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Hemi-synthetic derivatives of glycopeptides have demonstrated
bactericidal activity towards Gram-positive bacteria, including
vancomycin-resistant strains (oritavancin and telavancin), and a
prolonged  half-life, allowing for once-daily (oritavancin and
telavancin) or once-weekly (dalbavancin) administration.  These
compounds have proved effective for the treatment of infections caused
by multidrug-resistant Gram-positive bacteria, including complicated
skin and skin structure infections (oritavancin, telavancin and
dalbavancin), bacteremia (oritavancin  and dalbavancin) and
nosocomial pneumonia. This review compares the antibacterial
activity and clinical activity of three glycopeptides, oritavancin,
telavancin  and dalbavancin, and the natural lipoglycopeptide,
ramoplanin, which, being unstable in the bloodstream, is administered
orally to treat Clostridium difficile colitis and for digestive tract
decontamination. All of these compounds, with the exception of
oritavancin, have received Fast Track designation from the FDA
because of their clinical efficacy.

Keywords Dalbavancin, MRSA, oritavancin, ramoplanin,
telavancin, VRE

Introduction

Glycopeptides are one of the oldest classes of antibiotics, with
vancomycin isolated from Streptomyces orientalis present in soil
in the mid 1950s [1], (see reference [2] for a historical review of
vancomycin), and teicoplanin (initially referred to as
teichomycin as a reference to its producing organism,
Actinoplanes teichomyceticus) described approximately 20 years
later [3]. Interest in glycopeptides was limited initially, but has
increased over recent years because of the evolution of bacterial
resistance.

Glycopeptides are characterized by a narrow spectrum of
activity, covering essentially Gram-positive bacteria and a few
anaerobic organisms (eg, Clostridium difficile), toward which
they show a bacteriostatic or slowly bactericidal activity. In
contrast to P-lactams, they inhibit the early stages of
peptidoglycan synthesis (see references [4,5,6¢¢] for reviews of
the mechanisms of action of glycopeptides). At the time of
vancomycin discovery, pB-lactams were efficacious and
preferentially employed for the treatment of Gram-positive
infections because of their superior safety profile. However,
two events returned vancomycin to the forefront. The first
event was the demonstration of its high efficacy when
administered orally in the management of Clostridium difficile
colitis arising as a complication of broad-spectrum antibiotic

use [7]. The second event was the emergence and rapid spread
of methicillin-resistant Staphylococcus aureus (MRSA) in the late
1960s [8], for which vancomycin became a first-choice drug [9].
Therefore, it is not surprising that only 15 years later the first
cases of resistance to glycopeptides in enterococci were
described [10], probably selected by the large oral usage of
vancomycin. Of more concern is that, 20 to 25 years after this
first threat, glycopeptide resistance emerged in staphylococci,
with phenotypes of intermediate (vancomycin-intermediate S
aureus (VISA) [11]) and high (vancomycin-resistant S aureus
(VRSA) [12]) levels of resistance. These resistance mechanisms
have been elucidated (see references [6ee,13,14] for review of
resistance mechanisms). However, the extent of the problem
remains largely unknown, essentially because of a lack of
systematic epidemiological surveys [15ee], although it has had
at least the merit of renewing interest in the search for new anti-
Gram-positive antibiotics [16,17]. Among the novel agents
being investigated for the treatment of Gram-positive
infections, novel glycopeptide compounds constitute one of the
most promising classes [17,18e9,19,20]. This review will discuss
the salient features of four promising novel glycopeptides and
present results from preclinical and clinical studies of these
compounds.

Optimizing the pharmacological profile of
glycopeptides

Vancomycin has a number of limitations (listed in Table 1),
some of which - mainly those related to pharmacokinetic/
pharmacodynamic issues - can be dealt with by optimizing
vancomycin use.  Thus, recent pharmacodynamic studies
suggest that the efficacy of vancomycin is best predicted by the
AUC/MIC ratio (see reference [21e] for a review), a parameter
that can be adjusted by monitoring serumn levels. Alternatively,
rapid elimination of the drug can be overcome by using
continuous infusion as a mode of administration. This would
ensure an optimized exposure over time, together with easier
adjustment of the dose, while simultaneously reducing the
workload of healthcare professionals [22]. Finally, toxicity
issues were, before the development of pharmacodynamic
concepts {21e,22,23], the main reason for clinical monitoring
[24]. They can be avoided by administering appropriate doses.
In contrast, resistance issues are more difficult to overcome.
Inhibitors of vanA-mediated resistance have been described
[25,26], but their activity is quite restricted and interest in the
development of these compounds is limited [6].

