

Expert Opinion on Drug Metabolism & Toxicology

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/iemt20

Dose optimization of β -lactam antibiotics in children: from population pharmacokinetics to individualized therapy

Perrin Ngougni Pokem, Dorian Vanneste, Stef Schouwenburg, Alan Abdulla, Matthias Gijsen, Evelyn Dhont, Dimitri Van der Linden, Isabel Spriet, Pieter De Cock, Birgit Koch, Françoise Van Bambeke & Gert-Jan WijnantOn behalf of International Society of Anti-infective Pharmacology and PK/PD study group of the European Society for Clinical Microbiology and Infectious Diseases.

To cite this article: Perrin Ngougni Pokem, Dorian Vanneste, Stef Schouwenburg, Alan Abdulla, Matthias Gijsen, Evelyn Dhont, Dimitri Van der Linden, Isabel Spriet, Pieter De Cock, Birgit Koch, Françoise Van Bambeke & Gert-Jan WijnantOn behalf of International Society of Anti-infective Pharmacology and PK/PD study group of the European Society for Clinical Microbiology and Infectious Diseases. (2024) Dose optimization of β -lactam antibiotics in children: from population pharmacokinetics to individualized therapy, Expert Opinion on Drug Metabolism & Toxicology, 20:8, 787-804, DOI: <u>10.1080/17425255.2024.2385403</u>

To link to this article: https://doi.org/10.1080/17425255.2024.2385403

4	1	(1
Г			

Published online: 01 Aug 2024.

🖉 Submit your article to this journal 🗗

Article views: 156

🔍 View related articles 🗹

View Crossmark data 🗹

REVIEW

Check for updates

Taylor & Francis

Taylor & Francis Group

Dose optimization of β -lactam antibiotics in children: from population pharmacokinetics to individualized therapy

Perrin Ngougni Pokem (a^{a,b*}, Dorian Vanneste (c^{c*}, Stef Schouwenburg (d^{a,e*}, Alan Abdulla (d^{a,e}, Matthias Gijsen (d^{c,f}, Evelyn Dhont (d^{g,h}, Dimitri Van der Linden (d^{i,j}, Isabel Spriet (d^{c,f}, Pieter De Cock (d^{g,h,k}, Birgit Koch (d^{d,e}, Françoise Van Bambeke (d^{a,e}, Gert-Jan Wijnant (d^{a,l}) and On behalf of International Society of Anti-infective Pharmacology and PK/PD study group of the European Society for Clinical Microbiology and Infectious Diseases.

^aPharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; ^bDepartment of Microbiology, Cliniques Universitaires Saint-Luc – Université catholique de Louvain, Brussels, Belgium; ^cClinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; ^dDepartment of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands; ^eRotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands; ^fPharmacy Department, UZ Leuven, Leuven, Belgium; ^gDepartment of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; ^hDepartment of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium; ⁱInstitut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; ^jPediatric Infectious Diseases, Service of Specialized Pediatrics, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; ^kDepartment of Pharmacy, Ghent University Hospital, Ghent, Belgium; ⁱLaboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium

ABSTRACT

Introduction: β -Lactams are the most widely used antibiotics in children. Their optimal dosing is essential to maximize their efficacy, while minimizing the risk for toxicity and the further emergence of antimicrobial resistance. However, most β -lactams were developed and licensed long before regulatory changes mandated pharmacokinetic studies in children. As a result, pediatric dosing practices are poorly harmonized and off-label use remains common today.

Areas covered: β-Lactam pharmacokinetics and dose optimization strategies in pediatrics, including fixed dose regimens, therapeutic drug monitoring, and model-informed precision dosing are reviewed. **Expert opinion/commentary:** Standard pediatric doses can result in subtherapeutic exposure and non-target attainment for specific patient subpopulations (neonates, critically ill children, e.g.). Such patients could benefit greatly from more individualized approaches to dose optimization, beyond a relatively simple dose adaptation based on weight, age, or renal function. In this context, Therapeutic Drug Monitoring (TDM) and Model-Informed Precision Dosing (MIPD) emerge as particularly promising avenues. Obstacles to their implementation include the lack of strong evidence of clinical benefit due to the paucity of randomized clinical trials, of standardized assays for monitoring concentrations, or of adequate markers for renal function. The development of precision medicine tools is urgently needed to individualize therapy in vulnerable pediatric subpopulations.

ARTICLE HISTORY

Received 16 April 2024 Accepted 24 July 2024

KEYWORDS

Beta-lactam; therapeutic drug monitoring; toxicity; model-informed precision dosing; PK/PD; dosing optimization

1. Introduction

β-Lactams remain the most widely prescribed class of antibiotics in children across diverse health-care settings, from outpatient treatment for common childhood infections [1] to the management of life-threatening conditions in the pediatric intensive care unit [2]. Due to their broad antimicrobial spectrum, high efficacy and relatively low toxicity, empirical therapy is most common. All β-lactam antibiotics, which include penicillins, cephalosporins, monobactams, and carbapenems, exert their bactericidal activity through inhibition of cell wall synthesis via binding to penicillinbinding proteins [3]. Recent studies suggest that the release of DNA-damaging superoxides is an additional mechanism contributing to their bactericidal action [4]. This bacterial killing is timedependent, meaning the pharmacokinetic/pharmacodynamic (PK/PD)-driver of efficacy is considered to be the percentage of the time that protein-free, active drug concentrations remain above the minimal inhibitory concentration (MIC) of the suspected pathogen throughout the dosing interval (% fT>MIC) [5,6]. There is no consensus on optimal PK/PD targets for β -lactams in adults or children; the suggested values range from 40% fT>MIC in noncritically ill patients to 100% fT>4×MIC in patients on the intensive care unit [7]. As β -lactams are small and hydrophilic molecules, their pharmacokinetics (PK) are characterized by a relatively low volume of distribution (Vd), mostly corresponding to the extracellular fluid space, and predominant renal clearance in unchanged form through glomerular filtration. Most β -lactams are characterized by low plasma protein-binding (1–20%) and short half-lives (1–2 h). Nevertheless, some specific β -lactam agents do exert relatively high protein binding rates (e.g. ceftriaxone, flucloxacillin, ticarcillin, temocillin, cloxacillin, oxacillin,

CONTACT Françoise Van Bambeke (actional francoise.vanbambeke@uclouvain.be) Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, avenue Mounier 73 B1.7305, Brussels 1200, Belgium *Shared co-first authors.

© 2024 Informa UK Limited, trading as Taylor & Francis Group

Article highlights

- Antibiotic dosing in pediatrics is too often based on allometric scaling from the adult dose.
- Pharmacokinetics in children can be unpredictable, particularly in the youngest and the most severely ill.
- Therapeutic drug monitoring (TDM) of β-lactams is not performed in routine but may help to adjust the dose once the steady state has been reached.
- Defining the dose a priori based on model-informed precision dosing (MIPD) is a promising new approach, yet robust evidence for its clinical benefit remains lacking

cefazolin, cefoxitin, cefamandole, ertapenem) [8,9]. Despite their relatively broad therapeutic window and acceptable safety profile, β -lactam allergy and hypersensitivity remain a contra-indication to the use of these agents. Beta-lactam allergy is reported in 5–8% of the children in Europe and North America, and the associated maculopapular rash is estimated to affect less than 2% of the pediatric population [10,11]. Drug-related toxicities include acute kidney injury (i.e. piperacillin/tazobactam [12]), neurotoxicity (i.e. cefepime, imipenem [13]), and pseudolithiasis (i.e. ceftriaxone [14]). These risks are more important if high dosages are used [15].

