux pumps as mechanism of resistance

the CIP-resistant phenotype is not easily reversible

Over-expression of efflux pumps as mechanism of resistance

the CIP-resistant phenotype is not easily reversible

Take home message

constitutive efflux is part of the game

→Take it into account

- in the choice of your « magic bullets » …
- for their optimal targeting

Thanks to ...

come and see us at <www.md.ucl.ac.be/facm>