Thus, the design of the new generation of glycopeptides has
taken into account the major limitations of vancomycin, to
select compounds with a markedly improved
pharmacological profile. Efforts have been mainly directed
toward the identification of compounds presenting a highly
bactericidal activity, including against bacterial strains
resistant to conventional glycopeptides, and a prolonged
half-life, allowing for infrequent administration. Structure-
activity relationships [5,6ee,27¢,28] have established that the
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Table 1. Limitations of vancomycin and possible strategies to overcome them.

Pharmacological property Vancomycin limitations

Strategies to overcome these limitations

Antibacterial activity Narrow spectrum of activity
Inactive against VISA, VRSA,
and vancomycin-resistant
enterococci

Can be considered as an advantage in non-empiric therapies

Develop inhibitors of resistance mechanisms and design new
compounds (multiple and new mechanisms of action)

Poor tissue distribution and
cellular accumulation

Pharmacokinetics

Relatively short half-life (twice-
daily administration)

Design new compounds (modification of the charge and of
the amphipathic character)

Use continuous infusion, change for teicoplanin and design
new compounds with prolonged half-life and/or high protein
binding

Pharmacodynamics Slowly bactericidal

Low AUC/MIC ratio

Associate with synergistic antibiotics (aminoglycosides) and
design new compounds with multiple and new mechanisms
of action

Optimize dosages (monitoring peak levels or administering
by continuous infusion) and design new compounds with
lower MIC and/or higher peak levels

Safety profile Nephrotoxicity/ototoxicity

Red man syndrome

Improve purification, monitor serum levels, avoid association
with other nephro- or oto-toxic drugs and design new
compounds with better safety profile

Monitor serum fevels and avoid rapid infusion

AUC area under the curve, MIC minimum inhibitory concentration, VISA vancomycin-intermediate Staphylococcus aureus, VRSA

vancomycin-resistant Staphylococcus aureus.

antibacterial potency of glycopeptides is enhanced by the
presence of a hydrophobic side chain comprising an additional
sugar or chloride substituent (Figure 1). These features confer
new possible interactions with the bacterial surface. Thus, the
lipophilic side chain (already present in teicoplanin) can serve
to anchor the glycopeptide in the membrane. The presence of
an additional chlorine and/or sugar facilitates the formation of
homodimers, allowing cooperative binding to the target [4,29].
As a result, additional mechanisms of action have been
suggested for these compounds, including a direct inhibition of
the activity of enzymes involved in peptidoglycan synthesis,
such as transglycosylases [30], an alteration of membrane
integrity, or a perturbation of fatty acid synthesis [31ee]. These
new modes of action may also explain why some of these new
glycopeptides maintain activity against strains that are resistant
to conventional compounds.

Since the frequent use of oral glycopeptides for Clostridium
colitis was the probable cause of the emergence of resistance in
enterococci, new derivatives have also been specifically
developed for this indication [32,33e] so as to preserve other
glycopeptides for systemic infections caused by Gram-positive
bacteria.

Glycopeptides in clinical development

Three glycopeptides are currently undergoing clinical
development, namely, oritavancin (Targanta Therapeutics Inc),
telavancin  (Theravance Inc/Astellas Pharm Inc) and
dalbavancin (Pfizer Inc) (see references [6ee,18ee,19,28] for
reviews of these compounds). Ramoplanin  (Oscient
Pharmaceuticals Corp) is a lipoglycodepsipeptide under
evaluation for oral and topical indications [33¢]. The main
pharmacological properties of these compounds are compared
with those of conventional glycopeptides in Table 2.