Successful antimicrobial therapy relies not only on the choice of the correct antibiotic and timely administration but also on the appropriateness of the dosing regimen [16]. An ideal dosing regimen achieves drug exposure profiles capable of maximizing bacterial killing to cure the infection, whilst avoiding the risk for drug-induced toxicity and the emergence of antimicrobial resistance. However, optimizing dosing strategies in children is challenged by the limited availability of PK studies in pediatric populations. Many standard β-lactam regimens are still being based on extrapolation of data from adults, as most of these drugs were licensed long before regulations demanded PK studies in children [17]. However, directly scaling down pediatric doses from an adult based on weight (i.e. mg/ kg) can be problematic and inappropriate for a number of reasons. Children undergo age-specific developmental changes in drug PK. These effects are the most pronounced in the youngest due to physiological immaturity of organs, systems, and metabolic pathways. Indeed, neonates and young infants typically show altered (i) oral drug absorption due to different gastric pH and stomach emptying time, (ii) volume of distribution due to lower plasma protein concentration and a higher body water composition, and (iii) elimination due to immature liver and renal function [18,19]. Compared to the term neonates, premature neonates show additional gestational agedependent differences in drug PK and are at the highest risk for inadequate drug dosing and pharmacotherapy [20]. A key concern for optimal *β*-lactam dosing in neonates is their impaired renal clearance (due to immature glomerular filtration and tubular section), resulting in prolonged drug half-lives and increased systemic exposure [21]. In addition to these developmental changes, disease-related factors can further enhance PK variability in children. This is particularly true for critically ill children (of any age) on the Pediatric Intensive Care Unit (PICU), where critical illness-related pathophysiological changes, inflammatory status, and ICU-specific therapeutic interventions can significantly alter the PK of antibiotics and

other commonly used drugs. A complete overview of these factors has been reviewed elsewhere [22]. A major challenge to adequate therapy using β -lactams with renal elimination in the PICU is the sudden and drastic changes in renal function that commonly occur during critical illness. Critically ill pediatric patients with Augmented Renal Clearance (ARC) rapidly eliminate β -lactams and show decreased plasma drug concentrations, in contrast to those with Acute Kidney Injury (AKI) who clear these agents at a reduced rate and experience increased systemic exposure [23].

Thus, one antibiotic dose does not fit all pediatric patients. In subpopulations where the inter- and interpatient variability is relatively limited, e.g. older children with mild infections, conventional dosing regimens adapted to age or weight can achieve therapeutic drug exposure for the majority of patients. However, in pediatric populations where PK is known to be unpredictable due to age-related or pathophysiological changes, e.g. newborns with sepsis, this approach may result in subtherapeutic exposure. This can potentially lead to treatment failure, the formation of drug-tolerant persister bacteria, or the acquisition of mutations associated with genotypic resistance. Conversely, supratherapeutic drug exposure can lead to drug-induced toxicity and side effects. Indeed, a recent prospective study among critically ill patients of various age groups showed that children were significantly less likely than adults to achieve PK/PD targets with standard antibiotic doses [24]. Another PK study on amoxicillin-clavulanic acid, piperacillintazobactam, or meropenem revealed that at least 65% of pediatric ICU patients receiving standard dosing regimens showed subtherapeutic drug exposure [23]. Clearly, this specific subpopulation would benefit greatly from a more individualized approach to dosing. This can be achieved through therapeutic drug monitoring (TDM), an approach that is a common practice for antibiotics such as aminoglycosides or vancomycin [25], but has only recently been gaining popularity for β -lactams in both adults and children [26-28]. However, conventional TDM is commonly performed once steady-state concentrations have been reached (which theoretically takes 4 to 5 times the half-life of the drug) before dose adaptation based on the results. As early initiation of the right drug at the right dose is critical to reduce morbidity and mortality in patients with severe infections (the 'golden hour' of antimicrobial therapy) [29], this means that such TDM-guided dose adaptations may come too late to result in major clinical benefits. 'Model-informed precision dosing' (MIPD) combines early (i.e. pre-steady state) TDM results with population PK models and individual patient information (age, weight, and renal function) to help predict the steady state drug concentrations and inform dose adaption if required to ensure timely initiation of adequate antibiotic treatment [30,31]. To date, scientific evidence that β -lactam TDMand MIPD-informed precision dosing can lead to improved clinical outcomes is lacking. Nevertheless, a recent study in critically ill children receiving piperacillin-tazobactam showed a clear association between plasma drug concentrations measured during the first 24 hours of treatment and the risk for the onset of drug-associated acute kidney injury, indicating the potential of pediatric MIPD to reduce β -lactam toxicity [32].

In this review, we provide an overview of the population PK of β -lactam antibiotics and of the various dose optimization

strategies in children. The literature search for this review was performed during the period of March–September 2023 in the PubMed.gov database and included keywords related to the terms ' β -lactam' ('Beta-lactam,' names of the specific β -lactam agents listed in Table 1), 'pharmacokinetics' ('PK,' 'population pharmacokinetics,' 'pop-PK,' 'pharmacokinetics/pharmacodynamics,' 'PK/PD,' 'model,' 'exposure'), 'pediatric' ('child,' 'infant,' 'toddler,' 'neonate'), 'dose' ('regimen,' 'nomogram,' 'standard dose,' 'allometric,' 'dose optimization'), 'Therapeutic Drug Monitoring' and 'Model-Informed Precision Dosing' ('MIPD,' 'precision dosing,' 'individualized dosing'). We also share our expert opinion on the challenges and opportunities to implement β -lactam precision dosing for vulnerable pediatric subpopulations in the coming years.

2. Population pharmacokinetics of β-lactams in children

Population pharmacokinetic (pop-PK) modeling can be used to characterize drug PK, to understand the impact of specific covariates on PK and to determine the appropriate doses to achieve therapeutic drug exposure in pediatric patients. Until relatively recently, antibiotic PK data in children was mostly limited to drugs that are routinely monitored in clinical care, such as vancomycin and aminoglycosides. Yet over the past decade, many new studies focusing on B-lactams PK have become available. In Table 1, we provide a summary of current studies that have developed a pop-PK model for β -lactams in pediatric patients spanning all age groups, from neonates to adolescents. We excluded studies conducted exclusively in adults and those employing combined pop-PK models for non-β-lactam antibiotics or other drugs. Despite the identification of over 70 studies on β -lactam pop-PK in pediatrics [15], the data is notably limited compared to the relative wealth of information available for adults [109]. Through our literature review, we observed trends in pediatric PK data for β-lactams, including the (i) most commonly investigated drugs, (ii) study designs and analysis methodologies, and (iii) significant covariates.

First, regarding the studied β -lactam, most pop-PK models have been published for meropenem, next to piperacillintazobactam, cefepime, ceftazidime, and ceftriaxone. For the other β -lactam antibiotics, a limited number of models is available, often developed in smaller studies. No pop-PK models are available for a number of older (flucloxacillin, cefuroxime) and new β -lactams currently under development (ceftaroline, cefiderocol).

Second, regarding study design and data analysis, most studies were prospectively designed. Such a prospective design is desirable in pop-PK studies to collect sufficiently rich (e.g. area under the curve, AUC) PK data. Retrospectively studied routine TDM data mostly consist only of trough concentrations, which generally do not allow for detailed modeling and robust dosing simulations. Data from different PK studies is sometimes pooled to reach a larger sample size. Most studies were monocentric and only a minority took place in a multicenter setting, hence limiting their external generalizability. The study population spanned across all pediatric age groups, including neonates, infants, and adolescents. Several models have been developed in specific populations at risk for under- or overexposure, e.g. critically ill children, asphyxiated neonates, cystic fibrosis, and patients receiving extracorporeal support. PK/PD target attainment was commonly included alongside pop-PK analysis but was determined in very heterogenous ways for different studies (and is therefore not included in Table 1). Nevertheless, nearly all studies revealed poor target attainment, highlighting the need for improved dosing strategies across various pediatric populations.

