Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: www.elsevier.com/locate/ejmech

The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane

Gang Wang^a, Jean-Michel Brunel^b, Hector Rodriguez-Villalobos^c, Jean-Michel Bolla^b, Françoise Van Bambeke^{a,*}

^a Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium

^b Aix Marseille Univ, INSERM, SSA, MCT, 13385, Marseille, France

^c Microbiologie, Cliniques Universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium

ARTICLE INFO

Keywords: ESKAPE pathogen Potentiator Outer membrane Efflux Intracellular infection Biofilm

ABSTRACT

Potentiators can improve antibiotic activity against difficult-to-treat Gram-negative bacteria like Escherichia coli, Klebsiella pneumoniae or Acinetobacter baumannii. They represent an appealing strategy in view of the paucity of therapeutic alternatives in case of multidrug resistance. Here, we examine the ability of the polyamino-isoprenyl compound NV716 to restore the activity of a series of disused antibiotics (rifampicin, azithromycin, linezolid, fusidic acid, novobiocin, chloramphenicol, and doxycycline, plus ciprofloxacin as an active drug) against these three species in planktonic cultures, but also in infected human monocytes and biofilms and we study its underlying mechanism of action. NV716 considerably reduced the MICs of these antibiotics (2-11 doubling dilutions), the highest synergy being observed with the more lipophilic drugs. This potentiation was related to a strong interaction of NV716 with LPS, ensuing permeabilization of the outer membrane, and leading to an increased accumulation of the antibiotics inside bacteria. Moreover, NV716 increased the relative potency of all drugs against intracellular infection by the same bacteria as well as their maximal efficacy, probably related to an improvement of antibiotic activity against persisters. Lastly, NV716 also enhanced rifampicin activity against biofilms from these three species. All these effects were observed at sub-MIC concentrations of NV716 (and thus unrelated to a bactericidal effect), and in conditions for which no toxicity was evidenced towards eukaryotic cells. Altogether, these data highlight for the first time the potential interest of NV716 as an adjuvant against these Gram-negative pathogens placed in the priority list of WHO for search of new therapies.

1. Introduction

The rapid emergence of antibiotic resistance has become a problem of global concern [1]. The world health organization (WHO) published a list of bacteria for which new antibiotics are urgently needed, among which *Acinetobacter baumannii* and various Enterobacteriaceae, like *Klebsiella* spp. and *Escherichia coli* [2].

These species display high levels of resistance to a broad range of antimicrobials via the acquisition of a series of resistance mechanisms [3,4]. Moreover, they also show intrinsic resistance to many antibiotics, due to the barrier effect of their envelope and to the presence of broad-spectrum efflux pumps in their membrane. The envelope of Gram-negative bacteria comprises an inner membrane (IM) and an outer

membrane (OM) separated by a periplasmic space containing the cell wall made of peptidoglycan layers [5]. The OM is an asymmetric bilayer, containing phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet [6]. This asymmetric character confers to the OM a role of selective barrier that protects bacterial cells from cytotoxic molecules, including lipophilic and/or large size antibiotics (rifampicin, macrolides and glycopeptides) [7,8].

Additionally, these Gram-negative bacteria also constitutively express efflux systems that expel unrelated classes of antibiotics out of the bacteria, reducing thereby the amount of drug that can reach intracellular targets [9]. These efflux pumps consist of three proteins, namely an efflux transporter located in the IM, an OM channel protein, and a fusion protein connecting the two transmembrane proteins to allow the

https://doi.org/10.1016/j.ejmech.2022.114496

Received 11 January 2022; Received in revised form 13 May 2022; Accepted 25 May 2022 Available online 27 May 2022 0223-5234/© 2022 Elsevier Masson SAS. All rights reserved.

^{*} Corresponding author. Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium. *E-mail address:* francoise.vanbambeke@uclouvain.be (F. Van Bambeke).

transport of the antibiotic substrates directly to the extracellular environment. Typical examples include AcrAB-TolC in *E. coli* and *K. pneumoniae* or AdeABC in *A. baumannii*, which can extrude structurally distinct classes of antibiotics such as quinolones, tetracyclines, chloramphenicol, macrolides, linezolid, fusidic acid, or novobiocin [10].

Barrier effects and efflux pumps can cooperate and reduce antibiotic activity to such a level that their active concentrations become higher than those achieved in the serum of patients. Antibiotics affected by these mechanisms are therefore unusable against Gram-negative bacteria in clinical practice, and therefore often referred to as disused antibiotics.

In addition to resistance, intracellular survival and biofilm formation also contribute to antibiotic treatment failure [11,12]. Although considered essentially as extracellular pathogens, *E. coli, K. pneumoniae* and *A. baumannii* may also behave as opportunistic intracellular organisms. Their survival has been documented in phagocytic cells in-vitro [13–15] as well as in alveolar macrophages of infected mice in-vivo [16–18]. In intracellular niches, bacteria are both less accessible and less responsive to antibiotics. Our team recently documented for *Staphylococcus aureus* that poor responsiveness of bacteria surviving to antibiotics intracellularly is due to their switch to a persister phenotype [19]. Persisters are subpopulations of otherwise antibiotic-susceptible bacteria that show a transient non-dividing phenotype under stressful conditions and can survive to high concentrations of antibiotics [20], contributing to failure to eradicate the infection.

These three Gram-negative bacterial species can also adhere to biological and artificial surfaces to form biofilms [21,22]. Biofilms are defined as microbial community of cells living in a self-produced matrix essentially made of polysaccharides, extracellular DNA (eDNA), and proteins [23]. These structures protect microorganisms from host defenses and antibiotics due to the barrier effect of the extracellular matrix and to the alteration of the metabolic activity of bacteria, which adopt dormant phenotypes poorly responsive to antibiotics [24].

In a previous work, we showed that the polyaminoisoprenyl compound **NV716** (see chemical structure in Fig. S1) was capable to restore the activity of a series of disused antibiotics (rifampicin, doxycycline and chloramphenicol) against *Pseudomonas aeruginosa* both extracellularly and intracellularly [25], by increasing the permeability of the outer membrane, inhibiting efflux, and also improving the efficacy of bactericidal drugs against persisters [25–27] at concentrations that are not toxic for eukaryotic cells. The aim of the present study was (a) to extend the demonstration of the potential interest of this compound as potentiator of a series of disused antibiotics against planktonic, intracellular, or biofilm infections by other problematic Gram-negative pathogens like *A. baumannii, E. coli and K. pneumoniae,* in comparison with **NV731** (less active derivative against *P. aeruginosa*) and the well-characterized efflux inhibitor PA β N (Phenylalanine-Arginine β -Naphthylamide) [28–30] and (b) to evaluate its effects on the membranes of these bacteria.

We adapted to these species an in-vitro pharmacodynamic model of THP-1 human monocytes infected by Pseudomonas aeruginosa [31] that allows comparing key pharmacodynamic descriptors of antibiotic intracellular activity, namely their relative potency (static concentration, C_s) and maximal efficacy (E_{max}), as well as an in-vitro model of biofilm growing in 96-well plates [32]. As disused antibiotics, we selected rifampicin (poor substrate for efflux), doxycycline, chloramphenicol as in our previous work with P. aeruginosa, and added antibiotics the spectrum of which is limited to Gram-positive bacteria due to poor penetration in Gram-negative organisms, like azithromycin, linezolid, fusidic acid and novobiocin (all substrates for efflux; see Table S1). Ciprofloxacin was used as a control of active drug against intracellular P. aeruginosa [25]. As positive controls for mechanistic studies, we included colistin and alexidine (see Fig. S1 for the structure of these compounds). Colistin binds to the lipid A component of the negatively-charged LPS molecules via electrostatic interactions, by displacing the Mg^{2+} and Ca^{2+} ions that bridge and stabilize the LPS monolayer. It perturbs thereby the OM permeability, transits through it

via a self-promoted uptake mechanism, and subsequently inserts itself and disrupts the physical integrity of the IM via membrane thinning [33]. Alexidine is an amphipathic biguanide antiseptic showing fast bactericidal activity thanks to its rapid ability to permeabilize the bacterial membranes [34]. As colistin, it establishes electrostatic interactions with the negatively-charged phosphate groups present on LPS, displacing Mg^{2+} ions from their binding to LPS and perturbing the stabilizing effect afforded by Mg^{2+} cross-bridging of adjacent LPS molecules [35]. In addition, it also causes the leakage of the cytoplasmic content by inducing the formation of lipid domains in the IM [36].

Our data show that **NV716**, contrarily to **NV731** and PAβN, was capable of increasing the relative potency and maximal efficacy of all tested antibiotics against the three species of intracellular Gramnegative bacteria. It also improved the activity of rifampicin against biofilms of these three species. These effects were related to drastic reductions in MIC and persister fractions. Mechanistic studies showed that **NV716** inhibits the activity of efflux pumps and disturbs the permeability of the OM, allowing for an increased accumulation of antibiotics inside bacteria. Collectively, these data suggest that **NV716** could be a useful adjuvant to revive disused antibiotics against extracellular and intracellular infections as well as against biofilms caused by difficult-to-treat Gram-negative bacteria.

2. Materials and methods

2.1. Antibiotics and potentiators

Colistin (potency, 73%), chloramphenicol (potency, 98%), doxycycline (potency, 98%), fusidic acid (potency, 98%), novobiocin (potency, 98%) and rifampicin (potency, 98%) were obtained as microbiological standards from Sigma-Aldrich (St Louis, MO), ciprofloxacin HCl (potency, 89%) from Bayer (Leverkusen, Germany), gentamicin sulfate (potency, 60.7%), from PnReac AppliChem (Darmstadt, Germany), linezolid (potency, 100%) from Rib-X Pharmaceuticals (presently Melinta Therapeutics, New Haven, CT), and azithromycin (potency, 100%) from Teva (Petach Tikva, Israel). Alexidine (potency, 98%) and the reference efflux pump inhibitor Phe-Arg-β-Naphthylamide (PAβN; potency, 98%) were purchased from Sigma-Aldrich. **NV716** and **NV731**, were synthesized at Aix Marseille University [37].

2.2. Bacteria and culture media

For each species, one (*E. coli* ATCC 47076, *A. baumannii* ATCC 19606) or two (*K. pneumoniae* ATCC 700603 and ATCC 43816) reference strains were obtained from the American Type Culture Collection (Manassas, VA, USA). Twenty-three clinical Gram-negative isolates from the same three species were also included for specific experiements. Twelve clinical isolates (*E coli* 15 and 51; *K. pneumoniae* 58, 74, 99, 100, and 101; and *A. baumannii* 109, 110, 111, 112 and 113) were provided by Johan W. Mouton, Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands [38]; eleven clinical isolates (*E. coli* CPE541, CPE73, CPE493, CPE472, CPE144, and BISC15813; *K. pneumoniae* CPE73, CPE497, CPE370 and CPE532; *A. baumannii* NF2147 and NF2137) were provided by one of us (HRV). All isolates harbored CTX-*M*-, SHV-, OXA-, KPC-, VIM- or TEM-type extended-spectrum β -lactamases and also showed resistance to many other drugs used in the clinics to treat infection by Gram-negative pathogens (Table S2).

All bacteria were grown on trypticase soy agar (BD Life Sciences, Franklin Lakes, NJ, USA) and incubated at 37 °C overnight. A single colony was then inoculated in 10 mL cation-adjusted Mueller-Hinton Broth (CA-MHB; BD Life Sciences, Franklin Lakes, NJ) and incubated at 37 °C overnight under gentle agitation (130 rpm). TSA supplemented with 2 g/L charcoal (Sigma-Aldrich, St Louis, MO) was used for colonyforming unit (CFU) counting. Cell culture media (RPMI-1640), human and fetal bovine sera were from Gibco/ThermoFisher Scientific (Waltham, MA, USA).

2.3. Susceptibility testing

MICs were determined by serial 2-fold microdilution in CA-MHB according to CLSI guidelines in control conditions or in the presence of 38 μ M PA β N [20 mg/L] and **NV731** [12 mg/L] or 10 μ M **NV716** [4 mg/L]. MICs of antibiotics alone and in combination were used to calculate the fractional inhibitory concentration (FIC) index, as follows: FIC= C_A/MIC_A + C_B/MIC_B, where MIC_A and MIC_B are the MICs of compounds A and B alone, and C_A and C_B are the MIC of compounds A or B in combination. The combination was considered as synergistic or antagonistic when the FIC index was <0.5 or >4, respectively [39].

2.4. BODIPYTM TR cadaverine displacement assay

Binding to lipopolysaccharides (LPS) of bacteria was investigated by using BODIPYTM-TR-cadaverine displacement assay [40]. BOD-IPYTM TR cadaverine (BC) can bind to the lipid A region of the LPS. The ability of compounds to interact with LPS was evaluated by measuring the displacement of the BC as previously described [41]. Ten milliliters of bacterial suspension (OD_{620 nm} of 0.1 in Tris buffer saline, 50 mM, pH 7.4) containing 5 μ M BODIPYTM TR cadaverine were incubated in the dark for 30 min. Then 50 μ L of this suspension were mixed with 50 μ L of potentiators in a 96-well black plate and kept in the dark for 30 min. The fluorescent intensity was then measured in a Spectramax M3 plate reader (Molecular Devices LLC, Sunnyvale, CA) at λ_{ex} 580 nm and λ_{em} 620 nm. Alexidine at 50 μ M was used as positive control and samples added by Tris buffer saline as negative control (100%).

2.5. Outer membrane permeability assay

Outer membrane permeability was assessed using nitrocefin, a nonpermeant β -lactam which is converted by β -lactamases in a colored derivative in the periplasmic space of permeabilized bacteria [42]. Overnight cultures were incubated with 0.25 µg/mL of imipenem for 1 h to induce β -lactamase expression [43]. After centrifugation at 3000g for 7 min, cells were washed twice with 1x PBS and adjusted to obtain an OD₆₂₀ nm of 0.5. One hundred µL of cell suspension were mixed with 50 µL of potentiator in 96-well plate, after which 50 µL of nitrocefin (final concentration of 20 µg/mL) were added. Absorbance at 490 nm was monitored over 60 min with an interval of 5 min using a Spectramax M3 plate reader.

2.6. Inner membrane permeability assay

The effect of potentiators on the integrity of the inner membrane was determined by using a membrane-impermeable fluorescent dye propidium iodide (PI) as previously described [44]. A stock solution of PI (10 mM DMSO) was diluted 1000 times with the bacterial suspension (OD₆₂₀ nm 0.1 in BET buffer). 100 µL potentiator (in BET) were added to 100 µL PI-containing bacterial suspension in 96-well plates. The fluorescence intensity was measured using a Spectramax M3 plate reader (λ_{ex} , 540 nm; λ_{em} , 610 nm) after 1 h of incubation at room temperature. Alexidine at 50 µM was used as positive control and imipenem as negative control [44].