Oritavancin
Oritavancin (LY-333328; Figure 1) is the p-chlorophenyl-
benzyl  derivative of the natural glycopeptide

chloroeremomycin, which itself differs from vancomycin by
the presence of an additional 4-epi-vancosamine [34], (also
see references [6®e,28,350] for reviews of this compound). It
was the first clinical candidate of this new generation of
glycopeptides, and was identified by Eli Lilly & Co in the
late 1990s. Preclinical development and the first clinical trials
were conducted by Lilly; however, in September 2001, the
company granted worldwide exclusive rights to the drug to
InterMune Inc [36], which then subsequently outlicensed
oritavancin to Targenta Therapeutics Inc [37]. The more
salient features of oritavancin compared with vancomycin
are as follows:
e Oritavancin shows rapid and concentration-
dependent bactericidal activity, irrespective of the
resistance phenotype of the bacterial strains [38].
This property is probably a result of the capacity of
the cholorophenylbenzyl side chain to anchor in the
membrane, and because of the stronger ability of the
drug to form dimers, which cooperatively bind to
both D-Ala-D-Ala or D-Ala-D-Lac ending precursors
[4]. As a result, oritavancin displays remarkably low
MIC values towards Gram-positive organisms (eg,
staphylococci, streptococci, enterococci), and most
importantly, remains active against strains resistant
to conventional glycopeptides, whatever their
resistance mechanism.

e  Oritavancin has a long half-life, allowing for a once-
daily administration, and a prolonged retention in
the organism [39]. These properties are best
explained by the high protein binding of the drug,
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Figure 1. The chemical struciures of glycopeptides and lipoglycopeptides in clinical use or in clinical development.
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Oritavancin and telavancin are hemi-synthetic derivatives of vancomycin, and dalbavancin is a hemi-synthetic derivative of teicoplanin. Ramoplanin
is a mixture of several compounds; the structure of the most abundant (ramoplanin A2) is shown. The figure highlights the molecular elements that
confer new properties to glycopeptides. The lipophilic tails (responsible for prolonged half-life and membrane anchoring) are highlighted in dotted
rectangles. The additional sugar or chioride favoring homo-dimerization is highlighted in the dotted circie. A black arrow indicates the polar group,

which is responsible for shortening the half-life and a gray arrow indicates the basic amide, which increases activity.
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but also by its exceptional level of cellular
accumulation, as demonstrated in vitro (in models of
cultured phagocytic and non-phagocytic cells [40]) as
well as in vivo (in alveolar macrophages of
volunteers [41]). The later property is a clear
advantage for the eradication of intracellular bacteria
such as S aureus, toward which oritavancin remains
bactericidal and among the most active drugs in in
vitro models of infected macrophages [40,42].
However, this high cellular accumulation may also
cause cellular toxicity, as evidenced in cultured cells
exposed to the drug, which show morphological
alterations characterized by the presence of large
vacuoles with heterogeneous content associated with
an increase in polar lipid cell content [43]. These
observations provide a rationale for revisiting animal
safety data in order to establish the potential
toxicological significance.

In accordance with these properties, oritavancin proved
effective in animal models of pneumococcal meningitis
[44,45], catheter infections or endocarditis, including those
caused by vancomycin-resistant enterococci [46,47]. Its
concentration-dependent bactericidal effect combined with
its high protein binding capacity explains why the free
Cumax/MIC value is the best parmacodynamic predictor of its
efficacy [48].

Clinical development of the drug has been slowed down by
the multiple changes of ownership, so that it is still
undergoing phase III clinical development. Published phase
II studies have documented the application of oritavancin in
S aureus bloodstream infections [49]. This open-label,
randomized trial showed equivalence between oritavancin
(6 to 10 mg/kg, once daily) and comparators (vancomycin
[15 mg/kg, twice daily] or a B-lactam) administered for 10 to
14 days. Higher clinical and bacteriological activity was
observed in the 10 mg/kg oritavancin cohort. Further
pharmacodynamic analysis suggested that the success
correlates with the free drug time above the MIC [50]. Phase
I studies have examined the safety and efficacy of
oritavancin in complicated skin and skin structure infections
(cSSSI) caused by Gram-positive organisms, including
MRSA. Two randomized, doubled-blind, multicenter clinical
trials demonstrated that oritavancin (3 mg/kg, once daily)
had equivalent efficacy to vancomycin (15 mg/kg, twice
daily) plus cephalexin, but needed shorter treatment
duration (maximum of 5 days versus 10 to 14 days for the
vancomycin-cephalexin combination) [35e,51,52]. No
specific or life-threatening side effects were observed in
these studies.

