Nephrotoxicity of Aminoglycosides and Comparisons with Cis-Platinum

Paul M. Tulkens

Cellular and Molecular Pharmacology,
Catholic University of Louvain, Brussels,
Human Biochemistry and Biochemical Pathology,
University of Mons-Hainaut, Mons
Belgium

American Association for Research in Otolaryngology

Annual Meeting (Daytona Beach, FL) Presidential Symposium February 22, 2004

Aminoglycosides in the 70's ...

- Potent antimicrobials but toxic
 - → nephrotoxicity (reversible)
 - → ototoxicity (irreversible)
- All very similar biophysical, chemical, microbiological and pharmacokinetic properties, but...
 - Why are they differences in toxicities ?
 - Are those differences real ?
 - What is/are the mechanism(s) ?
 - Can we protect patients ?

Aminoglycosides monitoring in the 80's ...

Aminoglycosides toxicity incidence is highly variable among patient populations

Patients with nephrotoxic reaction after treatment with gentamicin

A look in the microscope ...

Somewhat closer ...

P. Maldague, unpublished

Compare ...

ARO 2004 annual meeting Fe

Feb 22, 2004

P. Maldague, unpublished

And examine ...

P. Maldague, unpublished

Gentamicin accumulates in lysosomes of proximal tubular cells

Schmitz et al., J. Biol. Chem. 277:618-622, 2002

Aminoglycoside entry in proximal tubular cells is via brush border binding *...

* Just *et al*, Naunym Schmied. Arch. Pharmacol, 1977 Silverblatt & Kuehen, Kidney Intern., 1979

Mice deficient in megalin do not accumulate gentamicin in kidney

Schmitz et al., J. Biol. Chem. 277:618-622, 2002

Towards a mechanism ...

- 1. binding to brush border
- 2. accumulation in lysosomes

Intralysosomal gentamicin causes phospholipidosis

Tulkens, Am. J. Med. 80:105-114, 1986

Intralysosomal gentamicin binds to phospholipids and cause phospholipidosis

Phospholipidosis is related to the binding of gentamicin to acidic phospholipids and subsequent inhibition of lysosomal phospholipases

ARO 2004 annual meeting Feb 22, 2004 P. Lambricht, 1991

15

A first global hypothesis ?...

From: Tulkens, 1986 Amer. J Med. 80 (Suppl 6B); 105-114

16

Gentamicin causes apoptosis at low, therapeutically-relevant dosages

Hematoxylin/eosin

Laurent et al., Antimicrob. Agents Chemother., 24:586-593, 1983

Tunel

El Mouedden et al., Antimicrob. Agents Chemother., 44:665-675, 2000 Gentamicininduced
apoptosis can
be reproduced
with cultured
kidney and
non-kidney
cells ...

El Mouedden et al., Toxicol. Sci., 56:229-239, 2000

Is lysosomal rupture causing apoptosis and necrosis?

Servais et al., unpublished

Maldague et al., 1983

APOPTOSIS: main signaling pathways ...

ARO 2004 annual meeting

Feb 22, 2004

Making use of this knowledge to protect patients ...

1008 MINIREVIEWS Antimicrob. Agents Chemother.

TABLE 2. Main approaches toward reduction of aminoglycoside nephrotoxicity^a

Mechanism Compound

Mingeot & Tulkens, Antimicrob. Agents Chemother. 43:1003-1012, 1999

A long list...