2.7. Inner membrane depolarization assay

The inner membrane depolarization was evaluated by using DiSC3 (5) as previously described [26]. Overnight cultures were pelleted by centrifugation (3000 g for 7 min), washed (1x PBS) and resuspended with 50 mM Tris buffer saline (pH 7.4) containing 2 mM EDTA. After 5 min of incubation, cells were pelleted (3000 g for 7 min), washed (1x PBS), resuspended with Tris buffer saline containing 50 mM glucose and adjusted to obtain an $OD_{620 nm}$ of 0.5 after which 3, 3-dipropylthiadicarbocyanine iodide (DiSC3(5)) (final concentration of 10 μ M) was added. One hundred microliters of potentiator were mixed with 100 μ L bacteria

suspension in a 96-well plate. After 30 min of incubation, the fluorescence intensity was measured in a Spectramax M3 plate reader at λ_{ex} 622 nm and λ_{em} 670 nm. 0.5% SDS was used as a positive control and cells added by Tris buffer saline as negative control [37].

2.8. Inhibition of efflux

The efflux activity in bacteria was assessed using the substrate 1.2'dinaphthylamine as previously described [45]. Ten milliliters of overnight culture were pelleted by centrifugation with 3000 g for 7 min, washed once with 1 x PBS and then incubated with 1,2'- dinaphthylamine (TCI-Europe SA, Zwijndrecht, Belgium) at a final concentration of $32 \,\mu\text{M}$, and CCCP at a final concentration of $5 \,\mu\text{M}$, after which, cells were centrifuged at 3000 g for 7 min, resuspended in PBS and adjusted to an OD_{620 nm} of 0.5. One hundred microliters of potentiator solution was mixed with 100 µL bacteria suspension in a 96-well plate. The fluorescence (λ ex, 370 nm; λ em, 420 nm) was monitored each 30 s during 620 s using a Spectramax M3 plate reader. Active efflux was triggered by adding 5 μ L glucose (final concentration of 50 mM) at 180 s. The maximal efflux activity (100%) was defined as the difference between the value obtained without and with glucose addition after 620 s. Data were expressed as the ratio between the fluorescence signal recorded in control conditions or in the presence of potentiator at 620 s. This experiment was performed only with E. coli and K. pneumoniae, preliminary experiment having shown that 1,2'-dinaphthylamine was not actively exported in A. baumannii.

2.9. Antibiotic accumulation in bacteria

The concentration of ciprofloxacin and of a fluorescent analog of rifampicin (NV1532) inside bacteria was determined by a previously setup fluorimetric assay [27]. In brief, 10 mL of overnight culture (approximately 10⁹ CFU/mL) were incubated at 37 °C with 10 mg/L ciprofloxacin and 20 mg/L of NV1532. After 15 min of incubation (a duration longer than the predicted time required to reach saturation [46], but during which the antibiotic did not affect bacterial growth [no significant reduction in CFUs]), 20 µL of suspension were collected to count CFUs and the remaining cells were collected by centrifugation at 3000g for 7 min at 4 °C and washed three times with 1 mL cold PBS. When assaying ciprofloxacin, cells were resuspended in 0.5 mL 100 mM glycine buffer (pH 3.0 adjusted with HCl), and then kept in the darkroom overnight. When assaying NV1532, cells were resuspended in 0.5 mL PBS and then lysed by three cycles of freezing/thawing (-80 °C freezer to 60 °C water bath). All samples were centrifuged at 14000 g for 5 min, the supernatant was then collected to measure the antibiotic content at λ_{ex} 275 nm and λ_{em} 450 nm for ciprofloxacin and λ_{ex} 470 nm and λ_{em} 525 nm for NV1532. All data were normalized based on CFUs counts using a Spectramax M3 (Molecular devices, LLC, Sunnyvale, CA) plate reader.

2.10. Cytotoxicity assessment (trypan blue exclusion assay)

THP-1 cells (7.5×10^5 cells per mL) were incubated for 24 h in 96well plates with the antibiotics alone or a combination of antibiotics and potentiators. The viability of cells was determined using the trypan blue exclusion test (vital colorant excluded from viable cells) as previously described [25]. Briefly, 50 µL of trypan blue reagent was mixed with 50 µL of cell suspension. After 10 min of incubation at 37 °C, non-colored (viable) cells were counted using a Fuchs-Rosenthal counting chamber (Tiefe 0.2 mm). The percentage of cytotoxicity was evaluated based on the reduction in the number of living cells according to the following formula:

cytotoxicity (%) =
$$\frac{Nb \, uncolored \, cells \, in \, controls - Nb \, uncolored \, treated \, cells}{Nb \, uncolored \, cells \, in \, controls}$$

2.11. Intracellular models of infection

We adapted the protocol previously developed for P. aeruginosa infection in THP-1 monocytes [31] (see Figs. S2 and S3 for details and model validation). All strains (opsonized 1 h with 10% human serum) were added to monocytes at a multiplicity of infection (bacteria/cell ratio) of 25 and incubated at 37 °C in a 5% CO2 atmosphere to allow phagocytosis. After 1 h of incubation, cells were pelleted by centrifugation at 300g for 7 min and incubated for 1 h with 50 x MIC of gentamicin to remove non-internalized bacteria (more than 5 log10 CFUs reduction, data not shown). Cells were then pelleted by centrifugation at 300g for 7 min, washed 2 times with 1 x sterile PBS and resuspended in the original volume of RPMI-1640 with 10% FBS. Cells were collected by centrifugation and washed once with PBS to eliminate extracellular bacteria and collected in 1 mL distilled water, to achieve complete lysis. Lysates were used for determining CFU counts by spreading on agar containing 2 g/L charcoal (to avoid carry-over effect, particularly in samples incubated with high antibiotic concentrations [no difference in colony counts was observed between plates supplemented or not with charcoal for samples exposed to low antibiotic concentrations, ruling out any interfering effect of charcoal in the assay]) and protein content using a commercially available kit (Bio-Rad DC Protein Assay, Bio-Rad Laboratories, Hercules, CA). The post-phagocytosis inoculum (defined as time zero) was consistently 5 to 7 \times 10⁵ CFU/mg of cell protein.

2.12. Intracellular antibiotic activity

Infected cells were incubated for 24 h with antibiotics over a range of concentrations (0.01–100x MIC) alone or in combined with potentiators, after which the cells were collected and the protein content and CFU counts were measured as described above. The data were expressed as the change in CFU (normalized by mg of cell protein) from the initial inoculum after 24 h of incubation then used to fit a sigmoidal function and calculate pharmacodynamic parameters based on the corresponding Hill-Langmuir equation (apparent static concentrations [C_s], i.e. extracellular concentration resulting in no apparent intracellular growth, and maximal relative efficacy [E_{max}], i.e. maximal decrease in bacterial counts compared to the post-phagocytosis inoculum as extrapolated for an infinitely large antibiotic concentration).

2.13. Persister assay

A single colony from overnight culture of reference strains on TSA was grown in 200 mL MHB-CA in a 1-L flask and incubated for 24 h with 130 rpm at 37 °C. Ten milliliters of the bacterial suspension were then incubated with 50x MIC ciprofloxacin for 5 h at 37 °C under agitation (130 rpm), in the presence of or in the absence of **NV716**. To explore the effects of different treatment regimens, **NV716** was added at 0, 5, or 24 h after ciprofloxacin treatment, and the cells were treated for a total of 72 h. Aliquots were serially diluted in PBS and spread on TSA supplemented with 2 g/L charcoal for CFU counting.

2.14. Antibiotic activity against biofilms

Biofilms were grown in 96-well plates (VWR) as previously described [32]. In brief, one single colony was inoculated in MHB-CA overnight with 130 rpm at 37 °C. A bacterial suspension was then prepared in TGN (Trypticase soy broth (VWR) supplemented with 1% glucose (Sigma) and 2% NaCl (Sigma)) using overnight cultures. Ninety-six-well plates were inoculated (200 μ L/well) at approximately 10^7 CFU/ml (the OD_{620} nm of 0.05) and then incubated at 37 °C for 24 h to obtain a mature biofilm. The culture medium was removed and replaced with fresh medium (control) or medium supplemented with rifampicin (1x MIC and 5x MIC) alone or combined with potentiators and then reincubated at 37 °C for 24 h. The medium was then removed and the biofilm was

washed once with 200 µL of 3-morpholinopropane-1-sulfonic acid (MOPS) buffer (20.9 g/L of MOPS (Sigma-Aldrich), 5.6 g/L NaCl; the pH was adjusted to 7.0 with NaOH) [47]. Biofilm biomass was evaluated by measuring the absorbance of crystal violet, a cationic dye that nonspecifically stains negatively charged constituents in biofilm constituents based on ionic interactions. The washed biofilms were fixed by heat at 60 °C for about 24 h and incubated for 10 min at room temperature with 200 µL of 1% (v/v) crystal violet (Sigma-Aldrich). The absorbance at 570 nm was measured using a Spectramax M3 plate reader. The metabolic activity (vitality) in the biofilms was quantified using the fluorescein diacetate (FDA) assay. It is based on the hydrolysis by living bacteria of the non-fluorescent white dye fluorescein diacetate in the yellow highly fluorescent fluorescein [32]. The washed biofilms were incubated with 100 mg/L fluorescein diacetate (Sigma-Aldrich) for 15 min at 37 °C in the dark. Fluorescence was measured using a Spectramax M3 plate reader at λ_{ex} 494 nm and λ_{em} 518 nm.

2.15. Curve fitting and statistical analysis

Statistical analyses and curves fitting were performed using Graph-Pad Prism version 9.1.2 (GraphPad Software, San Diego, CA, USA). Pharmacodynamic parameters were calculated based on Hill equations of concentration-response curves.

3. Results

3.1. Antimicrobial susceptibility

Table S3 shows the MICs of antibiotics alone or combined with potentiators (20 mg/L [38 μM] PAβN; 15 mg/L [38 μM] NV731; 4 mg/L [10 µM] NV716) against reference strains and clinical isolates of E. coli, A. baumannii and K. pneumoniae. These concentrations were selected as active based on previous works, but well below the MIC of each compound [25,28]. In control conditions, the MIC of antibiotics was generally elevated and higher than their human Cmax (except for rifampicin against A. baumannii, doxycycline and ciprofloxacin against most of the strains, and chloramphenicol against most E. coli and K. pneumoniae; see Table S1 for C_{max} values). In the presence of potentiators, MICs were globally reduced, although to a lower extent for ciprofloxacin against all strains, for azithromycin, chloramphenicol, and doxycycline against A. baumannii, and for fusidic acid against K. pneumoniae. PABN and NV731 were systematically less potent than NV716 even though the latter was used at a lower concentration. Fig. 1A illustrates these MICs data and also shows the (geometrical) mean fold decrease in MIC in the presence of potentiators. The most important reduction in this mean MIC values was noticed in combination with NV716 for rifampicin, linezolid, fusidic acid and novobiocin against E. coli (9-11 doubling dilutions), rifampicin and novobiocin against K. pneumoniae (9 doubling dilutions), and rifampicin, novobiocin and fusidic acid against A. baumannii (8-9 doubling dilutions). The lowest effect (mean reduction of 1-2 doubling dilutions) was noticed for ciprofloxacin against all bacteria as well as for azithromycin against A. baumannii (3 doubling dilutions). Importantly, MIC of the combinations with NV716 fall in the range of therapeutically-achievable concentrations in all cases (yellow zones in the graphs). FIC index calculations indicated a higher degree of synergy between antibiotics and NV716 than the other potentiators (Fig. S4), except for ciprofloxacin against K. pneumoniae ATCC 43816 and 74, against which ciprofloxacin alone was already very active. A highly significant correlation was observed between the reduction in MIC caused by NV716 and the calculated logD at pH 7.4 of each antibiotic (Table S1), a modest effect being observed for antibiotics with a negative logD value, and a progressive increase in this effect along with the lipophilicity of the drugs once their logD value becomes higher than 0 (Fig. 1B).

(caption on next column)

3.2. Interaction of potentiators with E. coli, K. pneumoniae and A. baumannii membranes

Our previous study suggested that **NV716** can bind to LPS in *P. aeruginosa,* increases the permeability of its outer membrane, and to a much lower extent, of its inner membrane [27]. We therefore examined these properties in the reference strains of the three bacterial species under study here. Alexidine and colistin were used as positive controls [34,48], and **NV731** and PA β N, as comparators. We first measured the capacity of each compound to displace Bodipy-cadaverine from its

Fig. 1. A. Activity of antibiotics alone or combined with potentiators against various Gram-negative bacteria in broth. The MICs of reference strains (One [E. coli; A. baumannii] or two [K. pneumoniae] strains) are represented by triangles. The boxes show the interval between the minimal and maximal (line at mean value) MICs values for eight (E. coli; K. pneumoniae) or seven (A. baumannii) multidrug-resistant clinical isolates. Grey: antibiotics alone; green: combined with 38 µM PABN; blue: combined with 38 µM NV731; red: combined with 10 µM NV716. Squared value: fold decrease (geometrical mean; number of doubling dilutions) in MIC (mg/L) between antibiotic alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxycycline [DOX], or ciprofloxacin [CIP]) and antibiotic combined with potentiators. Yellow zone: range of clinically-achievable concentrations in human plasma (see Table S1 for values). B. correlation between the reduction in antibiotic MIC (expressed as log₂ fold decrease; geometric means) in combination with 10 μM NV716 and the logD value of each antibiotic calculated at pH 7.4 (See Table S1). Each symbol corresponds to a bacterial species. Data previously obtained with P. aeruginosa PAO1 are added for completing the analysis. The Pearson's correlation coefficient r and the p value (t-tailed) are shown on the graph.

binding to LPS in the 4 reference strains (Fig. 2A; IC₅₀ values in Table S4). The effect of **NV716** was similar to that of alexidine over the whole range of concentrations investigated against all strains, with comparable IC₅₀ values for both molecules. The IC₅₀ were about 10-times higher for **NV731** and not reached at 100 μ M for colistin and PA β N.

We then determined the effects of these compounds on the outer membrane permeability (Fig. 2B; IC₅₀ values in Table S4). To this effect, we measured the absorbance of the hydrolysis product of the non-permeant cephalosporin nitrocefin, which is degraded by periplasmic β -lactamases when the outer membrane has been permeabilized [42]. Alexidine was the most potent in this assay, followed by NV716 and colistin, which also allowed to reach a same effect as alexidine but at higher concentrations (IC₅₀ 2 to 3 times higher). NV731 and PA β N were less potent (IC₅₀ 7 to 13 times higher than for alexidine) and less effective.