Third and final, we identified the most important covariates in the published pop-PK models that indicate the major determinants for β-lactam exposure in children: renal function, maturational factors, body temperature, and extracorporeal support. All pediatric β-lactam pop-PK models include a fixed effect of body weight on Vd and CL (i.e. allometric scaling). Body weight was the only covariate to consistently affect Vd in children. Several covariates were consistently found to reduce interindividual variability (IIV) in CL. The renal function estimated based on the Revised Schwartz Formula is the most consistent covariate on CL for all *β*-lactam antibiotics and is retained in the pop-PK models of more than 20 independent studies [44-46,54,62-64,66-70,76,78,81,83,87,94,99,110]. Nevertheless, despite the predominant renal clearance of βlactams, renal function appears to be less commonly retained in pediatric β -lactam pop-PK models than in adult ones. This is particularly the case in neonates, possibly due to the fact that the included body size descriptors capture the maturation of renal function to a larger extent than the traditional renal function markers which show limited sensitivity to changes in renal function in this patient population. Specific maturational factors, such as post-menstrual age, post-natal age, and gestational age, which are often retained in neonates and young children as significant covariates in CL may thus be more suitable to explain interpatient PK variability in this population than renal function. Other significant PK covariates that are mentioned in multiple studies are body temperature support [36,42,69,111] and extracorporeal system [52,66,80,81,85,99]. Whole-body hypothermia is known to increase β -lactam exposure by reducing renal elimination. The influence of lower body temperatures on exposure is especially prominent during the first post-natal days, as observed in asphyxiated neonates. Extracorporeal support (such as Extracorporeal Membrane Oxygenation (ECMO) or Renal Replacement Therapy (RTT) is also a known risk factor for altered drug exposure due to potential drug sequestration into the circuit and hemodilution due to circuit priming. Drug sequestration, leading to a higher clearance due to adsorption to the ECMO circuit, is mostly relevant for lipophilic drugs; hemodilution, leading to a higher volume of distribution, may be more relevant for hydrophilic drugs such as β -lactams [22].

3. β-lactam dose optimization strategies in children

Pop-PK models described in the previous section can be used to inform optimized dosing strategies in pediatric patients. Such strategies can take the form of fixed dose regimens or a simple dose stratification, based on one or a few covariates identified during pop-PK analysis. In case of extensive PK