Mingeot & Tulkens, Antimicrob. Agents Chemother. 43:1003-1012, 1999

TABLE 2. Main approaches toward reduction of aminoglycoside nephrotoxicity ^e	
Mechanism	Compound
Decrease or prevention of drug accumulation by kidneys Intracellular complexation of aminoglycosides Polyanionic compounds	Dextran sulfate (59) Inositol hexasulfate (67)
Acidic drugs	Piperacillin (44) Latamoxef-moxalactam (68) Fosfornycin (33, 54) Pyridoxal-5'-phosphate (114)
Competition with or decrease in aminoglycoside binding to brush bor- der membrane Raising the urine pH	Bicarbonate (19, 29)
Competitors	Ca ²⁺ (diet supplementation [51] or vitamin D-induced hypercalcemia [21]) Lysine (81) Aminoglycosides (as their own competitors) (39)
Increase in exocytosis	Fleroxacin (9)
II. Prevention or decrease of hysosomal phospholipase inhibition Derivatives with lesser intrinsic binding ^b N substitution	Amikacin (75), isepamicin (133), arbekacin, 1-N- and 6-N-peptidic and aminoacid derivative of kanamycin A and netilmicin (72)
Other substitution	6'-substituted kanarnycin B (88)
Fluorinated derivatives	 3" or 3' flaoro derivatives of tobramycin, dibekacin, arbekacin, or kana- mycin"
Disaccharidic aminoglycosides	Astromicin (fortimicin) (73) Daczimicin (2-N'-fortnidoyf-astromicin) (53, 73)
Coadministration of agent preventing intralysosomal phospholipidosis Intralysosomal sequestration of aminoglycosides	Polyaspartic acid (55, 62)
Increase of membrane negative charge	Daptomycin (41)
Other	Torbafylline (32)
III. Protection against necrosis and other gross cellular alterations Antioxidants	Deferroxamine (11) Methimazole (24) Sairei-to (94) Vitamin E + selenium, vitamin C (1, 57) Lower copper feeding (58)
Antioxidant and multifactorial factors	Lipoic acid (107)
IV. Protection against vascular and glomerular effects Suppression of renin-angiotensin activation Protection against Ca ²⁺ influx Undefined mechanism	Decaycortisone and saline drinking (45) Ca ²⁺ channel blockers (80) Platelet activation antagonists (184)
V. Increase in kidney regeneration capabilities Unspecific mitogenic effect Growth factors	Ulimastatin (92) Fibroblast growth factor 2 (78) Heparin-binding epidermal growth factor (106)

[&]quot;References refer to publications dealing with the proposed mechanism; see text for further details on the extent and characterization of the protection.

E See reference 83 for structures.

^{*} Mechanism is assumed on the basis of the substitution made (see reference 83 for a discussion and references to original papers), but it has not actually examined.

Aminoglycoside toxicity is **not** linked to peak ...

Aminoglycoside accumulation is kidney is saturable at clinically meaningful concentrations * ...

^{*} Giuliano et al., J. Pharm. Exp. Ther., 1986

Phospholipiduria ...

URINARY EXCRETION OF PHOSPHATIDYLINOSITOL

Tulkens et al., 1989

And auditory alterations ...

no. of patients [over 20 in each group] with lesions* and total no. of frequencies affected

1 (1) this is where 0 most of the 3 (4) 6 (6)

toxicity is ...

• q8h 2 (3) 8 (9)

low tone (0.25-8 kHz)

0

Tulkens et al., 1989

high tone (10-18 kHz)

3 (7)

amikacin

netilmicin

• q24h

• q12h

• q24h

^{*} loss of 15dB or more over baseline(max. loss recorded: 30 dB)

Aminoglycosidepeak /MIC ratio is predictive of clinical efficacy

Is the once-a-day schedule used?

Clin Infect Dis 2000 Mar;30(3):433-9

National survey of extended-interval aminoglycoside dosing (EIAD). Chuck SK, Raber SR, Rodvold KA, Areff D.

- 500 acute care hospitals in the United States
- EIAD adopted in 3 of every 4 acute care hospitals
 - 4-fold increase since 1993
 - written guidelines for EIAD in 64% of all hospitals
- rationale
 - 87.1% : equal or less toxicity
 - 76.9% : equal efficacy
 - 65.6% :cost-savings
- dose: > 5 mg/Kg
- 47% used extended interval in case of decline in renal function (38% with Hartford nomogram)

And what bout cis-platin now ...

- induces a more chronic type of renal failure, mostly in S3 segment
- with large focal necrosis, cyst formation and marked interstitial proliferation and fibrosis.
- Cis-platin causes intrastrand cross-linking in DNA, blocking all subsequent DNA-dependent activities.
- It also triggers apoptosis!H3
- Compared to AG, post-necrosis and post-apoptotic regeneration seem largely impaired in cis-platin renal toxicity.