The effect of potentiators on the inner membrane permeability was also assessed by measuring the fluorescence signal of propidium iodide (PI), generated when PI intercalates in the DNA of bacteria when both their outer and inner membranes have been permeabilized [44]. Alexidine and colistin similarly increased PI fluorescence in a concentration-dependent manner, while **NV716** was 20–30 times less potent, causing only 50% of permeabilization at the highest concentrations tested (50 μ M) (Fig. 2C; IC₅₀ values in Table S4). Yet, the effect of **NV716** was slightly higher than that of colistin but much lower than that of alexidine when these compounds were all compared at an equipotent concentration of 1 x MIC (Fig. S5). **NV731** and PA β N were inactive in this assay.

In addition, we investigated the effect of **NV716** on inner membrane depolarization using the DiSC3(5) fluorescence assay. We observe a depolarization at 50 μ M but not at 10 μ M (Fig. S6), indicating that **NV716** can dissipate the proton motive force (PMF) at its MIC, but not at sub-inhibitory concentrations.

3.3. Inhibition of active efflux by potentiators

Previous studies documented that **NV716** can inhibit the activity of efflux pumps in *P. aeruginosa* [26]. We therefore evaluated the capacity of **NV716** and its comparators to inhibit the active efflux of the fluorescent probe 1,2'-dinaphthylamine [45]. We first examined the rate of efflux in *E. coli* ATCC 47076 after the addition of **NV716** at different concentrations (Fig. 2D, left panel). A concentration-dependent reduction of the fluorescence was observed readily after the addition of **NV716**, which reached a plateau at 620 s. The same experiments were performed with the other potentiators and also against *K. pneumoniae* reference strains. The other panels of Fig. 2D show the inhibition of efflux calculated at 620 s. **NV716** proved more potent and effective in

Fig. 2. Influence of potentiators, colistin and alexidine over a wide range of concentrations on membrane properties of 1 (*E. coli; A. baumannii*) or 2 (*K. pneumoniae*) reference strains. (A) Binding to LPS, assessed by measuring the displacement of BODIPY-cadaverine (BC) after 30 min of incubation. Positive control (100%): effect of 50 μ M alexidine at 30 min. (B) Outer membrane permeability, evaluated by measuring the absorbance of the hydrolysis product of nitrocefin after 1 h of incubation. Positive control (100%): effect of 50 μ M alexidine at 1 h; negative control: buffer. (C) Inner membrane permeability, assessed by measuring the fluorescence of propidium iodide (PI) after 1 h of incubation. Positive control (100%): effect of 50 μ M alexidine at 1 h; negative control: buffer. (C) Inner membrane permeability, assessed by measuring the fluorescence of propidium iodide (PI) after 1 h of incubation. Positive control (100%): effect of 50 μ M alexidine at 1 h; negative control: buffer. (C) Inner membrane permeability, assessed by measuring the fluorescence of propidium iodide (PI) after 1 h of incubation. Positive control (100%): effect of 50 μ M alexidine at 1 h; negative control: buffer. (D) Left: kinetics of efflux dinaphthylamine from *E. coli* ATCC 47076 in the presence of increasing concentrations of **NV716** (indicated on the right of the graph). Active efflux was triggered by adding 50 mM glucose at 120 s (red vertical dotted line). Data are expressed in percentage of the value recorded in the absence of glucose. Other panels: Inhibition of efflux of 1,2-dinaphthylamine by potentiators in *E. coli* ATCC 47076. The graphs show the percentage of efflux inhibition after 620 s of in cubation (black vertical dotted line on the left graph) (500 s after the addition of glucose). The arrows on each graph point to the concentration of potentiators used in most other experiments (10 μ M for **NV716**; 38 μ M for **NV731** and PA β N). All data are means \pm SEM (triplicates from 3 independent experiments)

this assay than the other potentiators (Fig. 2D). While the effect of **NV716**, alexidine and PA β N increased all over the range of concentration investigated, that of **NV731** and colistin tend to a plateau at high concentrations.

3.4. Influence of potentiators on antibiotic accumulation inside bacteria

As NV716 was shown to increase outer membrane permeability and

inhibit efflux, we assessed its effect compared to that of the other potentiators on the accumulation of ciprofloxacin and **NV1532** (a fluorescent derivative of rifampicin; same MIC as rifampicin against all tested strains) inside bacteria. These antibiotics were selected as representatives of antibiotics that are preferential substrates for efflux or not, respectively. The level of accumulation of ciprofloxacin alone was higher in *E. coli* ATCC 47076 and *K. pneumoniae* ATCC 43816 than in the other two strains (Fig. 3A), possibly related to differences in intrinsic outer membrane permeability or expression of efflux transporter. PA β N and NV731 at 38 μ M increased its accumulation in *E. coli* ATCC 47076 only, while NV716 at 10 μ M caused a significant increase in all strains except *K. pneumoniae* ATCC 43816 in which it did not decrease ciprofloxacin MIC (Table S3). The accumulation of NV1532 was more elevated in *A. baumannii* ATCC 19606 than in the other strains, also probably related to a higher intrinsic membrane permeability to this more lipophilic drug. PA β N increased its accumulation in *E. coli* ATCC 47076 and *A. baumannii* ATCC 19606, while NV731 and NV716 caused a significant increase for all strains tested, but the effect of NV716 was more important even though it was used at a lower concentration (Fig. 3B). A significant correlation was observed between the fold change (i) in the accumulation of antibiotics and (ii) in MIC when comparing the combination with potentiators vs antibiotics alone (Fig. 3C and D).

3.5. Cytotoxicity of antibiotics

As a preliminary to intracellular infection experiments, we examined whether antibiotics were cytotoxic for eukaryotic cells. This was critical as most of them had to be used at high concentrations in view of their high MIC. The cytotoxicity of potentiators had been previously examined and found to be minimal in their conditions of used for these experiments [25]. IC_{50} (i.e. concentration causing 50% cell mortality) were reached at concentrations corresponding to approximately 3 x (fusidic acid, linezolid, novobiocin), 30 x (rifampicin), 60 x (azi-thromycin), 90 x (chloramphenicol), or above 100 x (doxycycline and ciprofloxacin) their respective MIC against *E. coli* ATCC 47076, both in

infected and non-infected cells (Table S5). IC₅₀ values did not differ for antibiotics alone or combined with a potentiator, both in non-infected and infected cells (Table S5).

3.6. Activity of antibiotics alone or combined with potentiators against intracellular Gram-negative bacteria in THP-1 cells

Fig. 4 shows the concentration-response curves against intracellular E. coli ATCC 47076 in the absence of or in the presence of NV716 (the highest concentration tested for each antibiotic was that causing 50% cytotoxicity). The activity of antibiotics alone developed following a sigmoidal concentration-response curve, as previously described [31]. At low, subMIC concentrations, a \sim 3–4 log₁₀ increase in CFUs was noticed over the 24 h incubation period. A static effect was observed at extracellular concentrations close or slightly higher than the MIC of each antibiotic. At the highest concentration tested, the reduction in bacterial counts ranged from a static effect for linezolid, fusidic acid, or novobiocin (note that the highest concentration tested is low for these drugs because of their toxicity), 1 log₁₀ CFU decrease for azithromycin and chloramphenicol, 2 log₁₀ CFU decrease for rifampicin and doxycycline, and 2.5 log10 CFU decrease for ciprofloxacin. In the presence of NV716 at 10 µM, all curves were shifted to the left, meaning that the corresponding antibiotic was more potent, a static effect being reached at lower extracellular concentrations. The extent of the shift varied however among drugs. Furthermore, for those drugs for which the maximal effect could be reached (i.e., the plateau value of the Hill equation), the reduction in intracellular counts was also increased (E_{max} more negative), indicating an increase in the antibiotic efficacy. For the other

> Fig. 3. Top: Accumulation of antibiotics alone (A, ciprofloxacin; B, rifampicin analog NV1532) or combined with potentiators in 1 (E. coli and A. baumannii) and 2 (K. pneumoniae) reference strains. Grey: antibiotics alone; green: combined 38 μM PAβN; blue: combined 38 μM NV731; red: combined with 10 μ M NV716. All data are mean \pm SEM (triplicates from three independent experiments). Statistical analysis: two-way ANOVA with Dunnett posthoc test for comparison of antibiotics alone and combined with each potentiator for each strain: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p <0.0001; with Tukey post-hoc test for comparison of antibiotics alone among strains: data series with different letters are different from one another (p < p0.05). Bottom: Correlation between the change in antibiotic accumulation in bacteria (expressed as the ratio between the concentration measured with potentiators and in control conditions) and the change in MIC (expressed as the log₂ fold decrease in MIC) in the same experimental conditions. The Pearson correlation coefficient r and the p values are shown on each graph. The plain and dotted lines correspond to the linear regression with its 95% confidence interval.

Fig. 4. Concentration-response curves of antibiotics alone or combined with **NV716** against intracellular *E. coli* ATCC 47076 in a model of THP-1 monocytes. The graphs show the changes in CFU counts from the initial, post-phagocytosis inoculum after 24 h of incubation with increasing extracellular concentrations of antibiotics (AB) alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxycycline [DOX], or ciprofloxacin [CIP]) or combined with a fixed concentration (10 μ M; 4 mg/L) of **NV716**. In each graph, the horizontal dotted line highlights a static effect and the vertical dotted line indicates the MIC of each antibiotic. The highest concentration of the antibiotic tested is close to the IC₅₀ of toxicity for THP-1 cells (not applicable to CIP, not toxic). All data are means \pm SEM (triplicates from three experiments; when non-visible, error bars are smaller than the symbols).

drugs (linezolid, fusidic acid, novobiocin), an increased effect was also observed at the highest concentration tested.

The same type of experiment was performed with the 2 other potentiators against 1 (E. coli; A. baumannii) or 2 (K. pneumoniae) reference strains and 2 clinical isolates. From each species Figs. 5 and 6 illustrate the pharmacodynamic parameters calculated based on the Hill equation of these concentration-response curves (see methods for a definition of these parameters), namely the Cs (a measure of the relative potency of the drug or the drug combination) and the E_{max} (a measure the relative maximal efficacy of the antibiotics alone or in combination; when the E_{max} was not reached, the maximal reduction in bacterial counts at the highest concentration $\left[E_{highest}\right]$ tested was plotted). C_{s} of antibiotics alone was globally slightly higher than their MIC in broth, and NV716 markedly reduced all Cs values. These reductions ranged from approx. 1 [chloramphenicol and ciprofloxacin] to 3-4 [linezolid, fusidic acid and novobiocin] doubling dilutions against E. coli; 1 [chloramphenicol and ciprofloxacin] to 3 [novobiocin] doubling dilutions against K. pneumoniae; 1 [rifampicin and ciprofloxacin] to 3-4 [fusidic acid, novobiocin and chloramphenicol] doubling dilutions against A. baumannii, respectively (Fig. 5 and Table S6). Ciprofloxacin was the less affected because it was the most active drug against these bacteria. NV731 and PABN caused less marked effects on Cs values. Intracellular Emax or Ehighest ranged between 0.6 [linezolid against E. coli] to 2.3 [ciprofloxacin against E. coli] log10 CFU decrease for antibiotics alone. NV716 showed the most important potentisation of antibiotic efficacy, with the gain in Emax or Ehighest values ranging from 0.7 (doxycycline and ciprofloxacin) to 1.7 (fusidic acid) log10 CFU for E. coli; 0.6 (chloramphenicol and doxycycline) to 1.3 (linezolid) log10 CFU for K. pneumoniae; and 0.6 (doxycycline) to 1 (all test antibiotics except for doxycycline) log₁₀ CFU for A. baumannii (Fig. 6 and Table S6). PAβN did not improve antibiotic efficacy, and NV731 effects were more modest than those of NV716 in all cases.

estimated, based on the Hill equation of the concentration-response curves, the reduction in bacterial counts reached when antibiotics were used alone or in combination at fixed concentrations corresponding to their respective minimum and maximum concentrations (Cmin and C_{max}, see Table S1) in human serum (Fig. S7). Antibiotics alone at their Cmin were inactive, except ciprofloxacin, chloramphenicol and doxycycline against E. coli and K. pneumoniae (which reduced intracellular counts but did not reach a static effect) and ciprofloxacin, against A. baumannii (1 log₁₀ CFU decrease). When antibiotics at their C_{min} were combined with NV716, we noticed a reduction in bacterial counts, the extent of which was highly variable among drugs and bacteria, with reduction of 90% (1 log10 CFU) being observed for rifampicin, fusidic acid, chloramphenicol and doxycycline against all species (except A. baumannii for doxycycline). Yet, in most of the cases, this effect was not sufficient to decrease bacterial counts below the post-phagocytosis inoculum. When used at the human C_{max} , most antibiotics were capable of reducing the inoculum, except linezolid (against all species) and azithromycin (against E. coli and K. pneumoniae). Chloramphenicol and doxycycline were at least bacteriostatic against E. coli and K. pneumoniae, and ciprofloxacin, against all species. In combination with NV716 (10 µM), a drastic improvement of activity was observed, with increment of activity reaching 1 to almost 4 log₁₀ CFU decrease as compared to the antibiotic alone. For rifampicin, novobiocin, doxycycline, and in some cases, for fusidic acid, chloramphenicol and ciprofloxacin, a 99% (2 log10 CFUs) decrease as compared to the postphagocytosis inoculum could be achieved by the combinations. In all these conditions, the effect of PABN and NV731 was lower than that of NV716.