AmoxicillinD'Agate et al. 2020Retrospective using data fromNeonates with sepsis ($n = 44$); 1-56[33]another trialInfants ($n = 47$); open-label study0.09-2 yrsWu et al. 2019[35]Prospective, monocentric, open-label study0.09-2 yrsBijleveld et al. 2018Prospective, monocentric study0.09-2 yrsBijleveld et al. 2019[35]Prospective, monocentric study0.09-2 yrsBijleveld et al. 2016Prospective, monocentric study0.09-2 yrsCharles et al. 1997Prospective, monocentric studyNeonatal ICU patients ($n = 80$); 1.37 Amoxicilin- Bold[37]Prospective, monocentric studyNeonatal ICU patients ($n = 40$); 1- 1.39 Amoxicilin- BoldDe Gock et al. 2015Prospective monocentric study open-label studyPediatric ICU patients ($n = 50$); 0.08Amoxicilin- Badai et al. 2018Prospective monocentric study open-label studyPediatric patients ($n = 20$); 0.08Benzyl-penicillin Rado et al. 2018Prospective monocentric study open-label studyPediatric patients ($n = 20$); 0.08Benzyl-penicillin Rado et al. 2018Prospective monocentric study open-label studyPediatric patients ($n = 20$); 0.08Benzyl-penicillin Rado et al. 2018Prospective monocentric study open-label studyPediatric patients ($n = 20$); 0.03Benzyl-penicillin Rado et al. 2018Prospective monocentric study open-label studyPediatric patients ($n = 20$); 0.03Benzyl-penicillin Rado et al. 2018Prospective monocentric study observational	Reference	Study design	Population and age range	Pop-PK method and model	Covariate effects
Wu et al. 2021 [34]Prospective, monocentric, open-label studyInfants $(n = 47)$; open-label studyInfants $(n = 47)$; open-label studyTang et al. 2019 [35]Prospective, multicentric studyNeonatal ICU patients $(n = 80)$; $1-37$ d[36]Prospective, monocentricNeonatal ICU patients $(n = 80)$; $2-5$ d[37]Pullen et al. 2006Prospective, monocentricNeonatal ICU patients $(n = 90)$; $2-5$ d[38]Prospective, monocentricNeonates $(n = 150)$; 0-9 d[39]Amoxicillin-De Cock et al. 2015Prospective monocentric[39]Prospective, monocentric studyNeonates $(n = 17)$; NA[31]Benzyl-penicillinRado et al. 2022 [40]Prospective monocentric study[32]Prospective monocentric studyPediatric ICU patients $(n = 20)$; 0.08[33]Prospective monocentric studyPediatric ICU patients $(n = 20)$; 0.08[41]Rado et al. 2018Prospective monocentric study[41]Prospective monocentric studyNeonates $(n = 17)$; NA[41]Bijeveld et al. 2018Prospective monocentric study[41]Prospective monocentric studyNeonates $(n = 17)$; NA[41]Schmitz et al. 2013Prospective monocentric study[42]Prospective monocentric studyNeonates $(n = 20)$; 5-21 yrs[43]Prospective monocentric studyPediatric patients $(n = 20)$; 5-21 yrs[41]Prospective monocentric studyPediatric patients $(n = 20)$; 5-21 yrs[42]Prospective monocentric studyPediatric patients $(n = 20)$;	D'Agate et al. 20. [33]	0 Retrospective using data from another trial	Neonates with sepsis ($n = 44$); 1-56 d	2-compartment model with allometric scaling	PNA on CL Sepsis on Vc Sepsis on Vp
Tang et al. 2019 [35]Prospective, multicentric studyNeonatal ICU patients ($n = 187$); $1-37$ dTang et al. 2018Prospective multicentric studyNeonatal ICU patients ($n = 80$); $2-5$ dBijleveld et al. 2018Prospective, monocentricNeonatal ICU patients ($n = 80$); $2-5$ dBillen et al. 2006Prospective monocentricNeonatal ICU patients ($n = 90$); 1- $2-5$ dAmoxicillin-De Cock et al. 2015Prospective monocentricNeonatal ICU patients ($n = 50$); 0.08 ediatric ICU patients ($n = 50$); 0.08 ediatric ICU patients ($n = 20$); 0.08Amoxicillin-De Cock et al. 2018Prospective monocentric studyPediatric ICU patients ($n = 20$); 0.08 ediatric ICU patients ($n = 20$); 0.08Benzyl-penicillinKado et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA ($n = 12018Benzyl-penicillinKado et al. 2018Prospective monocentric studyNeonates (n = 17); NA(n = 12018Benzyl-penicillinKado et al. 2018Prospective monocentric studyNeonates (n = 17); NA(n = 12018Bijeveld et al. 2018Prospective monocentric studyNeonates (n = 17); NA(n = 38); 10-33CefazolinSchmitz et al. 2017Prospective monocentric studyNeonates with hypothermia (n = 41(n = 30); 10-33Geok et al. 2017Prospective monocentric studyNeonates (n = 127); NA(n = 38); 10-33Neonates (n = 20); 5-21 yrs(n = 38); 10-33Geok et al. 2017Prospective monocentric studyNeonates (n = 127); 7-17 yrs(n = 38); 10-33Neonates (n = 20); 5-17Geok et al. 2015$	Wu et al. 2021 [3	 Prospective, monocentric, open-label study 	Infants (<i>n</i> = 47); 0.09-2 yrs	NONMEM; 2-compartment model with first-order elimination and allometric scaling	None
Bijleveld et al. 2018Prospective multicentric studyNeonateal ICU patients ($n = 80$);[36]Pullen et al. 2006Prospective, monocentricNeonates ($n = 150$); 0-9 d[37]Charles et al. 1997Prospective, monocentricNeonates ($n = 150$); 0-9 d[38]Charles et al. 2015Prospective, monocentricNeonates ($n = 10$); 1-[38]Cock et al. 2015Prospective, monocentricNeonates ($n = 10$); 0-0 d[39]Cock et al. 2015Prospective, monocentricPediatric ICU patients ($n = 50$); 0.08[30]Maxicillin-De Cock et al. 2013Prospective monocentric, studyPediatric ICU patients ($n = 50$); 0.08[31]Macatient al. 2013Prospective monocentric studyNeonates ($n = 17$); NAA[41]Benzyl-penicillinKado et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA[41]Bijeveld et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA[41]Bijeveld et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA[41]Bijeveld et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA[42]CefazolinSchmitz et al. 2013Prospective monocentric studyNeonates ($n = 17$); NA[43]Schmitz et al. 2013Prospective monocentric studyNeonates ($n = 20$); 5-21 yrs[44]Schmitz et al. 2013Prospective monocentric studyNeonates ($n = 30$); 6-15 yrs[45]Salvador et al. 2017Prospective monocentric studyCritically iII children with MSSA infe <tr< td=""><td>Tang et al. 2019 [</td><td>35] Prospective, multicentric study</td><td>Neonatal ICU patients ($n = 187$); 1-37 d</td><td>NONMEM: 2-compartment model with first-order elimination and allometric scaling</td><td>GA, and PNA on CL</td></tr<>	Tang et al. 2019 [35] Prospective, multicentric study	Neonatal ICU patients ($n = 187$); 1-37 d	NONMEM: 2-compartment model with first-order elimination and allometric scaling	GA, and PNA on CL
The set al. 1997Prospective monocentric study studyLow birthweight infants ($n = 40$); 1- 333Amoxicillin- 133De Cock et al. 2015Prospective monocentric studyPediatric ICU patients ($n = 50$); 0.08Benzyl-penicillin (avulanateExcert al. 2018Prospective monocentric open-label studyPediatric patients ($n = 20$); 5-21 yrsBenzyl-penicillin (avulanateKado et al. 2022 [40]Prospective monocentric study Prospective monocentric study Neonates ($n = 17$); NABenzyl-penicillin (avulanateKado et al. 2018Prospective monocentric study Neonates ($n = 17$); NABenzyl-penicillin (avulanateKado et al. 2018Prospective monocentric study Neonates ($n = 17$); NABenzyl-penicillin (avi)Kado et al. 2018Prospective monocentric study Neonates ($n = 17$); NABenzyl-penicillin (avi)Kado et al. 2018Prospective multicentric observational study Neonates ($n = 17$); NACefazolin (avi)Schmitz et al. 2018Prospective studies (healthy observational study ($n = 39$): 0.1-17 yrsCefazolin 	Bijleveld et al. 20 [36] Pullen et al 2006	18 Prospective multicentric study Prospective monocentric	Neonatal ICU patients ($n = 80$); 2-5 d Neonates ($n = 150$): 0-0 d	NONMEM; 2-compartment model and allometric scaling ANOVA-	PNA, Temperature, UO, and GA on CL
Amoxicillin- davulanateDe Cock et al. 2015Prospective, monocentric, open-label studyPediatric ICU patients ($n = 50$); 0.08Gavulanate[39]open-label studyPediatric patients ($n = 20$); 5-21 yrsBenzyl-penicillinRado et al. 2018Prospective monocentric studyPediatric patients ($n = 20$); 5-21 yrsBenzyl-penicillinRado et al. 2018Prospective monocentric studyPediatric patients ($n = 20$); 5-21 yrsBenzyl-penicillinRado et al. 2018Prospective monocentric studyPediatric patients ($n = 20$); 5-21 yrsBijleveld et al. 2018Prospective monocentric studyNeonates ($n = 17$); NA[41]Bijleveld et al. 2018Prospective multicentricNeonates ($n = 17$); NA[42]Schmitz et al. 2021Pooled analysis of threeHealthy adults ($n = 24$) and pediatri[43]Bijleveld et al. 2021Prospective studies (healthyDefiatri[44]Prospective monocentric studyPresheithyDefiatri[44]Prospective monocentric studyPresident study $n = 38$; 10-53 yrs[45]Prospective monocentric studyPresident studies ($n = 127$); 70-12 yrs[46]Prospective open-labelPediatric patients receiving surgical[46]Prospective open-labelPediatric patients receiving surgical[47]Prospective open-labelPediatric patients ($n = 36$); 1-30 d[47]Prospective open-labelPediatric patients ($n = 36$); 1-30 d[47]Prospective monocentric studyNeonates ($n = 36$); 1-30 d	[37] [37] Charles et al. 199 [38]	Prospective monocentric study	Low birthweight infants ($n = 40$); 1-3 d	1-compartment model with allometric scaling NONMEM; 1-compartment model	CW and gentamicin use on CL
Benzyl-penicillinKado et al. 2022 [40]Prospective monocentric studyPediatric patients $(n = 20)$; 5-21 yrsPadari et al. 2018Prospective monocentric studyNeonates $(n = 17)$; NA[41]Bijleveld et al. 2018Prospective multicentricNeonates with hypothermia $(n = 41)$ Bijleveld et al. 2018Prospective multicentricNeonates with hypothermia $(n = 41)$ Bijleveld et al. 2018Prospective multicentricNeonates with hypothermia $(n = 41)$ Bijleveld et al. 2018Prospective multicentricNeonates with hypothermia $(n = 41)$ CefazolinSchmitz et al. 2021Pooled analysis of threeHealthy adults $(n = 24)$ and pediatri[43]adults $n = 1$, children $n = 2$ Schmitz et al. 2020Prospective monocentric study[44]Prospective monocentric studyCritically II children with MSSA infe[45]De Cock et al. 2017Prospective monocentric studyChildren undergoing cardiac surger[46]Rothitz et al. 2015Prospective open-labelPediatric patients receiving surgical[46]Pothoc analysis ofProphylaxis $(n = 36)$; 1-30 d[47]a prospective open-labelProphylaxis $(n = 36)$; 1-30 d[47]a prospective monocentric studyNeonates $(n = 36)$; 1-30 d	De Cock et al. 20 [39]	15 Prospective, monocentric, open-label study	Pediatric ICU patients ($n = 50$); 0.08–15 yrs	NONMEM; Amoxicillin 3-compartment model with allometric scaling Clavulanic acid 2-compartment model with allometric scalino	Amoxicillin PMA, TM ₅₀ , Cystatin C and vasopressor use on CL Clavulanic acid PMA, TM ₅₀ , Cystatin C use on CL
CefazolinSchmitz et al. 2021Pooled analysis of three prospective studies (healthy patients receiving surgical proph adults $n = 1$, children $n = 2$)Healthy patients receiving surgical proph adults $n = 1$, children $n = 2$)($n = 38$): 10-53 yrs 38): 10-53 yrsSalvador et al. 2020Prospective monocentric study ($A = 39$): 0.1-17 yrs($n = 39$): 0.1-17 yrsDe Cock et al. 2017Prospective monocentric study ($n = 39$): 0.1-17 yrs($n = 39$): 0.1-17 yrsEdstrict et al. 2017Prospective monocentric study ($n = 39$): 0.1-17 yrs($n = 30$): 0.1-17 yrsDe Cock et al. 2017Prospective monocentric study ($n = 30$): 0.1-17 yrs($n = 30$): 0.1-17 yrsDe Cock et al. 2017Prospective open-labelPediatric patients receiving surgical prophylaxis ($n = 12$): 10-12 yrsDe Cock et al. 2014Posthoc analysis of Prospective open-labelPediatric patients receiving surgical prophylaxis ($n = 30$); 1-30 d [47]	Kado et al. 2022 [Padari et al. 2018 [41] Bijleveld et al. 20 [42]	 40] Prospective monocentric study Prospective monocentric study 18 Prospective multicentric observational study. 	Pediatric patients ($n = 20$); 5-21 yrs Neonates ($n = 17$); NA Neonates with hypothermia ($n = 41$); 2-5 d	NONMEM; 2-compartment with allometric scaling NONMEM; 2-compartment with allometric scaling NONMEM; 2-compartment with allometric scaling	BMI cutoff of 26 kg/m ² on T1/2 PMA on CL PNA, body temperature, GA and multiorran failure on Cl
Salvador et al. 2020 Prospective monocentric study Critically ill children with MSSA infe [44] Test al. 2017 Prospective monocentric study Children undergoing cardiac surger De Cock et al. 2017 Prospective monocentric study Children undergoing cardiac surger [45] Schmitz et al. 2015 Prospective open-label Pediatric patients receiving surgical [46] Multicentric study Prophylaxis ($n = 36$); 1-30 d De Cock et al. 2014 Posthoc analysis of Neonates ($n = 36$); 1-30 d [47] a prospective monocentric	Schmitz et al. 202 [43]	Pooled analysis of three prospective studies (healthy adults $n = 1$, children $n = 2$)	Healthy adults ($n = 24$) and pediatric patients receiving surgical prophylaxis ($n = 38$); 10–53 yrs	NONMEM: 2-compartment with linear elimination and allometric scaling	None
Schmitz et al. 2015 Prospective open-label Pediatric patients receiving surgical [46] multicentric study prophylaxis $(n = 12)$; 10-12 yrs De Cock et al. 2014 Posthoc analysis of Neonates $(n = 36)$; 1-30 d [47] a prospective monocentric	Salvador et al. 20 [44] De Cock et al. 20 [45]	20 Prospective monocentric study 17 Prospective monocentric study	Critically ill children with MSSA infection (n = 39); 0.1-17 yrs Children undergoing cardiac surgery with CPB (n = 56); 6d-15 yrs	MONOLIX; 1-compartment with first-order elimination and allometric scaling NONMEM; 2-compartment with first-order elimination plus an additional compartment for the effect of CPB, saturable protein binding and allometric scaling	eGFR _{Schwartz} on CL eGFR _{Schwartz} on CL Serum albumin on protein binding
study	Schmitz et al. 20' [46] De Cock et al. 20 [47]	 Prospective open-label multicentric study Posthoc analysis of a prospective monocentric study 	Pediatric patients receiving surgical prophylaxis ($n = 12$); 10-12 yrs Neonates ($n = 36$); 1-30 d	NONMEM; 2-compartment with linear elimination and allometric scaling NONMEM; 1-compartment with saturable protein binding	CrCl _{Schwartz} on CL Current body weight on Vd Birth body weight and PNA on CL Serum albumin on protein binding