Telavancin

Telavancin (TD-6424; Figure 1), another semi-synthetic
derivative of vancomycin, is characterized by a hydrophobic
side chain on the vancomsamine sugar (decylaminoethyl)
and a phosphonomethylaminomethyl substituent on the
cyclic peptidic core [53], which counterbalances to some
extent the hydrophobicity of the lipophilic side chain (also
see references [18es,19,28,54¢] for reviews on telavancin).

Specific properties of telavancin that compare with
vancomycin or oritavancin, include:

) multiple modes of action, which, most notably,
include the depolarization and permeabilization of
the bacterial membrane [31ee]. This may explain the
highly ~ concentration-dependent and  rapid
bactericidal activity of the drug, including against
strains resistant to conventional glycopeptides [55],
and the global activity comparable to that of
oritavancin.

e a markedly shorter half-life than oritavancin even
though it is also highly protein bound [56] and has
good tissue penetration [57]. It accumulates to high
levels (although these are much lower levels than
those achieved by oritavancin) in cultured
macrophages, where it displays bactericidal activity
against intracellular staphylococci [58].  These
differences are probably because of the polar
phosphonate substituent, which accelerates drug
clearance [53]; however, the drug half-life remains
long enough to allow for a once-daily
administration, while avoiding the potential
drawbacks of prolonged retention in the organism.

The highly concentration-dependent bacterial activity of
telavancin has been demonstrated in animal models of thigh
or subcutaneous infection, meningitis or endocarditis caused
by MRSA or even by VISA [59-61].

In phase II, randomized, double-blind clinical trials of cSSSI,
telavancin (10 mg/kg, once daily) produced higher cure and
eradication rates than vancomycin when MRSA was the
causative organism [62,63e]. Furthermore its safety profile
was acceptable [56]. The effect of telavancin on cardiac
repolarization was specifically examined, and a QTc interval
prolongation of < 4.5 ms was observed, which is shorter
than for other antibiotics such as the quinolones [64]. In
2005, telavancin was granted Fast Track designation by the
FDA for the treatment of hospitally-acquired pneumonia
caused by MRSA or multidrug-resistant Streptococcus
pneumoniae, as well as of MRSA-associated ¢SSSI [54].

Dalbavancin
Dalbavancin (BI-397; Figure 1) is a semi-synthetic derivative
of the natural glycopeptide A-40926, a teicoplanin analog. It
differs from its parent compound by the replacement of the
acylglucosamine on amino acid 4 and by the removal of the
acetylglucosamine in the benzylic position [65].
Dalbavancin was not the most active in the series, but
presented the best tolerability [27s], (also see for references
[6ee,18e0,19,28,66,67,680] for reviews of dalbavancin). It was
discovered by Biosearch Italia SpA and out-licensed to
Versicor Inc for the North American market [69]. Biosearch
and Versicor merged in March 2003 to form Vicuron
Pharmaceuticals Inc [70], which was then acquired by Pfizer
in September 2005 [71]. Pfizer is currently pursuing the
development of dalbavancin. Two properties differentiate
dalbavancin from oritavancin and telavancin:
¢  Dalbavancin loses activity toward enterococci or
staphylococci harboring the vanA gene cluster but
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remains extremely active against staphylococci and
streptococci [72].

e  Dalbavancin displays an unusually prolonged half-
life (6 to 10 days), atiributed to high protein binding
and retention within the cells [73], and suggestive of
the existence of storage compartments. Based on this
property, dalbavancin can be administered
intravenously once weekly [74].