3.7. Activity of ciprofloxacin alone or combined with potentiators against persisters

In order to examine our data in a clinically-oriented perspective, we

The fact that NV716 increases the intracellular efficacy of all

Fig. 5. Static concentration of antibiotics alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxycycline [DOX], or ciprofloxacin [CIP]) or combined with potentiators against various multidrug resistant Gram-negative bacteria in the intracellular infection model (THP-1). Values are calculated based on the equation of the Hill response curves from experiments similar to those described in Fig. 4. 1 symbol/strain: 1 (*E. coli; A. baumannii*) or 2 (*K. pneumoniae*) reference strains and 2 to clinical isolates of each species. Grey: antibiotics alone; green: combined 38 μM PAβN; blue: combined 38 μM **NV731**; red: combined with 10 μM **NV716**. Horizontal bars: mean; horizontal line: MIC. Statistical analysis: one-way ANOVA with Dunnett post-hoc test (paired) comparing each combination to the antibiotic alone: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.001.

antibiotics against *E. coli, A. baumannii* and *K. pneumoniae* suggests it may decrease the proportion of antibiotic persisters in the population, as previously demonstrated for *P. aeruginosa* [25]. We, therefore, determined the persister fraction surviving to ciprofloxacin (selected as a highly bactericidal antibiotic) at high concentration (50 x MIC) against stationary-phase cultures (10⁹ CFU/mL) of reference strains. To this effect, we first examined the kinetics of killing by ciprofloxacin when used alone or combined with **NV716** added either at the same time as ciprofloxacin or later to determine whether it was able to improve activity even the maximal effect was already reached for ciprofloxacin alone [49] (Fig. 7A). CFUs were significantly reduced after the addition of **NV716** at any time point, suggesting that **NV716** does not need to be

Fig. 6. E_{max} (extrapolated for an infinitively large concentration) or $E_{highest}$ (measured at the highest concentration tested but the plateau was not yet reached) for antibiotics alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxy-cycline [DOX], or ciprofloxacin [CIP]) in the intracellular infection model (THP-1). Values are calculated based on the equation of the Hill response curves from experiments similar to those described in Fig. 4. 1 symbol/strain: 1 (*E. coli; A. baumannii*) or 2 (*K. pneumoniae*) reference strains and 2 to clinical isolates of each species. Grey: antibiotics alone; green: combined 38 μ M PA β N; blue: combined 38 μ M NV731; red: combined with 10 μ M NV716. Horizontal bars: mean. Statistical analysis: one-way ANOVA with Dunnett post-hoc test (paired) comparing each combination to the antibiotic alone: *, p < 0.05; **, p < 0.01; ****, p < 0.001.

added at the same time as the antibiotic to be able to increase its activity. In the next step, we aimed at determining whether **NV716** action was related to a direct capacity to kill persisters or rather to resensitize them to the killing effect of ciprofloxacin. To this end, we isolated the persisters surviving after 5 h of incubation with ciprofloxacin at 50 x MIC and reexposed them to ciprofloxacin at 50 x MIC, NV716 at different concentrations, or a combination thereof (Fig. 7B). As expected, incubation of the isolated persisters with ciprofloxacin alone caused only a negligible reduction in CFU for all strains, confirming the effective isolation of persister cells. When used alone, **NV716** caused a marked decrease in CFU only at the highest concentration tested (250 μ M). In contrast, a significant reduction in CFU was observed when **NV716** was combined at 10 μ M with ciprofloxacin for all strains, indicating it rather acts as a potentiator of ciprofloxacin against persisters.

Fig. 7. Influence of NV716 on persisters selected by ciprofloxacin. (A) The time-killing assay for stationary-phase cultures of 1 (*E. coli; A. baumannii*) or 2 (*K. pneumoniae*) reference strains by ciprofloxacin at 50 x MIC alone or combined with 10 μ M NV716 added at different time points (0 h [left], 5 h [middle] or 24 h [right]; the time of NV716 addition is highlighted by the vertical dotted line and the red arrow). All data are expressed as means ± SEM (triplicates from three experiments). (B) Killing of persister cells of the same strains by ciprofloxacin, NV716, or their combinations. Persister cells were isolated after 5 h of incubation with ciprofloxacin at 50 x MIC (persisters) and then incubated with either 50 x MIC ciprofloxacin (CIP), NV716 at different concentrations, or their combination. All data are expressed as means ± SEM (triplicates from three experiments). Statistical analysis: A: Student's t-test comparing the combination with CIP alone at each concentration; B: one-way ANOVA with Dunnett's post hoc test comparing each type of treatment to CIP alone: *, P < 0.05; **, P < 0.01; ****, P < 0.0001.

3.8. Activity of rifampicin alone or combined with potentiators against biofilms

Our previous work shows the combination of antibiotics and **NV716** can reduce the biomass and viability of *P. aeruginosa* in biofilms [27]. We therefore examined the activity of rifampicin alone or combined with potentiators against biofilms produced by reference and clinical isolates of the three species investigated here (Fig. 8). When used alone, rifampicin had no or little effect on biomass at 5x MIC (assessed by crystal violet staining; left panels) and bacterial viability at 1x MIC (assessed by fluorescein diacetate metabolization; right panels) in biofilms. Its combination with **NV716** (10 μ M) significantly reduced the biomass as well as the viability (right panels). PA β N did not improve

rifampicin activity, and **NV731** increased rifampicin activity against *A. baumannii* biofilms, but to a lower extent than **NV716**. None of the potentiators was capable of reducing biofilm biomass and viability when used alone at these concentrations (data not shown).

4. Discussion

The emergence and rapid spread of antibiotic resistance in Gramnegative bacteria represents a critical threat to public health worldwide [50]. Identification of novel adjuvants that restore existing antibiotic efficacy and improve clinical cure has been considered as a cost-effective strategy for combating superbugs, in particular *E. coli*, *K. pneumoniae* and *A. baumannii* [51]. In this study, we show that the

Fig. 8. Effect of potentiators on the activity of rifampicin against biofilms of 1 (E. coli; A. baumannii) or 2 (K. pneumoniae) reference strains and 2 to clinical isolates of each species. Mature biofilms were exposed during 24 h to rifampicin alone at 1 x MIC (right panels) or 5 x MIC (left panels) in order to achieve suboptimal effects, the potentiators alone (38 µM PAβN and NV731 and 10 µM NV716), or their combination. Biomass (left panel) and viability (right panel) were quantified using crystal violet (CV) staining and fluorescein diacetate assay (FDA), respectively. All data are mean ± SEM (triplicates from three independent experiments). Statistical analysis: one-way ANOVA with Dunnett's post-hoc test comparing each combination to RIF alone: *, p < 0.05; **, p < 0.01; ***p < 0.001; ****, p < 0.0001.

polyaminoisoprenyl compound **NV716** is capable of resensitizing *E. coli*, *K. pneumoniae*, and *A. baumannii* to all tested antibiotics whether affected (doxycycline, chloramphenicol, azithromycin, ciprofloxacin, fusidic acid, novobiocin and linezolid) or not (rifampicin) by active efflux [10,52,53], not only in broth, but also intracellularly or in biofilm. In all our experiments, **NV731** and the efflux pump inhibitor PA β N proved less potent.

Considering first the susceptibility data in broth, we observed a remarkable improvement in the intrinsic activity of antibiotics when combined by NV716. This synergistic effect is obtained at sub-MIC concentrations of the potentiator, demonstrating it is related to an adjuvant mode of action and not to bacterial killing. Potentiation is observed in all three species (as well as in P. aeruginosa [27]), and its extent (in terms of gain of activity, see Fig. 1B) is largely independent of the species, even for antibiotics showing markedly different MICs against these species when used alone (see e.g. rifampicin, chloramphenicol, or doxycycline). Actually, the degree of potentiation offered by NV716 is depending on the lipophilicity of the antibiotic, as evaluated by its logD value. This is very coherent with the fact that the external leaflet of the outer membrane is known to oppose a barrier to the diffusion of lipophilic compounds, which are also incapable to cross this obstacle via hydrophilic porin channels [54]. LPS barrier effect is mediated by the low fluidity of the layer, the quasi-crystalline, ordered arrangement of its hydrocarbon chains, and the strong intermolecular interaction between LPS heads via cation-mediated bridging [54]. In this context, NV716, with a calculated logD of -4.2 at physiological pH

(Table S1), shows a strong capacity to interact with LPS, ensuing a subsequent permeabilization of the outer membrane. It is as potent in this respect as the biguanide alexidine, with which it shares an extended conformation of its polyaminated moiety, and, interestingly enough, much more potent than colistin, often used as a potentiator of other drugs against multiresistant Gram-negative bacteria, for its membrane-destabilizing effects [55,56]. As previously discussed [27], NV731 does not show this extended conformation, which may contribute to explain its lower potency. The capacity of NV716 to interact with LPS and permeabilize the outer membrane is similar among the three species tested here as well as against P. aeruginosa. This indicates the importance of its interaction with the negative charges of the phosphate groups and subsequent displacement of stabilizing divalent cations for its action [27], as this is a common feature of all LPS. Yet, the differences in LPS between the species under study remain modest. As compared to the LPS of E. coli, that of A. baumannii shows an additional acyl chain at the 2 position containing an additional hydroxyl group [57]; that of K. pneumoniae is hexa-acylated with C14 chains in position 2 and 3 (instead of C12 in position 3 for E. coli) and possible additional modifications in the lipidic part [58], while that of P. aeruginosa PAO1 is hexa- or penta-acetylated (lacking in this case the primary O-linked acyl substitution at position 3) [59].

Beside its destabilizing effect on the outer membrane, **NV716** also inhibits the activity of efflux pumps, but we do not know whether this results from a direct interaction with the pump or is indirectly related to the perturbation in membrane properties it induces. **NV716** can disturb the inner membrane potential, which could reduce the energy source of the RND pumps [26], but this effect is observed at concentrations higher than those for which potentiation of antibiotic activity is obtained. Moreover, the increase in antibiotic accumulation inside bacteria is also observed for rifampicin, which is a poor substrate for efflux, indicating that the predominant mode of action of **NV716** is related to the perturbation of the integrity of the outer membrane. Importantly, the activity of **NV716** (and the two other potentiators) is observed at concentrations that do not cause cytotoxicity for eukaryotic cells [25], suggesting no or minimal interaction with eukaryotic membranes.

Turning then our attention to intracellular models of infection, we noticed that NV716 was the most active among the potentiators tested to enhance both the relative potency (lower Cs) and the maximal efficacy (more negative E_{max}) of all antibiotics against all species. Although we did not examine the cellular concentration of NV716 in human monocytes, these results suggest that it has access to intracellular bacteria in sufficient concentrations to exert its synergistic effect. The lower benefit of PA_βN and NV731 can be attributed to their lower intrinsic effects on MICs (as observed in broth) or possibly to a lower accumulation inside the cells, which has neither been investigated. Also, we can most likely exclude that the improved efficacy is related to interference in the count of the residual CFUs, related either to the release of bacteria out of the cells before lysis or to the remaining amount of antibiotics accumulated in cells if considering that (i) NV716 did not increase the cytotoxicity of antibiotics, and (ii) charcoal was added to culture plates to adsorb residual antibiotic.

Considering first antibiotic potency, we observed that C_s was close to the respective MIC (1.5-4 x the MIC) in all cases, as previously described in other models of intracellular infection [31,60,61], and independently of the capacity of the drug to accumulate inside monocytes (Table S1) [62,63]. This is interpreted as denoting a poor intracellular bioavailability [61]. Although gain in potency is a pharmacokinetic-driven parameter, meaning that it essentially reflects a change in the antibiotic concentration needed to reach a specified effect (bacteriostatic effect for C_s [61]), it was not related to the lipophilicity of the antibiotic (Fig. S8A). We do not have a simple explanation for this absence of correlation, but wish to emphasize that the system here is more complex. In particular, accumulation of antibiotics in eukaryotic cells is not directly related to the hydrophilic/lipophilic balance, with azithromycin accumulating to much larger extent than ciprofloxacin, for example, while their calculated logD value is similar. In addition, the subcellular localization of antibiotics and bacteria may also play a critical role in this context. Interestingly, however, we notice that (i) for all drugs, the Cs measured in the presence of NV716 is reduced to a similar value (0.3–1.2-fold the MIC) and (ii) as a corollary, the highest gain in relative potency is obtained for antibiotics that were the less potent when used alone (Fig. S8B).

Considering then antibiotic efficacy, we observed, as in our previous models, that all antibiotics fail to eradicate the infection intracellularly. In the present study, we were limited in the range of antibiotic concentrations we could test because of their intrinsic toxicity at high multiples of their respective MICs, but it remains that the E_{max} or $E_{highest}$ was ranging between reductions of 0.5 (linezolid against E. coli) to 2.5 log₁₀ CFUs (ciprofloxacin against all strains), with most of the drugs causing a reduction of 1-2 log₁₀ CFUs. These dissimilarities are probably attributable to differences in the mode of action of the antibiotics, and most conspicuously, to their bacteriostatic/cidal character, the less efficacious being the bacteriostatic drugs linezolid and fusidic acid, and the most efficacious, the highly bactericidal drugs ciprofloxacin and rifampicin. This is very coherent with data assembled for other models of intracellular infections, with linezolid, fusidic acid, and azithromycin showing no or low reductions in CFUs counts against intracellular Staphylococcus aureus, Staphylococcus epidermidis or Listeria monocytogenes [64-66], and rifampicin being highly effective against intracellular S. aureus and its small colony variants [67]. The intracellular activity of fluoroquinolones has been largely demonstrated against a

vast array of pathogens like S. aureus, L. monocytogenes, L. pneumophila, Burkholderia thailandensis, Yersinia pseudotuberculosis, Francisella philomiragia, or Coxiella burnetii [31,68-70]. The relatively high efficacy of doxycycline (bacteriostatic in broth) is rather unexpected but has been already reported in models of intracellular infection by C. burnettii [70], Chlamydia trachomatis [71], or L. pneumophila [72], possibly suggesting that the intracellular environment may contribute to improve its killing capacity. As efficacy is a pharmacodynamic-driven parameter reflecting bacterial responsiveness to antibiotics [61], it is not surprising that the gain of efficacy triggered by NV716 does not correlate with the lipophilicity of the antibiotics (Fig. S8C). But again, it is interesting to note that the mean maximal efficacy reached in combination is very close (-2.2 to -2.4 log₁₀ CFUs) for all drugs except ciprofloxacin, which reached $-2.8 \log_{10}$ CFUs, and that the difference in E_{max} offered by NV716 is all the more important for poorly effective drugs (Fig. S8D). This suggests that part of the intracellular inoculum is refractory to antibiotic action and that this pool is relatively constant except if using an antibiotic that is already highly efficient by itself like ciprofloxacin. For S. aureus, intracellular survivors to antibiotics have been identified as persisters, i.e. phenotypic variants that adopt a dormant, non-replicative, and transiently non-responsive phenotype [19,20]. This is why we examined the effect of NV716 of persisters selected by ciprofloxacin and found that it was capable of decreasing the proportion of persisters in E. coli, K. pneumoniae and A. baumannii when combined with ciprofloxacin, but not when used alone, suggesting that it can resensitize persisters to the antibiotic but not kill them [25,49]. Of interest, other molecules capable of disrupting membrane integrity also reduce the residual fraction of persisters upon exposure to antibiotics for different bacterial species [73,74], and one of them (SPI009; 1-[[2, 4-dichlorophenethyl] amino]-3-phenoxypropan-2-ol) was also shown to increase the efficacy of ciprofloxacin against intracellular P. aeruginosa [75]. Recently, another membrane-damaging small molecule, JD1, was found capable of reducing the survival of the intracellular Staphylococci and of persister cells in broth, as well as of disrupting biofilms [76].