Table 1. (Continue	ed).				
β-lactam antibiotic	Reference	Study design	Population and age range	Pop-PK method and model	Covariate effects
Cefepime	de Cacqueray et al. 2022 [48]	Two-center prospective study	Critically ill children ($n = 59$); 1.1 m-17.6 yrs		BW eGFR
	Al-Shaer et al. 2020 [49]	Pooled analysis of one pediatric and one adult study	Pediatric ($n = 36$) and adult patients ($n = 230$); 2.1 mos. -16.4 yrs (pediatric study)	Pmetrics; 2-compartment with allometric scaling	eGFR _{cockeroft-Gault} and age group (child/ adult) on the total elimination rate constant
	Liu et al. 2020 [50]	Pooled analysis of four studies (3 in adults; 1 in children)	Hemato-oncological adults with febrile neutropenia	Pmetrics; 2-compartment with allometric scaling	eGFR _{cockeroft-Gault} on the total elimination rate constant
			($n = 21$), critically ill adults ($n = 13$) and pediatric patients ($n = 36$); 22–82 yrs (adults); 2 mos -16 yrs (children)		
	Zhao et al. 2020 [51]	Prospective open-label monocentric study	Neonates $(n = 85)$; 1-25 d	NONMEM: 1-compartment with first-order elimination and allometric scaling	PMA and SCr on CL
	Zuppa et al. 2019 [52]	Prospective multicentric observational study	Infants supported by ECMO ($n = 17$); 1.3-22.2 mos	NONMEM;2-compartment with linear elimination and allometric scaling	CRRT on CL Blood transfiision on Vc
	Shoji et al. 2016 [53]	Pooled analysis of two studies	Pediatric patients $(n = 91)$; 0.03-197.3 mos	NONMEMS: 2-compartment with allometric scaling	PMA and SCr on CL GA on Vd
	Lima-Rogel et al. 2008 [54]	Prospective monocentric study	Neonates with severe hospital-acquired infection (n = 41); 6-58 d	NONMEM; 1-compartment with first-order elimination	BSA on V and CL eGFR _{Schwarz} on CL
	Capparelli et al. 2005 [55]	Pooled analysis of two monocentric studies	Neonates $(n = 55)$; 1-62 d	NONMEM; 1-compartment with first-order elimination	PNA on Vd SCr on CL
Cefotaxime	Hartman et al. 2022 [56]	Prospective monocentric study	Critically ill children ($n = 52$); 0.03-17.7 yrs	NONMEM; 2-compartment with allometric scaling	None
	Maksoud et al. 2018 [57]	Prospective monocentric study	Children with sickle cell disease $(n = 78)$; 1 1-18 7 vrs	NONMEM; 1-compartment with first-order elimination and allometric scaling	Presence of acute chest syndrome on
	Béranger et al. 2018 [58]	Prospective monocentric study	Critically ill children $(n = 49)$; 0.2-229 m	MONCLIX: 1-compartment with first-order elimination and allometric scaling	PNA on CL
	Leroux et al. 2016	Prospective open-label	Neonates and young infants ($n = 100$);	NONMEM; 2-compartment with first-order elimination and	GA and PNA on CL
Ceftazidime	[59] Van der Veer MAA	multicentric study Prospective observational	0-69 d Asphvxiated neonates ($n = 35$); 2-5.3 d	allometric scaling NONMEM: 1-compartment with first-order elimination	PNA and body temperature on CL
	et al. 2023 [60] Li et al. 2021 [61]	multicentric study Prospective open-label	Neonates and vound infants ($n = 146$);	NONMEM: 1-compartment with first-order elimination and	Ga, PNA on CL
	-	monocentric study	1-81 d	allometric scaling	; ; ; ;
	Bui et al. 2020 [62]	Prospective open-label multicentric studv	Critically III children ($n = 188$); 28 a-12 yrs	NONMEM; 2-compartment with first-order elimination and allometric scaling	edFKs _{chwartz} and cystic tibrosis on CL
	Cojutti et al. 2019 [63]	Retrospective monocentric cohort study	Pediatric HSCT patients with febrile neutropenia	Pmetrics; 2 -compartment	eGFR _{schwarz} and BSA on CL Height on Vd
	Shi et al. 2018 [64]	Prospective open-label	(n = 46); 0.5-16 yrs Infants $(n = 51)$; 0.1-2y	NONMEM; 1-compartment with first-order elimination and	eGFR _{schwartz} on CL
	Wang et al. 2018 [65]	monocentric study Prospective monocentric study	Neonates $(n = 43)$; 0-60 d	allometric scaling NONMEM; 1-compartment	PMA on CL Body weight on Vd
					(Continued)