Animal models of disseminated infection, staphylococcal
granuloma pouch, foreign body infection or endocarditis
and of pneumococcal pneumonia demonstrated that
dalbavancin is as efficacious as comparators at less frequent
doses [72,75-77], which is advantage in clinical practice.

In clinical trials, dalbavancin (1 g followed by 500 mg 1 week
later) was highly effective in the treatment of SSSI (in phase
II and III trials), and catheter-related bloodstream infections
(in phase II trials) [68e,78¢,79,80]. To date, the observed
adverse events are mild and limited [68e,81]. Pfizer has
been granted Priority Review status by the FDA for the
treatment of MRSA ¢SSSI [82].

Ramoplanin

Ramoplanin (A-16686, MDL-62198; Figure 1) is a natural
compound, usually present as a complex mixture of closely
related molecules, produced by Actinoplanes spp [83]. It was
originally isolated in 1984 by Gruppo Lepetit and was
licensed to Oscient Pharmaceuticals in 2001 (see references
[180¢,19,20,330,84] for reviews of ramoplanin activity).
Ramoplanin's bactericidal activity is a result of the direct
inhibition of transglycosylase activity by the drug binding in
a dimeric form to lipid II (however, in contrast to
glycopeptides, the disaccharide moiety is not required for
antibacterial activity) [85,86]. As the lipid II target is located
upwards of the targets of conventional glycopeptides in
peptidoglycan synthesis, there is no cross-resistance
between ramoplanin and vancomycin or teicoplanin [87,88].
Thus, ramoplanin is active against Gram-positive bacteria,
including vancomycin-resistant strains, as well as against
anaerobes such as C difficile. Interest in the development of
ramoplanin may have been limited because of its instability
in the bloodstream and poor tolerance [18ee,84]; however,
by taking advantage of its excellent activity against C difficile
[89,90] and against vancomycin-resistant enterococci [20,91],
as well as its high concentration in the feces [33e],
ramoplanin is currently in phase III clinical trials for the
treatment of C difficile-associated diarrhea [92] and for the
decolonization of the gastrointestinal tract as a means to
prevent vancomycin-resistant enterococci nosocomial
infections [93¢,94]. Ramoplanin has received Fast Track
status from FDA for both indications [95]. However, major
concerns remain regarding the use of ramoplanin for these
indications as there is a high probability of selecting for
Gram-negative bacteria, including multidrug-resistant
nosocomial enterobacteriaceae [91], and the possibility of
recurrences developing after treatment discontinuation [96].

Conclusion
Glycopeptides are still undergoing active research, with four
major approaches being investigated. The first approach

involves the continuation of efforts made over more recent
years to obtain compounds with additional modes of action
and increased activity against strains resistant to
conventional compounds. Among investigational
compounds, some mannopeptimycins appear promising
[97-99]. The second approach involves designing
multivalent glycopeptides [100], based on the observation
that the self-dimerization of vancomycin enhances its
cooperative binding to the D-Ala-D-Ala target. Some of these
dimers proved potent against vancomycin-resistant
enterococci [101]. The third strategy involves the coupling
of glycopeptides to other antibiotics so as to obtain
bifunctional antibacterial agents. This is an elegant method
of reaching two distinct targets using a single molecule. In
the case of glycopeptides, hybridization with B-lactams
appears the most rational, based on the topological
proximity of the targets of both types of antibiotics [18es].
The last development was unanticipated and arose from the
demonstration of the antiretroviral activity of semisynthetic
hydrophobic derivatives of glycopeptides [102].  This
discovery led to the synthesis of modified glycopeptides
showing high activity against HIV or coronaviruses, but
devoid of antibiotic action [103,104].

The new glycopeptides discussed in this review offer clear
advantages over conventional glycopeptides. The most
notable advantages are the highly bactericidal character of
telavancin, oritavancin, and to some extent, dalbavancin,
against ~multidrug-resistant MRSA, the ease of
administration of dalbavancin, and the restricted indications
of ramoplanin. Larger clinical studies (including safety
studies) will be helpful to position these compounds in the
arsenal of new anti-Gram-positive agents.
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