Lastly, we also examined the effects of **NV716** combined with rifampicin on biofilms, and found that the potentiator can improve the activity of the antibiotic on the biomass and viability of the three Gramnegative bacterial biofilm models. This is consistent with our recent work in *P. aeruginosa* [27], where we also showed that **NV716** at sub-MIC concentrations enhances the penetration of the antibiotics in the deepness of the biofilm, downregulates quorum-sensing regulated processes, and therefore prevents biofilm formation. Thus, its effects partially contrast with those of JD1, which does not prevent biofilm formation and is effective alone against biofilm but only at concentrations higher than its MIC [76], which is also the case for **NV716** against *P. aeruginosa* [27].

We acknowledge some limitations for this work. First, we do not know yet whether the interaction of **NV716** with LPS by itself suffices to explain both the increase in intrinsic activity of antibiotics and their improved activity on persisters, neither how it contributes to the synergy seen intracellularly and in biofilms. Second, we did not measure the concentration of **NV716** in bacteria, monocytic cells or biofilms, as a highly sensitive method should be developed for this purpose.

Nevertheless, it remains that this study highlights a strong potential for this molecule as an adjuvant therapy against difficult-to-treat Gramnegative organisms, demonstrating that it covers the most critical Gramnegative ESKAPE pathogens, including in models of persisting infections. In particular, it allows to bring MICs back to clinically–achievable concentrations for all the disused antibiotics, to confer to most of them (except linezolid and azithromycin) some killing activity against intracellular bacteria at their human C_{max} , and to improve rifampicin activity against biofilms at low multiples of its MICs. Our work therefore position **NV716** as a promising adjuvant that deserves further investigations, notably in in-vivo models of infections.

Financial support

This work was supported by the Belgian Fonds de la Recherche Scientifique (FNRS-FRS) (grants T.0189.16, J.0162.19, and T.0205.22). W. G. was recipient of a PhD fellowship from the China Scholarship Council. F.V.B. is Research Director of the Belgian FNRS-FRS.

Author contributions

W.G. designed and performed the experiments, analyzed the data and wrote the manuscript. J.M.Br. synthesized **NV716**, **NV731**, and **NV1532**, calculated the logD values of antibiotics, and supervised the work. H.R.V. collected and characterized clinical isolates. J.M.Bo supervised the work. F.V.B. designed the study, supervised the work, and wrote the manuscript. All the authors contributed to the writing of the manuscript and approved the submitted version.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Alix Mangin, Virginie Mohymont, and Romain Tricot for expert technical assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejmech.2022.114496.

References

- B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M. A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M.K.F. Salamat, Z. Baloch, Antibiotic resistance: a rundown of a global crisis, Infect. Drug Resist. 11 (2018) 1645–1658.
- [2] WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-wh ich-new-antibiotics-are-urgently-needed.
- [3] A.Y. Peleg, H. Seifert, D.L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen, Clin. Microbiol. Rev. 21 (2008) 538–582.
- [4] S. Datta, C. Wattal, N. Goel, J.K. Oberoi, R. Raveendran, K.J. Prasad, A ten year analysis of multi-drug resistant blood stream infections caused by Escherichia coli & Klebsiella pneumoniae in a tertiary care hospital, Indian J. Med. Res. 135 (2012) 907–912.
- [5] T.J. Silhavy, D. Kahne, S. Walker, The bacterial cell envelope, Cold Spring Harbor Perspect. Biol. 2 (2010) a414.
- [6] K.L. May, M. Grabowicz, The bacterial outer membrane is an evolving antibiotic barrier, Proc. Natl. Acad. Sci. Unit. States Am. 115 (2018) 8852.
- [7] A.H. Delcour, Outer membrane permeability and antibiotic resistance, Biochim. Biophys. Acta 1794 (2009) 808–816.
- [8] X.-Z. Li, P. Plésiat, H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria, Clin. Microbiol. Rev. 28 (2015) 337–418.
- [9] H. Nikaido, J.-M. Pagès, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiol. Rev. 36 (2012) 340–363.
- [10] K. Poole, Efflux-mediated multiresistance in Gram-negative bacteria, Clin. Microbiol. Infect. 10 (2004) 12–26.
- [11] Y. Lamberti, K. Surmann, The intracellular phase of extracellular respiratory tract bacterial pathogens and its role on pathogen-host interactions during infection, Curr. Opin. Infect. Dis. 34 (2021) 197–205.
- [12] M.C. Rocha-Granados, B. Zenick, H.E. Englander, W.W.K. Mok, The social network: impact of host and microbial interactions on bacterial antibiotic tolerance and persistence, Cell. Signal. 75 (2020), 109750.
- [13] S.K. Sukumaran, H. Shimada, N.V. Prasadarao, Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A, Infect. Immun. 71 (2003) 5951–5961.
- [14] S.D. Kobayashi, A.R. Porter, D.W. Dorward, A.J. Brinkworth, L. Chen, B. N. Kreiswirth, F.R. DeLeo, Phagocytosis and killing of carbapenem-resistant ST258 Klebsiella pneumoniae by human neutrophils, J. Infect. Dis. 213 (2016) 1615–1622.
- [15] H. Qiu, R. KuoLee, G. Harris, N. Van Rooijen, G.B. Patel, W. Chen, Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection, PLoS One 7 (2012), e40019.

- [16] Y. Sato, S. Tansho-Nagakawa, T. Ubagai, Y. Ono, Analysis of immune responses in acinetobacter baumannii-infected klotho knockout mice: a mouse model of acinetobacter baumannii infection in aged hosts, Front. Immunol. 11 (2020), 601614.
- [17] V. Kumar, S. Chhibber, Acute lung inflammation in Klebsiella pneumoniae B5055induced pneumonia and sepsis in BALB/c mice: a comparative study, Inflammation 34 (2011) 452–462.
- [18] S.A. McGrath-Morrow, R. Ndeh, J.M. Collaco, A.K. Poupore, D. Dikeman, Q. Zhong, B.D. Singer, F. D'Alessio, A. Scott, The innate immune response to lower respiratory tract E. Coli infection and the role of the CCL2-CCR2 axis in neonatal mice, Cytokine 97 (2017) 108–116.
- [19] F. Peyrusson, H. Varet, T.K. Nguyen, R. Legendre, O. Sismeiro, J.Y. Coppée, C. Wolz, T. Tenson, F. Van Bambeke, Intracellular Staphylococcus aureus persisters upon antibiotic exposure, Nat. Commun. 11 (2020) 2200.
- [20] N.Q. Balaban, S. Helaine, K. Lewis, M. Ackermann, B. Aldridge, D.I. Andersson, M. P. Brynildsen, D. Bumann, A. Camilli, J.J. Collins, C. Dehio, S. Fortune, J.M. Ghigo, W.D. Hardt, A. Harms, M. Heinemann, D.T. Hung, U. Jenal, B.R. Levin, J. Michiels, G. Storz, M.W. Tan, T. Tenson, L. Van Melderen, A. Zinkernagel, Definitions and guidelines for research on antibiotic persistence, Nat. Rev. Microbiol. 17 (2019) 441–448.
- [21] G. Maharjan, P. Khadka, G. Siddhi Shilpakar, G. Chapagain, G.R. Dhungana, Catheter-associated urinary tract infection and obstinate biofilm producers, Can. J. Infect Dis. Med. Microbiol. 2018 (2018), 7624857.
- [22] S. Baidya, S. Sharma, S.K. Mishra, H.P. Kattel, K. Parajuli, J.B. Sherchand, biofilm formation by pathogens causing ventilator-associated pneumonia at intensive care units in a tertiary care hospital: an armor for refuge, BioMed Res. Int. 2021 (2021), 8817700.
- [23] P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Annu. Rev. Microbiol. 56 (2002) 187–209.
- [24] I. Olsen, Biofilm-specific antibiotic tolerance and resistance, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 877–886.
- [25] G. Wang, J.M. Brunel, J.M. Bolla, F. Van Bambeke, The polyaminoisoprenyl potentiator NV716 revives old disused antibiotics against intracellular forms of infection by Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 65 (2021) e2028–2020.
- [26] D. Borselli, A. Lieutaud, H. Thefenne, E. Garnotel, J.M. Pagès, J.M. Brunel, J. M. Bolla, Polyamino-isoprenic derivatives block intrinsic resistance of P. aeruginosa to doxycycline and chloramphenicol in vitro, PLoS One 11 (2016), e0154490.
- [27] G. Wang, J.M. Brunel, M. Preusse, N. Mozaheb, S.D. Willger, P. Baatsen, G. Larrouy-Maumus, S. Häussler, J.M. Bolla, F. Van Bambeke, NV716, a membraneactive polyaminoisoprenyl compound that re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence, in revision, 2022. Submitted for publication.
- [28] O. Lomovskaya, M.S. Warren, A. Lee, J. Galazzo, R. Fronko, M. Lee, J. Blais, D. Cho, S. Chamberland, T. Renau, R. Leger, S. Hecker, W. Watkins, K. Hoshino, H. Ishida, V.J. Lee, Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy, Antimicrob. Agents Chemother. 45 (2001) 105–116.
- [29] A.Y. Coban, A.K. Guney, Y. Tanriverdi Cayci, B. Durupinar, Effect of 1-(1-Naphtylmethyl)-piperazine, an efflux pump inhibitor, on antimicrobial drug susceptibilities of clinical Acinetobacter baumannii isolates, Curr. Microbiol. 62 (2011) 508–511.
- [30] W.V. Kern, P. Steinke, A. Schumacher, S. Schuster, Baum Hv, J.A. Bohnert, Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli, J. Antimicrob. Chemother. 57 (2006) 339–343.
- [31] J.M. Buyck, P.M. Tulkens, F. Van Bambeke, Pharmacodynamic evaluation of the intracellular activity of antibiotics towards Pseudomonas aeruginosa PAO1 in a model of THP-1 human monocytes, Antimicrob. Agents Chemother. 57 (2013) 2310–2318.
- [32] Y. Diaz Iglesias, F. Van Bambeke, Activity of antibiotics against Pseudomonas aeruginosa in an in vitro model of biofilms in the context of cystic fibrosis: influence of the culture medium, Antimicrob. Agents Chemother. 64 (2020) e2204–2219.
- [33] T. Velkov, P.E. Thompson, R.L. Nation, J. Li, Structure-activity relationships of polymyxin antibiotics, J. Med. Chem. 53 (2010) 1898–1916.
- [34] M. Zorko, R. Jerala, Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics, J. Antimicrob. Chemother. 62 (2008) 730–737.
- [35] P. Jagtap, R. Mishra, S. Khanna, P. Kumari, B. Mittal, H.K. Kashyap, S. Gupta, Mechanistic evaluation of lipopolysaccharide–alexidine interaction using spectroscopic and in silico approaches, ACS Infect. Dis. 4 (2018) 1546–1552.
- [36] J.A. Chawner, P. Gilbert, Interaction of the bisbiguanides chlorhexidine and alexidine with phospholipid vesicles: evidence for separate modes of action, J. Appl. Bacteriol. 66 (1989) 253–258.
- [37] A. Lieutaud, C. Pieri, J.M. Bolla, J.M. Brunel, New polyaminoisoprenyl antibiotics enhancers against two multidrug-resistant gram-negative bacteria from Enterobacter and Salmonella species, J. Med. Chem. 63 (2020) 10496–10508.
- [38] R.G. Otto, E. van Gorp, W. Kloezen, J. Meletiadis, S. van den Berg, J.W. Mouton, An alternative strategy for combination therapy: interactions between polymyxin B and non-antibiotics, Int. J. Antimicrob. Agents 53 (2019) 34–39.
- [39] F.C. Odds, Synergy, antagonism, and what the chequerboard puts between them, J. Antimicrob. Chemother. 52 (2003) 1.
- [40] S.J. Wood, K.A. Miller, S.A. David, Anti-endotoxin agents. 1. Development of a fluorescent probe displacement method optimized for the rapid identification of

G. Wang et al.

lipopolysaccharide-binding agents, Comb. Chem. High Throughput Screen. 7 (2004) 239–249.

- [41] J. Swain, M. El Khoury, A. Flament, C. Dezanet, F. Briée, P. Van Der Smissen, J. L. Décout, M.P. Mingeot-Leclercq, Antimicrobial activity of amphiphilic neamine derivatives: understanding the mechanism of action on Gram-positive bacteria, Biochim. Biophys. Acta Biomembr. 1861 (2019), 182998.
- [42] C.H. O'Callaghan, A. Morris, S.M. Kirby, A.H. Shingler, Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate, Antimicrob. Agents Chemother. 1 (1972) 283–288.
- [43] H. Chalhoub, Y. Sáenz, W.W. Nichols, P.M. Tulkens, F. Van Bambeke, Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis, Int. J. Antimicrob. Agents 52 (2018) 697–701.
- [44] G. Sautrey, M. El Khoury, A.G. Dos Santos, L. Zimmermann, M. Deleu, L. Lins, J. L. Décout, M.P. Mingeot-Leclercq, Negatively charged lipids as a potential target for new amphiphilic aminoglycoside antibiotics: a biophysical study, J. Biol. Chem. 291 (2016) 13864–13874.
- [45] J.A. Bohnert, S. Schuster, M. Szymaniak-Vits, W.V. Kern, Determination of realtime efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1,2'-dinaphthylamine efflux assay, PLoS One 6 (2011), e21196.
- [46] A. Fenosa, E. Fusté, L. Ruiz, P. Veiga-Crespo, T. Vinuesa, V. Guallar, T.G. Villa, M. Viñas, Role of TolC in Klebsiella oxytoca resistance to antibiotics, J. Antimicrob. Chemother. 63 (2009) 668–674.
- [47] E. Peeters, H.J. Nelis, T. Coenye, Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, J. Microbiol. Methods 72 (2008) 157–165.
- [48] G. Sautrey, L. Zimmermann, M. Deleu, A. Delbar, L. Souza Machado, K. Jeannot, F. Van Bambeke, J.M. Buyck, J.L. Decout, M.P. Mingeot-Leclercq, New amphiphilic neamine derivatives active against resistant Pseudomonas aeruginosa and their interactions with lipopolysaccharides, Antimicrob. Agents Chemother. 58 (2014) 4420–4430.
- [49] V. Liebens, V. Defraine, W. Knapen, T. Swings, S. Beullens, R. Corbau, A. Marchand, P. Chaltin, M. Fauvart, J. Michiels, Identification of 1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol, a novel antibacterial compound active against persisters of Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 61 (2017) e836–817.
- [50] I. Roca, M. Akova, F. Baquero, J. Carlet, M. Cavaleri, S. Coenen, J. Cohen, D. Findlay, I. Gyssens, O.E. Heure, G. Kahlmeter, H. Kruse, R. Laxminarayan, E. Liébana, L. López-Cerero, A. MacGowan, M. Martins, J. Rodríguez-Baño, J. M. Rolain, C. Segovia, B. Sigauque, E. Tacconelli, E. Wellington, J. Vila, The global threat of antimicrobial resistance: science for intervention, New Microb. New Infect. 6 (2015) 22–29.
- [51] R.J. Melander, C. Melander, The challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect. Dis. 3 (2017) 559–563.
- [52] T. Ohene-Agyei, R. Mowla, T. Rahman, H. Venter, Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump, Microbiol. 3 (2014) 885–896.
- [53] Y. Lyu, X. Yang, S. Goswami, B.K. Gorityala, T. Idowu, R. Domalaon, G.G. Zhanel, A. Shan, F. Schweizer, Amphiphilic tobramycin-lysine conjugates sensitize multidrug resistant gram-negative bacteria to rifampicin and minocycline, J. Med. Chem. 60 (2017) 3684–3702.
- [54] H. Nikaido, Molecular basis of bacterial outer membrane permeability revisited, Microbiol. Mol. Biol. Rev. 67 (2003) 593–656.
- [55] T. Brennan-Krohn, A. Pironti, J.E. Kirby, Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae, Antimicrob. Agents Chemother. 62 (2018) e873–818.
- [56] N.C. Gordon, K. Png, D.W. Wareham, Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii, Antimicrob. Agents Chemother. 54 (2010) 5316–5322.
- [57] M.J. Powers, M.S. Trent, Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin, Mol. Microbiol. 107 (2018) 47–56.
- [58] G. Mills, A. Dumigan, T. Kidd, L. Hobley, J.A. Bengoechea, Identification and characterization of two Klebsiella pneumoniae lpxL lipid A late acyltransferases and their role in virulence, Infect. Immun. 85 (2017) e68–17.
- [59] J.S. Lam, V.L. Taylor, S.T. Islam, Y. Hao, D. Kocincova, Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide, Front. Microbiol. 2 (2011) 118.