β-lactam antibiotic	Reference	Study design	Population and age range	Pop-PK method and model	Covariate effects
Ceftazidime- avibactam	Franzese R et al. 2021 [66]	Pooled analysis of Phase 1-2 trials $(n = 3)$	Pediatric patients (ceftazidime, $n = 154$; avibactam, $n = 153$); 3 mos -17 yrs	NONMEM: 2-compartment with first order elimination and allometric scaling	eGFR _{Schwartz} on CL (>2 yrs) or PMA on CL (≤2 yrs) clAI, HAP/VAP, ASN, CHN on CL (ceftazidime) cUTI. clAI. HAP/VAP. ventilator. ASN.
					CHN, JPN on Vc (ceftazidime) ESRD, dialysis, cIAI, APACHE II on CL (avibactam)
					cIAI, cUTI, HAP/VAP, ventilator on Vc (avibactam)
Ceftolozane- tazobactam	Arrieta AC et al. 2020 [67]	Retrospective subgroup analysis of a Phase 1 trial	Hospitalized pediatric patients ($n = 18$, cystic fibrosis $n = 9$); 2-17 yrs	NONMEM; 2-compartment with first order elimination and allometric scaling	eGFR _{Schwartz} on CL. Presence of infection on CL
					(tazobactam). Similar weight-normalized plasma PK parameters between CF and non-CF
	Larson KB et al. 2019 [68]	Retrospective subgroup analysis of a Phase 1 trial	Hospitalized pediatric patients (ceftolozane, $n = 31$; tazobactam, n = 30; 7 d-17 vrs	NONMEM: 2-compartment with first order elimination and allometric scaling	patients (certorozarte). eGFR _{schwartz} on CL.
Ceftriaxone	Tang Girdwood et al. 2022 [69]	Prospective observational monocentric study	Critically ill children ($n = 184$); 1 mos-30 yrs (6.5% aged > 18y)	NONMEM; 2-compartment with allometric scaling	PMA, eGFR (Schwartz for children, CKD- EPI for > 18y), daily blood pH and daily hidhest temperature on CL
	Hartman et al. 2021	Prospective two-center study	Critically ill children ($n = 45$); 0.1-16.7 yrs	NONMEM; 2-compartment with and allometric scaling and	eGFR _{schwartz} on CL
	[70] [70] [70] [70]	lodel accessive antipercenter	boninge stimmen stim south	a protein binding model with saturable protein binding	
	wang et al. 2020 [71]	Prospective open-label monorentric study	Intants with community-acquired pherimonia ($n = 66$): 0.1-2 vrs	NUNMENI; I-Compartment with Tirst-order elimination and allometric scaling	Age on LL
	Khan et al. 2020 [72]	Prospective open-label	Children with community-acquired	NONMEM: 1-compartment with first-order elimination and	none
	Standing et al. 2018	monocentric study Three-center open-label Phase	pneumonia ($n = 99$); 2-11.7 yrs Infants and voung children with severe	allometric scaling NONMEM: 3-compartment with allometric scaling and	Edema on Vd
	[73]	ll study	acute malnutrition $(n = 81)$; 2-45 mos	a Michaelis-Menten model for concentration and	Age-corrected serum creatinine
	Rlumer et al 2005	Prospective monocentric study	Children nlanned for elective tonsillectomy	albumin-dependent protein binding Nonnarametric expectation maximization program:	Serum albumin on protein binding
	[74]		(n = 153); 2-12 yrs	2-compartment with concentration independent protein	
lmipenem	Dao et al. 2022 [75]	Retrospective single center	Neonates in ICU ($n = 85$); 2.1-153 d	binding NONMEM;	PNA, GA, SCr on CL
		study		1-compartment with allometric scaling	
	Dong et al. 2019 [76]	Prospective single center open-label study	Children with hematological malignancies $(n = 56)$; 2.03-11.83 yrs	NONMEM 2-compartment with first-order elimination and allometric	Age and eGFR _{Schwartz} on CL
	Yoshizawa et al.	Retrospective study using raw	Neonates $(n = 60)$; 0-34 d	scaling NONMEM	None
	2013 [77]	data from other papers		1-compartment with first-order elimination	
			Children ($n = 39$); 3-16.2 yrs	NONMEM; 2-compartment with bi-exponential elimination	None

Table 1. (Continued).

÷.

Covariate effects	eGFR _{schwartz} , BW, PCA on T1/2 BW, PCA, on Vd	Age on CL	Qeff on CL	eGFR _{schwartz} on non-CRRT CL	BW on Vc	eGFR _{schwartz} on CL	eGFR _{Schwartz} on CL BSA and fluticasone on Vd	eGFR _{schwartz} , SIRS on CL CRRT on Vc	eGFR _{schwartz} on CL	eGFR _{schwartz} on CL	None	None	PMA on CL	Albumin on Vd SCr and PMA on CL	None	None	BW and eGFR _{Schwartz} on CL eGFR _{Schwartz} on Vc	SCr and PCA on CL	eGFR _{Cockcroft-Gault} on CL	CrCL and age on CL
Pop-PK method and model	PMetrics package; 1- compartment with first-order elimination	NONMEM; 1-compartment model with first-order elimination and	allometric scaling MONOLIX; 1-compartment model with first-order elimination and	anometric scaining NONMEM; 2-compartment model with first-order elimination and	PMetrics. 2-compartment model with first-order elimination	NONMEM; 1-compartment model with first-order elimination and allometric scaling	NONMEN: NONMEN: 1-compartment model with first-order elimination	Phoenix NLME; 2-compartment model with first-order elimination	NONMEM; 2-compartment model with first-order elimination and allometric scaling	MONOLIX; 2-compartment model with first order elimination and allometric scaling	PMetrics; 2-compartment model with first order elimination	PMetrics; 2-compartment model with first-order elimination and allometric scaling	NONMEM; 1-compartment model with allometric scaling	NONMEM; 1-compartment model with first-order elimination	NONMEM; 2-compartment model with zero-order infusion and allometric scaling	NONMEM; 2-compartment model with allometric scaling	NPAG; 2-compartment model with zero-order infusion and first- order elimination	NONMEM; 1. commettement model with first order alimination	NONMEM; NONMEM;	z-compartment model with anometric scanng NONMEM; 2-compartment model with allometric scaling
Population and age range	Preterm neonates ($n = 66$); NA	Neonates ($n = 78$); 1-113 d	Pediatric ICU patients on CRRT ($n = 27$); Median [IQR] 4 [0-11] yrs	Pediatric patients with sepsis $(n = 25)$; 0.71-3.88 yrs	Children with ECMO ($n = 9$); 2 m-11y	Critically ill infants ($n = 35$); 1.13-22.5 mos	Neonates admitted to NICU ($n = 30$); 5-28 d	Critically ill children ($n = 34$); 0.03-14.6 yrs	Critically ill children or infants with sepsis, meningitis, severe pneumonia $(n = 57)$; 0.101-14.4 vrs	PICU patients $(n = 40)$; 16.8-187.2 mos	PICU patients $(n = 9)$; 1-9 vrs	Pediatric cystic fibrosis patients ($n = 30$); 8-17 yrs	Neonates given meropenem as short infusion ($n = 9$) or long infusion ($n = 10$); NA ($n = 10$); NA	Infants (<i>n</i> = 200); 1-92 d	Pediatric patients ($n = 50$); 0-13 yrs	Pediatric patients ($n = 40$); 0.2–14.8 yrs	Newborn patients ($n = 38$); 2-28 d	NICU patients ($n = 37$); 1-61 d	Pediatric patients $(n = 99)$; 0.08-17.33 yrs	Pediatric patients ($n = 65$); 2 months-12 yrs
Study design	Retrospective/observational single center study	Prospective multicentric study	Prospective, observational study	Prospective, monocentric, observational study	Prospective, multicentric study	Prospective, open label, monocentric study	Prospective, monocentric study	Retrospective monocentric study	Prospective multicentric open- label study	Prospective monocentric study	Retrospective monocentric study	Prospective, multicentric, open label study	Prospective open-label, multicentric study	Prospective, multicentric study	Open-label phase 3 study	Retrospective with data pooled from different studies	Prospective multicentric study	Prospective single dose trial	Retrospective study collecting	uata irom previous trials Prospective multicentric trial
Reference	Zyryanov et al. 2023 [78]	Wu et al. 2022 [79]	Thy et al. 2022 [80]	Wang et al. 2021 [81]	Zylbersztajn, et al. 2021 [82]	Yonwises et al. 2021 [83]	Lima-Rogel et al. 2021 [84]	Saito et al. 2020 [85]	Wang et al. 2020 [86]	Rapp et al. 2020 [87]	Cies et al. 2017 [88]	Pettit et al. 2016 [89]	Padari et al. 2012 [90]	Smith et al. 2011 [91]	Ohata et al. 2011 [92]	lkawa et al. 2010 [93]	van den Anker et al. 2009 [94]	Bradley et al. 2008 roci	Du et al. 2006 [96]	Parker et al. 1995 [97]
β-lactam antibiotic	Meropenem																			