Cisplatin induces widespread tubular necroses and destruction

5 days after a single 5 mg/kg body weight injection

From: Sheikh-Hamad et al., Arch Toxicol. 2003

7 days after a single 8 mg/kg body weight injection Coutesy of G. Laurent

Cyst formation and failing regeneration...

21 days after a single 8 mg/kg body weight injection (BdU-PAP staining)
Coutesy of G. Laurent, 2004

But also extended apoptosis ...

Tunel staining

Sheikh-Hamad et al., Arch Toxicol. 2003 Oct 10 [Epub ahead of print]

through caspase activation ...

Caspase 3 (executioner)

Sheikh-Hamad et al., Arch Toxicol. 2003 Oct 10 [Epub ahead of print]

ARO 2004 annual meeting Feb 22, 2004

34

Towards a mechanism of toxicity ...

- platinum is accumulated by renal tissue against a concentration gradient.
- it is thought to produce renal damage because of interaction with renal sulfhydryl (SH) groups and ensuing depletion of SH groups (and the same mechanism may be operating in cochlea)

Dobyan et al., 1980; Weiner et al., 1983; Singh et al., 1988; Ravi et al., 1995; Towsend et al., 2003

Towards a mechanism of toxicity ...

- the steroisomer trans-platin is not toxic
- cisplatin may be activated in the kidney to a toxic metabolite through the same pathway that has been shown to activate the halogenated alkenes.
- Inhibition of cysteine-S-conjugate betalyase reduces toxicity in cultured cells

Dobyan et al., 1980; Weiner et al., 1983; Singh et al., 1988; Ravi et al., 1995; Towsend et al., 2003

Mechanism ...

Proposed pathway based on the metabolism of the glutathione-conjugates of the halogenated-alkenes to nephrotoxins (Anders and Dekant, 1998). This mechanism distinguishes tocicity towards dividing cells (anticancer effect) and quiescent cells (nephrotoxicity). The key and final event is the conversion to a highly reactive thiol by cysteine S-conjugate β -lyase. From Zhang & Hanigan, J. Pharmacol. Exp. Ther. 306:988-994, 2003

38

Towards a protection by antioxidants...

Effects of antioxidants on cisplatininduced cytotoxicity in M-1 cells (treated for 2 hr with 0.5 mM cisplatin) and with:

- 30 µM DMTU (dimethylthiourea)
- 50 µM DFO (deferoxamine)
- 10 μM DPPD (diphenyl-pphenylene-diamine)

R.H. Lee et al., Biochem. Pharmacol. 62:1013-1023, 2001

PHARMACOKINETIC-TOXICODYNAMICS OF CISPLATIN

and also in animals ...

K. Hanada et al.J. Pharm. Pharmacol.2000, 52:1483-90

Figure 1. Effects of buthionine sulphoximine, glutathione and methimazole on cisplatin-induced nephrotoxicity in rats. Each point represents the mean \pm s.d. (n = 4). **P < 0.01 compared with cisplatin.

Thanking people for work on aminoglycosides... and a bit on cis-platin ...

Starting very basically in the early 80's ...

G. Laurent
M.B. Carlier
R. Brasseur
J.M. Ruysschaert

Aminoglycosides...

The once-a-day story...
with also a lot of histopathology, rat killing and
urine collection ...

In the late 80's ...

- S. Ibrahim
- P. Maldague
- L. Giurgea
- F. Renoird
- M.C. Cambier
- **G.** Laurent
- D. Beauchamp

and

- F. Clerckx-Braun (FATC)
- J. Donnez (St Luc)
- M.P. Mingeot
- P. Lambricht
- R. Wagner
- B. Rollmann (CHAM)
- P. Herman (SP-Belg.)
- M.E. De Broe (UZ-UIA)
- **G. Verpooten (UZ-UIA)**

42

- A. Giuliano (UZ-UIA)
- **B.** Kaufman (VUB)
- B. Derde (VUB)

And here is a next generation, and they work(ed) on a lot of things ...

M.P. Mingeot F. Van Bambeke

phospholipidosis

B.K. Kishore Z. Kallay

M. El Mouedden H. Servais

apoptosis

ARO 2004 annual meeting

Feb 22, 2004