- [60] M. Barcia-Macay, C. Seral, M.P. Mingeot-Leclercq, P.M. Tulkens, F. Van Bambeke, Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages, Antimicrob. Agents Chemother. 50 (2006) 841–851.
- [61] F. Peyrusson, T.K. Nguyen, J.M. Buyck, S. Lemaire, G. Wang, C. Seral, P. M. Tulkens, F. Van Bambeke, In vitro models for the study of the intracellular activity of antibiotics, Methods Mol. Biol. 2357 (2021) 239–251.
- [62] P.M. Tulkens, Intracellular distribution and activity of antibiotics, Eur. J. Clin. Microbiol. Infect. Dis. 10 (1991) 100–106.
- [63] C.M. Vallet, B. Marquez, E. Ngabirano, S. Lemaire, M.P. Mingeot-Leclercq, P. M. Tulkens, F. Van Bambeke, Cellular accumulation of fluoroquinolones is not predictive of their intracellular activity: studies with gemifloxacin, moxifloxacin and ciprofloxacin in a pharmacokinetic/pharmacodynamic model of uninfected and infected macrophages, Int. J. Antimicrob. Agents 38 (2011) 249–256.
- [64] S. Lemaire, F. Van Bambeke, D. Pierard, P.C. Appelbaum, P.M. Tulkens, Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin, Clin. Infect. Dis. 52 (2011) S493–S503.
- [65] S. Lemaire, K. Kosowska-Shick, P.C. Appelbaum, G. Verween, P.M. Tulkens, F. Van Bambeke, Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila, Antimicrob. Agents Chemother. 54 (2010) 2549–2559.
- [66] C. Seral, S. Carryn, P.M. Tulkens, F. Van Bambeke, Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus, J. Antimicrob. Chemother. 51 (2003) 1167–1173.
- [67] H.A. Nguyen, O. Denis, A. Vergison, P.M. Tulkens, M.J. Struelens, F. Van Bambeke, Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations, Antimicrob. Agents Chemother. 53 (2009) 1443–1449.
- [68] S. Lemaire, F. Van Bambeke, P.M. Tulkens, Activity of finafloxacin, a novel fluoroquinolone with increased activity at acid pH, towards extracellular and intracellular Staphylococcus aureus, Listeria monocytogenes and Legionella pneumophila, Int. J. Antimicrob. Agents 38 (2011) 52–59.
- [69] H. Chalhoub, S.V. Harding, P.M. Tulkens, F. Van Bambeke, Influence of pH on the activity of finafloxacin against extracellular and intracellular Burkholderia thailandensis, Yersinia pseudotuberculosis and Francisella philomiragia and on its cellular pharmacokinetics in THP-1 monocytes, Clin. Microbiol. Infect. 26 (2020), 1254.e1251-1254.e1258.
- [70] F. Peyrusson, A.O. Whelan, M.G. Hartley, I.H. Norville, S.V. Harding, F. Van Bambeke, Intracellular activity of antibiotics against Coxiella burnetii in a model of activated human THP-1 cells, Antimicrob. Agents Chemother. 65 (2021), e0106121.
- [71] K. Shima, M. Szaszak, W. Solbach, J. Gieffers, J. Rupp, Impact of a low-oxygen environment on the efficacy of antimicrobials against intracellular Chlamydia trachomatis, Antimicrob. Agents Chemother, 55 (2011) 2319–2324.
- [72] J. Dubois, M. Dubois, J.F. Martel, In vitro and intracellular activities of omadacycline against Legionella pneumophila, Antimicrob. Agents Chemother. 64 (2020) e1972–1919.
- [73] V. Defraine, V. Liebens, E. Loos, T. Swings, B. Weytjens, C. Fierro, K. Marchal, L. Sharkey, A.J. O'Neill, R. Corbau, A. Marchand, P. Chaltin, M. Fauvart, J. Michiels, 1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol kills Pseudomonas aeruginosa through extensive membrane damage, Front. Microbiol. 9 (2018) 129.
- [74] G.A. Naclerio, H.O. Sintim, Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets, Future Med. Chem. 12 (2020) 1253–1279.
- [75] V. Defraine, L. Verstraete, F. Van Bambeke, A. Anantharajah, E.M. Townsend, G. Ramage, R. Corbau, A. Marchand, P. Chaltin, M. Fauvart, J. Michiels, Antibacterial activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against antibiotic-resistant strains of diverse bacterial pathogens, biofilms and in pre-clinical infection models, Front. Microbiol. 8 (2017) 2585.
- [76] J.L. Dombach, J.L.J. Quintana, C.S. Detweiler, Staphylococcal bacterial persister cells, biofilms, and intracellular infection are disrupted by JD1, a membranedamaging small molecule, mBio 12 (2021) e0180121-e0180121.

The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane

Gang Wang¹, Jean-Michel Brunel², Hector Rodriguez-Villalobos³, Jean-Michel Bolla², Françoise Van Bambeke¹

¹ Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

² Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France.

³ Microbiologie, Cliniques Universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium

Supplementary material

Antibiotics	Resistanc	e by efflux	LogD values at pH 7.4	Accumulation level in	C _{min} / C _{max} in human serum	
	Pumps shown to transport the drug (6)	Bacterial species (6, 7)	(octanol:water partition coefficient at pH 7.4); calculated using LogD Predictor (https://disco.chemaxon.com/calc ulators/demo/plugins/logd/).	eukaryotic cells (at equilibrium) (1)	(mg/L) (2-5)	
Rifampicin	Poor substrate for efflux	NA	2.98	1-4	0.1-10	
Azithromycin	AcrAB-TolC, AdeABC	E. coli, K. pneumoniae and A. baumannii	-1.50	40-300	0.04-1	
Linezolid	AcrAB-TolC	E. coli	0.64	1	2.5-15	
Fusidic acid	AcrAB-TolC, AdeABC	E. coli and A.baumanni	1.50	ND	30-200	
Novobiocin	AcrAB-TolC	E. coli	1.76	ND	15-60	
Chloramphenicol	AcrAB-TolC, AdeABC	E. coli, K. pneumoniae and A. baumannii	0.87	2-5	5-15	
Doxycycline	AcrAB-TolC, AdeABC	E. coli, K. pneumoniae and A. baumannii	-3.48	2-10	1-10	
Ciprofloxacin	AcrAB-TolC, AdeABC	E. coli, K. pneumoniae and A. baumannii	-0.86	4-10	0.05-5	

Table S1. Characteristics of the antibiotics used in the present study.

LogD values of the potentiators

	NV716	NV731	ΡΑβΝ
LogD (pH 7.4)	-4.2	-6.3	-1.2

Species	Beta-lactamases identified	Resistance to antibiotics ^a	References
E. coli	CTX-M 15	CAZ, PIP, CIP	(8)
E. coli	OXA-1, CTX-M 15	CAZ, PIP, TZP CIP, DOX	
E. coli	OXA-48	PIP, TZP, CIP	
E. coli	ESBL	CAZ, PIP, TZP, MER, CIP, DOX, GEN	This study
E. coli	ESBL	CAZ, PIP, TZP, MER, CIP, DOX, GEN	
E. coli	ESBL	CAZ, PIP, TZP, MER, CIP, GEN	
E. coli	ESBL	CAZ, PIP, TZP, MER	
E. coli	ESBL	CAZ, PIP	
K. pneumoniae	TEM-84, SHV-11	CAZ, PIP, TZP, CIP, CST	(8)
K. pneumoniae	CTX-M 1	CAZ, PIP	
K. pneumoniae	ESBL	CAZ, PIP, TZP, MER, CIP, GEN	
K. pneumoniae	КРС	CAZ, PIP, TZP, CIP, GEN	
K. pneumoniae	VIM	CAZ, PIP, TZP, MER, DOX	This study
K. pneumoniae	KPC-2	CAZ, PIP, TZP, MER, CIP, GEN	
K. pneumoniae	KPC-2, OmpK35-, OmpK35red	CAZ, PIP, TZP, MER, CIP, DOX, GEN	
K. pneumoniae	KPC-2	CAZ, PIP, TZP, MER, CIP, DOX, GEN	

CFPM, TIC, CIP

CFPM, TIC, MER, CIP

CFPM, TIC, CIP, GEN

CFPM, TIC, MER, CIP, DOX, MIN, GEN

Table S2. Characteristics of the clinical isolates isolates used in this study.

 Strain

 15

 51

 CPE541

 CPE73

 CPE472

 CPE144

 CPE493

 BISC15813

112

113

111

109

110

NF2147

NF2137

A. baumannii

Abbreviations: CAZ: ceftazidime; CFPM: cefepime; PIP: piperacillin; TZP: piperacillin+tazobactam (4 mg/L); TIC: ticarcillin; MER: meropenem; CIP: ciprofloxacin; CST: colistin; DOX: doxycycline; MIN: minocycline; GEN: gentamicin.

OXA-23-24-like (plasmid)+OXA-51-like (chromosomal)

OXA-23-24-like (plasmid)+OXA-51-like (chromosomal)

OXA-23-24-like (plasmid)+OXA-51-like (chromosomal)

OXA-23-like (plasmid)+OXA-51-like (chromosomal)

OXA-23-like (plasmid)+OXA-51-like (chromosomal)

OXA-23

OXA-23

^a breakpoints for resistance: EUCAST 2022 for all drugs (except tetracyclines) against *E. coli* and *K. pneumoniae*; CLSI 2020 for all drugs against *A. baumannii* and tetracyclines against all species.

(8)

This study

Chusins	Conditions					MIC (mg	/L)ª			
Strains	Conditions	Potentiators	RIF	AZI	LZD	FUS	NOV	CHL	DOX	CIP
	AB alone		16	4	512	512	256	8	2	0.016
E. coli ATCC	+ΡΑβΝ (38 μΜ)	>380 µM	4 (2)	1 (2)	64 (3)	64 (3)	32 (3)	1 (3)	0.5 (2)	0.004 (2)
47076	+NV731 (38 μM)	>380 µM	0.5 (5)	1 (2)	32 (4)	64 (3)	8 (5)	1 (3)	0.125 (4)	0.004 (2)
	+NV716 (10 μM)	50 µM	0.031 (9)	0.5 (3)	8 (6)	2 (8)	0.5 (9)	0.5 (4)	0.031 (6)	0.002 (3)
	AB alone		16	32	512	512	64	4	1	32
E coli 1Eb	+ΡΑβΝ (38 μΜ)	>380 µM	0.25(6)	4 (3)	16 (5)	32 (4)	16 (2)	1 (2)	0.25 (2)	16 (1)
E. COII 15°	+NV731 (38 μM)	>380 µM	0.5 (5)	16 (1)	64 (3)	128 (2)	4 (4)	1 (2)	0.25 (2)	16 (1)
	+NV716 (10 μM)	50 µM	0.031 (9)	2 (4)	4 (7)	4 (7)	0.25 (8)	0.5 (3)	0.25 (2)	8 (2)
	AB alone		32	32	512	512	128	8	16	32
E coli E1h	+ΡΑβΝ (38 μΜ)	>380 µM	0.5 (6)	4 (3)	16 (5)	32 (4)	16 (3)	1 (3)	2 (3)	32 (0)
E. CON 51°	+NV731 (38 μM)	>380 µM	1 (5)	16 (1)	64 (3)	64 (3)	4 (5)	1 (3)	4 (2)	32 (0)
	+NV716 (10 μM)	50 μM	0.031 (10)	1 (5)	16 (5)	1 (9)	0.125 (10)	0.5 (4)	1 (4)	8 (2)
	AB alone		8	2	128	512	128	4	0.25	2
	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (5)	0.5 (2)	32 (2)	256 (1)	8 (4)	1 (2)	0.125 (1)	2 (0)
E. COII CPE 541	+NV731 (38 μM)	>380 µM	0.25 (5)	1 (1)	16 (3)	32 (4)	1 (7)	1 (2)	0.063 (2)	2 (0)
	+NV716 (10 μM)	50 µM	0.004 (11)	0.125 (4)	0.016 (13)	0.032 (14)	0.016 (13)	0.25 (4)	0.004 (6)	1 (1)
	AB alone		16	1024	512	1024	128	256	32	64
E coli CDE 72	+ΡΑβΝ (38μΜ)	>380µM	1 (4)	512 (1)	128 (2)	256 (2)	64 (1)	256 (0)	16 (1)	64 (0)
L.COII CFL 75	+NV731 (38μM)	>380µM	0.5 (5)	1024 (0)	64 (3)	64 (4)	4 (5)	256 (0)	16 (1)	64 (0)
	+NV716 (10μM)	50μΜ	0.008 (11)	64 (4)	8 (6)	1 (10)	0.125 (10)	2 (7)	1 (5)	32 (1)
	AB alone		256	4	512	1024	512	8	64	1
E coli CEE 472	+ΡΑβΝ (38 μΜ)	>380 µM	64 (2)	1 (2)	32 (4)	256 (2)	64 (3)	2 (2)	16 (2)	1 (0)
L. COII CFL 472	+NV731 (38 μM)	>380 µM	8 (5)	2 (1)	32 (4)	128 (3)	4 (7)	2 (2)	16 (2)	1 (0)
	+NV716 (10 μM)	50 μM	0.125 (11)	0.125 (5)	4 (7)	0.5 (11)	0.125 (12)	0.5 (4)	0.5 (7)	0.25 (2)
	AB alone		16	8	1024	64	512	16	1	128
E coli CDE 144	+ΡΑβΝ (38 μΜ)	>380 µM	0.5 (5)	1 (3)	64 (4)	64 (0)	16 (5)	2 (3)	0.25 (2)	128 (0)
L. COII CFL 144	+NV731 (38 μM)	>380 µM	0.25 (6)	2 (2)	32 (5)	32 (1)	1 (9)	2 (3)	0.125 (3)	128 (0)
	+NV716 (10 μM)	50 μM	0.008 (11)	0.016 (9)	0.5 (11)	0.5 (7)	0.016 (15)	0.016 (10)	0.016 (6)	64 (1)
	AB alone		8	2	256	1024	128	8	0.5	0.008
E coli CPE 193	+ΡΑβΝ (38 μΜ)	>380 µM	0.5 (4)	0.25 (3)	32 (3)	128 (3)	16 (3)	2 (2)	0.125 (2)	0.008 (0)
L. COII CFL 495	+NV731 (38 μM)	>380 µM	0.125 (6)	1 (1)	32 (3)	32 (5)	2 (6)	1 (3)	0.125 (2)	0.008 (0)
	+NV716 (10 μM)	50 μM	0.008 (10)	0.063 (5)	0.063 (12)	1 (10)	0.063 (11)	0.031 (8)	0.008 (6)	0.008 (0)
	AB alone		256	32	512	512	512	8	2	0.016
E. coli BISC	+ΡΑβΝ (38 μΜ)	>380 µM	256 (0)	2 (4)	16 (5)	16 (5)	64 (3)	2 (2)	0.125 (4)	0.016 (0)
15813	+NV731 (38 μM)	>380 µM	256 (0)	8 (2)	32 (4)	16 (5)	8 (6)	2 (2)	0.125 (4)	0.008 (1)
	+NV716 (10 μM)	100 µM	2 (7)	0.06 (9)	0.25 (11)	0.004 (17)	0.016 (15)	0.06 (7)	0.008 (8)	0.004 (2)