Table 1. (Continued).

⁽Continued)

Covariate effects	residual diuresis on CL	eGFR _{schwarz} and Height on renal CL Surface area of filter on CRRT CL	Piperaciliin furosemide on CL Tazobactam fiurosemide on Cl		eGFR on CL PELOD-2 score on Vi	Piperacillin PMA and TM ₅₀ on CL Tazobactam PMA and TM ₅₀ on CL	Tazobactam - sex on CL	None	None	Piperacillin PNA on CL Tazobactam PNA on CL	SCr on CL	kidney disease- Epidemiology Collaboration; tion, CW: current weight; eGFR: estimated st-conception age; PMA- postmenstrual age; e syndrome; TM ₅₀ : Maturation half-life; UO:
Pop-PK method and model	MONOLIX; 1-compartment model with first order elimination and allometric scaling	NONMEM; 2-compartment model with allometric scaling	NONMENT: 2-compartment model with first-order elimination and allometric scaling	NONMEM; 2-compartment model with first-order elimination and allometric scaling	MONOLIX; 1-compartment model with first-order elimination and allometric scaling	NONMEM; 2-compartment models with first-order elimination and allometric scaling	NONMEM; one-compartment models with zero-order infusion and first order elimination and allometric scaling	PMetrics; 2-compartment model with first-order elimination and allometric scaling	BigNPAG; 2-compartment model with first-order elimination and allometric scaling	NONMEM; 2-compartment models with first-order elimination and allometric scaling	NONMEM; 1-compartment model with allometric scaling	Al : complicated intra-abdominal infection; CKD-EPI: chronic diopulmonary bypass, cUTI: complicated urinary tract infee oneumonia; ICU: intensive care unit; JPN: Japanese; PCA: po SCr: serum creatinine; SIRS: systemic inflammatory respons nt. *literature data collection: September 2023.
Population and age range	Pediatric patients undergoing CRRT $(n = 32)$; 0.6-11 yrs	Pediatric patients undergoing CRRT $(n = 32)$; 3 months-15 yrs	Pediatric patient receiving extended PLZ infusions ($n = 89$); 2 mos -6 yrs	Pediatric patients with cancer or chemotherapy induced fever $(n = 43)$; 1-18 vrs	Pediatric patient with normal or augmented renal clearance $(n = 50)$; 0.1-18 vrs	Pediatric ICU patients ($n = 47$); 0.17-15 yrs	Pediatric ICU patients receiving extended PTZ infusions $(n = 12)$; 1-9 yrs	Pediatric oncology patients ($n = 21$); 3-10 yrs	Pediatric ICU patients ($n = 13$); 9 mos-6 yrs	Critically ill neonates ($n = 71$); mean (\pm 5D); 0-61 d	Neonatal ICU patients ($n = 56$); 1-77 d	fface area; BW: body weight; CHN: Chinese; cl inuous renal replacement therapy; CPB: car ige; HAP/VAP: hospital-/ventilator-associated anal replacement therapy effluent flow rate; tment; Vp: Volume of peripheral compartme
Study design	Retrospective monocentric study	Prospective monocentric trial	Prospective, open-label, monocentric study	Prospective monocentric study	Prospective study	Prospective monocentric study	Prospective monocentric study	Prospective monocentric study	Prospective monocentric study	Prospective monocentric study	Prospective, multicentric, open label trial	II: Body-mass index; BSA: body sur Creatinine clearance; CRRT: conti re renal disease; GA: gestational a ital clearance; Qeff: continuous re in; Vc: volume of central compart
Reference	Thy et al. 2022 [98]	Butragueño-Laiseca. et al. 2022 [99]	Inibault et al. 2019 [100]	Thorsted et al. 2019 [101]	Béranger et al. 2019 [102]	De Cock et al. 2017 [103]	Nichols et al. 2016 [104]	Cies et al. 2014 [105]	Cies et al. 2015 [106]	Li et al. 2013 [107]	Cohen-Wolkowiez et al. 2012 [108]	non-Japanese Asian; BN is; CL: Clearance, CrCL: ¹ tion rate; ESRD: end-stag ige; Q: intercompartmen /d: volume of distributio
β-lactam antibiotic	Piperacillin- tazobactam											ASN: non-Chinese, CF: cystic fibrosi glomerular filtrai PNA: postnatal a urinary output; /

Table 1. (Continued).

variability, covariate-based dosing may prove inadequate to achieve therapeutic drug exposure and attain pharmacological targets. In this case, a step-up toward more individualized and complex approaches, such as TDM-guided dosing and MIPD, may be warranted. An illustrative example of a complex clinical scenario where individualized β -lactam dosing proves beneficial is highlighted in a recent case report by Dumangin et al. Here, a preterm infant with impaired renal function suffering from a multi-drug resistant Enterobacterial bloodstream infection was safely and effectively treated with temocillin following a TDM-based dose adjustment [112].