Table S3: MIC of antibiotics alone or combined with potentiators against 1 (*E. coli* and *A. baumannii*) or 2 (*K. pneumoniae*) reference strains and 23 resistant clinical isolates (see Table S2)

		1	1	0	1	1	1	1	1	1
	AB alone		32	8	512	512	512	4	2	0.031
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	16 (1)	2 (2)	64 (3)	128 (2)	32 (4)	1 (2)	0.25 (3)	0.031 (0)
ATCC 43816	+NV731 (38 μM)	>380 μM	0.25 (7)	1 (3)	64 (3)	128 (2)	8 (6)	1 (2)	0.25 (3)	0.031 (0)
	+NV716 (10 μM)	100 µM	0.031 (10)	0.5 (4)	32 (4)	64 (3)	1 (9)	0.5 (3)	0.031 (6)	0.031 (0)
	AB alone		32	32	512	512	512	64	32	0.5
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	16 (1)	16 (1)	512 (0)	512 (0)	64 (3)	8 (3)	4 (3)	0.25 (1)
ATCC 700603	+NV731 (38 μM)	>380 µM	4 (3)	16 (1)	512 (0)	512 (0)	64 (3)	2 (5)	2 (4)	0.25 (1)
	+NV716 (10 μM)	100 µM	2 (4)	2 (4)	256 (1)	256 (1)	16 (5)	2 (5)	0.5 (6)	0.125 (2)
	AB alone		32	16	512	512	128	2	2	1
K. pneumoniae	+ΡΑβΝ (38 μΜ)	> 380 µM	2 (4)	0.5 (5)	128 (2)	512 (0)	64 (1)	1 (1)	1 (1)	1 (0)
58 ^b	+NV731 (38 μM)	>380 µM	4 (3)	8 (4)	128 (2)	512 (0)	8 (4)	1 (1)	1 (1)	1 (0)
	+NV716 (10 μM)	50 µM	0.5 (6)	2 (3)	64 (3)	64 (3)	2 (6)	1 (1)	1 (1)	0.125 (3)
	AB alone		16	16	512	512	128	2	2	0.031
K. pneumoniae	+E50(38 μM)	>380 µM	2 (3)	1 (4)	64 (3)	512 (0)	32 (2)	1 (1)	1 (1)	0.031 (0)
74 ^b	+NV731 (38 μM)	>380 µM	2 (3)	2 (3)	64 (3)	512 (0)	8 (4)	1 (1)	0.5 (2)	0.031 (0)
	+NV716 (10 μM)	50 µM	0.125 (7)	1 (4)	16 (5)	16 (5)	2 (6)	1 (1)	0.5 (2)	0.031 (0)
	AB alone		512	256	512	1024	512	4	2	64
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 μM	128 (2)	32 (3)	64 (3)	512 (1)	64 (3)	1 (2)	0.5 (2)	64 (0)
CPE 532	+NV731 (38 μM)	>380 µM	32 (4)	128 (1)	32 (4)	128 (3)	2 (8)	1 (2)	0.25 (3)	64 (0)
	+NV716 (10 μM)	100 µM	8 (6)	128 (1)	8 (6)	8 (7)	0.25 (11)	0.5 (3)	0.125 (4)	32 (1)
	AB alone		16	8	512	1024	512	8	2	16
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	1 (4)	0.25 (5)	128 (2)	256 (2)	128 (2)	2 (2)	0.5 (2)	16 (0)
CPE 497	+NV731 (38 μM)	>380 µM	0.25 (6)	0.5 (4)	64 (3)	32 (5)	32 (4)	2 (2)	0.25 (3)	16 (0)
	+NV716 (10 μM)	50 μM	0.008 (11)	0.03 (8)	4 (7)	1 (10)	0.5 (10)	0.5 (4)	0.125 (4)	4 (2)
	AB alone		32	8	512	1024	256	4	32	0.03
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 μM	0.5 (6)	0.25 (5)	64 (3)	256 (2)	32 (3)	1 (2)	16 (1)	0.016 (1)
CPE 370	+NV731 (38 μM)	>380 µM	1 (5)	4 (1)	64 (3)	128 (3)	2 (7)	1 (2)	16 (1)	0.03 (0)
	+NV716 (10 μM)	50 μM	0.06 (9)	1 (3)	32 (4)	8 (7)	0.25 (10)	0.5 (3)	4 (3)	0.03 (0)
	AB alone		32	64	1025	512	128	512	4	128
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	1 (5)	8 (3)	128 (3)	512 (0)	128 (0)	128 (2)	1 (2)	64 (1)
101	+NV731 (38 μM)	>380 µM	1 (5)	16 (2)	128 (3)	256 (1)	8 (4)	128 (2)	0.5 (3)	64 (1)
	+NV716 (10 μM)	100 µM	0.125 (8)	32 (1)	32 (5)	16 (5)	0.5 (8)	32 (4)	0.25 (4)	32 (2)
	AB alone		64	16	1024	1024	1024	512	16	4
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	1 (6)	1 (4)	1024 (0)	1024 (0)	128 (3)	256 (1)	1 (4)	1 (2)
99	+NV731 (38 μM)	>380 µM	0.25 (8)	2 (3)	256 (2)	256 (2)	8 (7)	256 (1)	0.5 (5)	1 (2)
	+NV716 (10 μM)	50 μM	0.004 (14)	0.125 (7)	16 (6)	2 (9)	0.125 (13)	64 (3)	0.125 (7)	1 (2)
	AB alone		128	256	1024	1024	256	256	64	128
K. pneumoniae	+ΡΑβΝ (38 μΜ)	>380 µM	32 (2)	8 (5)	128 (3)	512 (1)	16 (4)	128 (1)	8 (3)	64 (1)
100	+NV731 (38 μM)	>380 µM	4 (5)	64 (2)	128 (3)	256 (2)	2 (7)	128 (1)	16 (2)	64 (1)
	+NV716 (10 μM)	50 μM	0.125 (10)	64 (2)	32 (5)	32 (5)	0.25 (10)	0.016 (14)	0.25 (8)	32 (2)

	AB alone		2	16	256	512	16	64	0.125	1
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.5 (2)	8 (1)	64 (2)	32 (4)	4 (2)	32 (1)	0.063 (1)	0.5 (1)
ATCC 19606	+NV731 (38 μM)	>380 µM	0.125 (4)	8 (1)	32 (3)	4 (7)	0.25 (6)	32 (1)	0.063 (1)	0.5 (1)
	+NV716 (10 μM)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16 (2)	0.031 (2)	0.25 (2)					
	AB alone		2	1	512	256	32	128	0.125	32
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (3)	0.125 (3)	128 (2)	16 (4)	2 (4)	64 (1)	0.125 (0)	32 (0)
112 ^b	+NV731 (38 μM)	>380 µM	0.125 (4)	0.5 (1)	64 (3)	8 (5)	0.5 (6)	64 (1)	0.063 (1)	32 (0)
	+NV716 (10 μM)	50 µM	0.031 (6)	0.125 (3)	32 (4)	2 (7)	0.063 (9)	16 (3)	0.031 (2)	8 (2)
	AB alone		2	1	512	128	32	128	0.25	32
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (3)	0.25 (2)	64 (2)	16 (3)	4 (3)	64 (1)	0.25 (0)	16(1)
113 ^b	+NV731 (38 μM)	>380 µM	0.25 (3)	0.5 (1)	64 (2)	8 (4)	0.5 (6)	32 (2)	0.25 (0)	16(1)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 (7)	0.063 (9)	8 (4)	0.063 (2)	8 (2)				
	AB alone		4	32	512	256	128	128	64	64
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (4)	8 (2)	64 (3)	8 (5)	4 (5)	64 (1)	64 (0)	64 (0)
111	+NV731 (38 μM)	>380 µM	0.25 (4)	8 (2)	64 (3)	4 (6)	0.25 (9)	64 (1)	32 (1)	64 (0)
111	+NV716 (10 μM)	50 µM	0.008 (9)	8 (2)	16 (5)	0.125 (11)	0.032 (12)	16 (3)	4 (4)	32 (1)
	AB alone		4	512	512	256	32	128	64	32
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (4)	32 (4)	32 (4)	4 (6)	4 (3)	32 (2)	16 (2)	16 (1)
109	+NV731 (38 μM)	>380 µM	0.125 (5)	64 (3)	64 (3)	2 (7)	0.5 (6)	32 (2)	16 (2)	16 (1)
	+NV716 (10 μM)	50 µM	0.004 (10)	4 (7)	4 (7)	0.016 (14)	0.016 (11)	0.25 (9)	0.5 (7)	16 (1)
	AB alone		4	2	1024	256	64	512	0.125	64
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (4)	0.125 (4)	128 (3)	16 (4)	4 (4)	128 (2)	0.125 (0)	32 (1)
110	+NV731 (38 μM)	>380 µM	0.06 (6)	0.5 (2)	64 (4)	4 (6)	0.5 (7)	128 (2)	0.063 (1)	64 (0)
	+NV716 (10 μM)	50 µM	0.004 (10)	0.125 (4)	8 (7)	0.125 (11)	8 (3)	1 (9)	0.032 (2)	64 (0)
	AB alone		64	1024	1024	256	128	256	64	128
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	8 (3)	1024 (0)	128 (3)	16 (4)	16 (3)	128 (1)	16 (2)	128 (0)
NF 2147	+NV731 (38 μM)	>380 µM	4 (4)	1024 (0)	128 (3)	8 (5)	2 (6)	128 (1)	64 (0)	128 (0)
	+NV716 (10 μM)	100 µM	0.06 (10)	256 (2)	1 (10)	1 (8)	0.5 (8)	4 (6)	1 (6)	32 (2)
	AB alone		2	8	256	128	64	64	32	32
A. baumannii	+ΡΑβΝ (38 μΜ)	>380 µM	0.25 (3)	2 (2)	64 (2)	8 (4)	8 (3)	64 (0)	32 (0)	32 (0)
NF 2137	+NV731 (38 μM)	>380 µM	0.125 (4)	8 (0)	32 (3)	2 (6)	1 (6)	32 (1)	32 (0)	32 (0)
	+NV716 (10 μM)	50 µM	0.008 (8)	0.5 (4)	1 (8)	0.5 (8)	0.125 (9)	0.016 (12)	0.016 (11)	8 (2)

^a values in bold highlight a significant decrease in MIC (at least 2 doubling dilutions); values in brackets: number of doubling dilution decrease (log2 fold change) for MIC of antibiotic combined with potentiator compared with antibiotic alone.

^b clinical isolates used to study activity in infected cells and biofilms

Table S4. IC₅₀ values from interaction of potentiators with Gram-negative bacterial membrane. IC50 values were calculated based on the Hill equation of concentration-response curves in BC displacement, OM permeability, PI accumulation and NPN efflux assays. All data are shown as means (triplicates from 3 experiments).

Experimental conditions	Strains -			IC ₅₀ (µM)		
Experimental conditions	Strains	ALE	CST	ΡΑβΝ	NV731	NV716
	E. coli ATCC 47076	5.95	>100	>100	55.12	5.35
PC displacement	K. pneumoniae ATCC 43816	6.63	>100	>100	64.05	5.55
BC displacement	K. pneumoniae ATCC 700603	5.50	>100	>100	47.99	4.03
	A.baumannii ATCC 19606	6.39	>100	IC50 (μM)PAβNNV731>100 55.12 >100 64.05 >100 47.99 >100 58.52 42.1329.57 53.27 36.66 36.25 23.07 48.52 42.47 >100>100>100>100>100>100>100>100204.63 83.69 262.60 85.79 390.00233.30118.90120.10	5.23	
	E. coli ATCC 47076	4.18	IC50 (μ M)ALECSTPA β NNV731NV7165.95>100>10055.125.355.63>100>10064.055.555.50>100>10047.994.035.39>100>10058.525.234.1810.1442.1329.577.594.1912.0653.2736.6611.363.037.8636.2523.075.973.909.9048.5242.478.312.082.75>100>10066.721.782.32>100>10063.011.431.48>100>10046.973.7198.50204.6383.6918.904.68102.05262.6085.7915.454.13116.40390.00233.3012.712.3068.86118.90120.1013.91	7.59		
OM permechility	K. pneumoniae ATCC 43816	4.19	12.06	53.27	36.66	11.36
OM permeability	K. pneumoniae ATCC 700603	3.03	7.86	36.25	23.07	5.97
	A.baumannii ATCC 19606	3.90	9.90	IC ₅₀ (μM) PAβN NV731 >100 55.12 >100 64.05 >100 47.99 >100 58.52 42.13 29.57 53.27 36.66 36.25 23.07 48.52 42.47 >100 >100 >100 >100 >100 >100 >100 >100 >100 83.69 262.60 85.79 390.00 233.30 118.90 120.10	8.31	
	E. coli ATCC 47076	2.08	2.75	>100	>100	66.72
IM pormospility	K. pneumoniae ATCC 43816	1.78	2.32	>100	>100	51.30
	K. pneumoniae ATCC 700603	ALECSTPA β NNV7315.95>100>10055.1256.63>100>100035.50>100>1006.39>100>10058.524.1810.1442.1329.5764.1912.0653.273.037.8636.2523.073.909.9048.5242.472.082.75>100>10051.782.32>100>100031.702.84>100>10073.7198.50204.6383.69654.68102.05262.6085.790324.13116.40390.00233.30	>100	63.01		
	A.baumannii ATCC 19606	1.43	1.48	>100	>100	46.97
	E. coli ATCC 47076	73.71	98.50	204.63	83.69	18.90
Efflux inhibition	K. pneumoniae ATCC 43816	54.68	102.05	262.60	85.79	15.45
	K. pneumoniae ATCC 700603	24.13	116.40	390.00	233.30	12.71
	A.baumannii ATCC 19606	32.30	68.86	IC ₆₀ (μM) PAβN >100 >100 >100 >100 3100 >100 >100 36.25 48.52 >100 >100 >100 200 >100 204.63 262.60 390.00 118.90	120.10	13.91

Table S5. IC₅₀ values from cytotoxicity tests, for antibiotics alone or combined with potentiators, and expressed in different units (x MIC, mg/L, μ M [MIC are vs. *E. coli* ATCC 47076]). The graph above the Table show the concentration-response curves for seven antibiotics alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL] and doxycycline [DOX]) at the indicated concentrations in non-infected THP-1 cells. The dotted horizontal line shows the 50 % cytotoxicity (IC₅₀).

IC₅₀ values shown in the Table were calculated based on the Hill equation of concentrationresponse curves in non-infected THP-1 cells or THP-1 cells infected with *E. coli* ATCC 47076 based on experiments similar to that shown in the graph.

All data are shown as means ± SEM (triplicates from 3 experiments). Statistical analysis (1-way ANOVA; Tukey's Multiple Comparison Test): no significant difference was noticed when comparing the different conditions for each antibiotic (p>0.05).

		IC ₅₀										
Antihiatia	міс			non-infecte	d THP-1			infected	THP-1			
Antibiotic	(mg/L)	units	AB alone	+ΡΑβΝ (38 μΜ)	+NV731 (10 μM)	+NV716 (10 μM)	AB alone	+ΡΑβΝ (38 μΜ)	+NV731 (10 μM)	+NV716 (10 μM)		
		xMIC	65.3±4.1	68.1±11.4	64.3±8.8	64.7±3.5	66.5±3.9	64.7±2.4	65.3±1.8	73.1±3.6		
Azithromycin	4	mg/L	261.4±16.3	272.3±45.7	257.4±35.4	258.7±13.9	266.1±15.6	258.9±9.5	261.0±7.0	292.6±14.4		
		μM	349.0±21.7	363.6±61.0	343.6±47.2	345.4±18.6	355.3±20.8	345.7±12.7	348.5±9.4	390.6±19.3		
		xMIC	2.8±0.3	2.9±0.1	2.8±0.1	2.8±0.3	2.8±0.5	2.7±0.2	2.7±0.1	2.8±0.0		
Fusidic acid	256	mg/L	712.5±65.6	746.8±34.0	726.3±29.2	717.6±76.4	725.2±116.1	685.1±53.7	680.1±37.2	710.7±10.3		
		μM	1378.2±126.8	1444.6±65.8	1404.8±56.4	1387.9±147.8	1402.8±224.5	1325.1±103.8	1315.5±72.0	1374.6±19.9		
		xMIC	2.3±0.1	2.4±0.1	2.3±0.1	2.5±0.0	2.4±0.1	2.4±0.1	2.5±0.1	2.4±0.1		
Linezolid	256	mg/L	596.0±37.4	611.0±16.7	579.1±26.5	633.9±8.1	625.5±21.6	610.6±18.4	634.4±17.4	614.6±21.7		
		μΜ	1768.5±111.1	1813.0±49.7	1718.3±78.7	1880.9±24.1	1856.1±64.1	1812.0±54.5	1882.4±51.7	1823.7±64.5		
		xMIC	2.6±0.3	2.6±0.1	2.5±0.2	2.5±0.0	3.9±0.6	3.5±0.1	3.7±0.2	3.6±0.2		
Novobiocin	256	mg/L	670.8±75.7	676.9±28.0	632.9±47.3	635.7±1.2	993.1±141.8	907.9±19.6	938.0±50.6	924.2±50.5		
		μM	1094.3±123.6	1104.2±45.7	1032.5±77.2	1037.1±2.0	1620.1±231.4	1481.0±32.0	1530.2±82.5	1507.6±82.3		
		x MIC	24.6±1.1	27.3±3.3	23.1±2.6	22.0±0.9	27.8±1.9	26.6±0.2	31.9±2.9	28.7±3.4		
Rifampicin	16	mg/L	393.0±18.3	436.1±52.6	369.3±41.5	351.6±14.2	445.5±30.2	426.2±2.8	510.0±47.1	459.0±55.1		
		μM	477.5±22.3	529.9±63.9	448.8±50.5	427.2±17.3	541.4±36.7	517.9±3.4	619.7±57.3	557.8±66.9		
		x MIC	89.9±3.2	84.1±3.4	80.3±2.0	78.1±18.8	89.3±10.0	80.7±11.9	94.1±12.3	88.4±14.8		
Chloramphenicol	8	mg/L	719.1±25.3	673.2±27.0	642.0±16.2	624.4±150.2	714.1±80.4	645.9±95.0	752.6±98.4	707.0±118.6		
		μM	2225.6±78.4	2083.3±83.7	1986.9±50.1	1932.4±464.8	2210.0±248.8	1998.8±294.1	2329.2±304.4	2187.9±366.9		

Table S6. Gain in potency (expressed as the Log₂ fold dilution decrease in C_s between antibiotics alone (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxycycline [DOX], or ciprofloxacin [CIP]) or combined with potentiators, and in maximal efficacy (expressed as the difference in E_{max} between combinations and antibiotics alone) against intracellular *E.coli, K. pneumoniae* and *A. baumannii*.

		Log₂ folo	dilution decre	ase in C₅	Ch	ange of E _{max /} E _{hi}	ghest
Strains	ABs	(ABs a	alone/Combina	itions)	(Com	binations-ABs a	alone)
		+NV716	+ΡΑβΝ	+NV731	+NV716	+ΡΑβΝ	+NV731
	RIF	2	0	2	-0.8	-0.3	-0.5
	AZI	2	1	0	-1.0	-0.2	-0.5
	LZD	3	1	2	-1.2	-0.1	-0.4
E coli	FUS	4	0	3	-1.7	-0.2	-1.3
E. COII	NOV	4	1	3	-1.3	-0.2	-0.8
	CHL	1	1	1	-1.1	-0.1	-0.2
	DOX	2	0	0	-0.7	-0.1	-0.2
	CIP	1	0	1	-0.6	0.1	-0.1
	RIF	3	1	2	-0.9	-0.5	-0.4
	AZI	3	1	1	-0.9	-0.5	-0.4
	LZD	2	1	2	-1.2	-0.4	-0.6
Kanaumanina	FUS	1	0	1	-0.7	-0.1	-0.4
K. prieumoniae	NOV	3	1	2	-0.8	-0.2	-0.3
	CHL	1	0	1	-0.6	-0.2	-0.5
	DOX	2	0	1	-0.6	0.0	-0.3
	CIP	1	0	0	-0.7	0.0	-0.1
	RIF	1	1	1	-1.0	-0.4	-0.6
	AZI	2	1	1	-1.0	-0.2	-0.3
	LZD	2	1	1	-1.1	-0.3	-0.7
1 haunaannii	FUS	4	2	2	-1.1	-0.6	-0.8
A. DUUMUUMI	NOV	3	1	2	-1.0	-0.1	-0.4
	CHL	3	1	2	-1.1	-0.3	-1.0
	DOX	2	0	1	-0.6	0.1	-0.2
	CIP	1	0	1	-1.0	0.0	-0.2

Figure S1. structure of the potentiators tested. Aminated functions protonable at physiological pH are highlighted in blue squares.

Figure S2. Relationship between the OD_{620nm} and the Log_{10} CFU/mL of the 1 (*A. baumannii* and *E. coli*) or 2 (*K. pneumoniae*) reference strains suspension for the three bacterial species in CA-MHB.

Bacteria (at an OD_{620nm} of 0.05) were grown in CA-MHB and incubated overnight with 130 rpm. Aliquots were diluted in PBS and then used to determine optical density and CFU counts. Correlation curves plotting $OD_{620 nm}$ and Log_{10} CFU/mL were used to adjust the inocula in subsequently intracellular-infection experiments. All data are mean (triplicate from two independent experiments).

Figure S3. Development of the intracellular models for 1 (*A. baumannii* and *E. coli*) or 2 (*K. pneumoniae*) reference strains. The graphs show the number of CFUs normalized to the mg proteins in the samples after 1 h (open bars with red border) or 2 h (open bars with blue border) at increasing bacteria-to-cell ratios (left axis) and the percentage of mortality of THP-1 cells as determined at the end of the phagocytosis period (right axis; red line and symbols: 1h phagocytosis; blue line and symbols: 2h phagocytosis). The horizontal dotted line shows the inoculum targeted for intracellular experiments (7.5 x 10⁵ CFUs/mg). All data are means ± SEM (triplicate from three independent experiments). Based on these experiments, we selected a bacteria/cell ratio of 25 and 1 h of phagocytosis to reach the target inoculum while maintaining adequate cell viability.

Figure S4. Heat maps describing interactions between antibiotics and potentiators against 1 (*E. coli* and *A. baumannii*) or 2 (*K. pneumoniae*) reference strains and 2 selected to clinical isolates of each species (i.e. those tested in the intracellular and biofilm models). FIC index was calculated for concentrations of 38 μ M PA β N, 38 μ M **NV731** and 10 μ M **NV716**. Synergy is defined as FIC < 0.5 (appearing in green on the graphs). All data are mean from at least two independent experiments.

K. pneumoniae

Figure S5. Effect of alexidine, colistin, and **NV716** each at a concentration of 1 x MIC (See Table S1) on inner membrane permeability as assessed by measuring the fluorescence of propidium iodide (PI) after 1 h of incubation with 1 (*A. baumannii* and *E. coli*) or 2 (*K. pneumoniae*) reference strains. The effect measured in the presence of 50 μ M alexidine after 1 h was taken as 100% (positive control). All data are means ± SEM (triplicates from 3 independent experiments). Statistical analysis: two-way ANOVA with Tukey post-hoc test: ****, p<0.0001; ***, p< 0.001.

Figure S6. Inner membrane depolarization caused by **NV716** at two concentrations, as assessed by measuring the DiSC3(5) fluorescence after 15 min incubation with 1 (*A. baumannii and E. coli*) or 2 (*K. pneumoniae*) reference strains. The effect measured with 0.5% (w/v) SDS after 15 min was taken as 100% (positive control). All data are means \pm SEM (triplicates from 3 independent experiments). Statistical analysis: two-way ANOVA with Tukey post-hoc test: data series with different letters are different from one another (p < 0.05).

Figure S7.

Effect of potentiators on the intracellular activity of antibiotics (rifampicin [RIF], azithromycin [AZI], linezolid [LZD], fusidic acid [FUS], novobiocin [NOV], chloramphenicol [CHL], doxycycline [DOX], or ciprofloxacin [CIP]) against 1 (E. coli; A. baumannii) or 2 (K. pneumoniae) reference strains and 2 clinical isolates for each species at C_{min} (A) and C_{max} (B); see Table S1 for the corresponding values.

Horizontal bars: mean; horizontal line: static effect. Grey: antibiotics alone; Green: combined 38 μM PAβN; Blue: combined 38 μΜ **NV731**; Red: combined 10 µM NV716. Statistical analysis: oneway ANOVA with Dunnett post-hoc test (paired): *, p<0.05; **, p < 0.01; ***, p<0.001.

Figure S8. Top: correlation between the gain in potency (A) or in efficacy (C) for antibiotics when used alone or combined with **NV716** in the intracellular model and the logD values of antibiotics (See Table S1). Data are expressed as the ration between the C_s calculated for the antibiotic alone or combined with **NV716** (A) and as the difference between the E_{max} (or E_{highest}) for the combination and the antibiotic alone (C). The Pearson's correlation coefficient r and the p value (t-tailed) are shown on the graphs. **Bottom:** heat maps showing the mean C_s (B) or E_{max/highest} (D) for antibiotics alone or combined with NV716 for the three bacterial species together as well as the gain in potency observed in combination (ratio of C_s or difference in E_{max/highest}). For drugs alone or combined with **NV716** (+ NV716), the values shown are the mean of the Cs or E_{max/highest} values calculated for the three species; the C_s ratio is the mean of the Cs ratio calculated for each species expressed in a log₂ scale; the difference in E_{max/highest} is the mean of the difference calculated for each species. Color code: red, lowest potency/efficacy or gain for this parameter; green, potency/efficacy or gain for this parameter.

References

- 1. **Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM.** 2003. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am **17:**615-634.
- 2. Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A. 2012. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care **16:**R136.
- 3. **Pea F, Poz D, Viale P, Pavan F, Furlanut M.** 2006. Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J Antimicrob Chemother **58**:380-386.
- 4. **Drusano GL, Townsend RJ, Walsh TJ, Forrest A, Antal EJ, Standiford HC.** 1986. Steady-state serum pharmacokinetics of novobiocin and rifampin alone and in combination. Antimicrob Agents Chemother **30**:42-45.
- 5. **Anonymous.** 2021. Linezolid prescribing information, *on* Pharmacia and upjohn company, division of Pfizer, Inc. <u>http://labeling.pfizer.com/showlabeling.aspx?id=649</u>. Accessed
- 6. **Poole K.** 2004. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect **10**:12-26.
- Pages JM, Lavigne JP, Leflon-Guibout V, Marcon E, Bert F, Noussair L, Nicolas-Chanoine MH.
 2009. Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS One 4:e4817.
- 8. **Otto RG, van Gorp E, Kloezen W, Meletiadis J, van den Berg S, Mouton JW.** 2019. An alternative strategy for combination therapy: Interactions between polymyxin B and non-antibiotics. Int J Antimicrob Agents **53**:34-39.