3.1. Fixed dosing regimens

Historically, there were limited antibiotic PK/PD studies in children, and most β -lactam drug dosing regimens were empirically derived from adults on a milligram per kilogram basis. Most commonly, B-lactam compounds were licensed before the European Pediatric Regulation came into force, ensuring pediatric drug development for all new compounds. As a result, offlabel and unlicensed antibiotic use ranged from 20% to 90% in children, depending on the pediatric subpopulation [113,114]. For those antibiotics with a dosing regimen in the drug label, the drug dosing regimens are decades old. If new PK/PD information becomes available, this is not regularly updated in the product label and is mostly dependent on the willingness of the Marketing Authorization Holder. In 2013, the Pediatric Committee published an inventory list of pediatric needs in different therapeutic areas for both off-patent and new medicinal products. In the list of antimicrobial classes, several penicillins, cephalosporins and carbapenems were listed [115]. As a result of off-label and unlicensed dosing, a large heterogeneity in β-lactam dosing regimens are used in clinical practice, as indicated in global antibiotic surveys [116-118]. Increasingly, national and international formularies are the main resource for pediatric drug dosing guidelines used in routine practice [119]. Most commonly, it is not clear from these formularies which references are used as a basis for guideline development. It also remains unclear whether the heterogeneity in these dosing guidelines is affecting antibiotic efficacy and safety in children.

Overall, a tendency toward intensified dosing for offpatent β -lactam antibiotics is observed over the years for a couple of reasons. Preliminary evidence indicates that subtherapeutic *β*-lactam exposure in children is also linked to therapeutic failure and the development of antimicrobial resistance [7,23,120]. Historical dosing regimens do not account either for the decreasing susceptibility of important pathogens or for the increasing importance of nosocomial infections often caused by difficult-to-treat bacteria typical of the hospital environment. In 2020, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) changed the definitions of susceptibility categories from one level of susceptible (S) and two levels of non-susceptible (Intermediate (I) and Resistant (R)) to two levels of susceptible (S = Susceptible, using a standard dosing regimen and I = Susceptible, Increased exposure) and one resistant [121]. This leads to the necessity of development of two dosing regimens for many β-lactam compounds: 'standard' dosing regimens and 'high' dosing regimens for infections with selected pathogens, which are only treatable when higher antibiotic concentrations are attained. A dosing table with dosing regimens for increased exposure in adults is currently available on the EUCAST website [122]. This table still requires translation into dosing and administration in children and a EUCAST task force is currently working on this item [123]. As is the case in adults on the ICU, augmented renal clearance in critically ill children has been linked to subtherapeutic drug exposure and a possible need for higher dosing [15,23]. Finally, β -lactam compounds are considered a broad therapeutic range drugs, despite toxicity thresholds not being well defined in children [13,26,124,125].

Since the European Pediatric Regulation came into force in 2007, more attention has been given to the development of pediatric dosing regimens for new *β*-lactams. As part of the regulatory submission, the European Medicines Agency specifically requires PK studies designed to achieve similar antibiotic exposure in children as in adults but accept efficacy to be extrapolated from adult studies [126]. Nevertheless, dosing requirements in special pediatric patient populations (e.g. preterm and term neonates, patients with augmented renal clearance or renal insufficiency) remain rarely provided (Table 2). Current strategies for the development of pediatric dosing regimens mainly focus on PK/PD target attainment. A mostly used approach to derive PK/PD optimized β-lactam dosing regimens is to perform stochastic Monte Carlo simulations. With this approach, individual concentration-time profiles are generated for 1000 to 10,000 simulated patients, using a previously developed PK model. Optimized dosing regimens for the whole population or subpopulations (e.g. increased or reduced renal clearance) are then selected using a probability of target attainment evaluation (PTA) with criteria for target PTA of minimum 90% against a predefined fT > MIC. Published therapeutic PK/PD targets for β-lactams in children range widely from ≥40% fT>MIC to 100% fT > 4×MIC [7,22]. Extended and continuous infusions and intermittent infusions, possibly using nomograms for different subpopulations (e.g. augmented renal clearance) have been suggested to maximize fT>MIC with the aim to improve efficacy [15]. An important practical issue related to prolonged or continuous infusion to optimize dosing strategies is that the patient should have a separate infusion line available for drug administration to avoid potential drug incompatibilities [132]. Pediatric patients often have limited intravenous access and receive most drugs by intravenous administration. Especially in children with minor illness and (immunocompromised) children with cancer, one single lumen central catheter is most commonly used for all intravenous drug administrations and blood sampling in order to prevent bacterial infection [133]. Peripheral venous access is not often available for the same reason. This dosing strategy also does not account for the large inter- and intra-patient variability in exposure over time that can occur in different pediatric subpopulations and, in most pediatric hospitals, fixed intermittent *B*-lactam infusions remain still the standard-of-care. More advanced dose optimization strategies seem necessary for further tailored treatment in children.

Compound	Labeled pediatric indications	Labeled age categories	Dosing regimen for neonates available	Dosing regimen for renal insufficiency (CrCl \leq 50 mL/ min/1.73 m ²)	Dosing regimen for augmented renal clearance
Ceftazidime/ avibactam [127]	 Complicated intra-abdominal infection Complicated urinary tract infection Hospital-acquired pneumonia, including ventilator-associated pneumonia 	3 months-18 years	No	Yes. Dose adaptation scheme available for all ages from 3 months.	No
Ceftaroline [128]	 Complicated skin and soft tissue infections Community-acquired pneumonia 	Term neonates-18 years	Yes. 6 mg/kg every 8 hours (60 minute infusion time)	Yes. Dose adaptation scheme available for all ages from 2 years.	No
Ceftolozane/ tazobactam [129]	 Complicated intra-abdominal infection Complicated urinary tract infection Acute pyelonephritis 	Neonates >32 weeks and 7 days postnatal age to 18 years	Yes. 20/10 mg/kg every 8 hours (60 minute infusion time).	No	No
Meropenem- vaborbactam [130]	Data not available. The SPC states known if the medicine is safe t	that 'Vaborem should not l to use in these age groups.	be used in children or adole ' A Pediatric Investigation	escents under 18 years of age. Th Plan is available [131].	nis is because it is not

Table 2. Summary of pediatric drug dosing information in the summary of product characteristics (SPC) for newer β-lactam antibiotics.

3.2. Traditional therapeutic drug monitoring (TDM)-guided dosing

The main goal of TDM is to guide clinical dosing decisions to achieve optimal drug exposure in patients. In the past, antibiotic TDM primarily aimed at preventing toxicity of drugs with narrow therapeutic windows (e.g. aminoglycosides, vancomycin), particularly in critically ill patients. Today, its scope is broadened, encompassing the maximization of therapeutic efficacy across diverse antimicrobial agents and patient populations. Conventional antibiotic dosing regimens in pediatric patients are determined by factors such as body weight, age, or nomograms and adjusted for renal function when necessary. This approach can be suboptimal and insufficient to reach predefined PK/PD target values. For certain antibiotics, TDM is routinely employed to enhance the attainment of pharmacological targets, thereby minimizing therapeutic failure and potential toxicity. The method finds particular relevance for drugs with narrow therapeutic indexes or complicated PK profiles. Its appliance for β-lactam antibiotics, which are often used empirically and considered relatively safe, is limited to date [134]. Based on the Surviving Sepsis Campaign, an effort has been put in to extend the infusion times and apply TDM for β -lactam antibiotics. This strategy is particularly crucial for managing critically ill patients, as it aims to mitigate the impact of pathophysiological alterations induced by the severity of the illness. Furthermore, it addresses the significant variability in drug exposure observed in this patient group, thereby facilitating a more balanced and effective approach to antibiotic therapy [135].

Although the toxicity profile of β -lactam antibiotics is generally considered mild, there is emerging evidence to support the utility of monitoring for potential toxicities associated with the upper ranges of drug exposure. Specifically, piperacillintazobactam has been documented to exert nephrotoxic effects, as corroborated by a recent study where 16 out of 107 evaluated patients were classified as potentially experiencing piperacillin-associated acute kidney injury [32]. This risk appears significantly increased in combination with vancomycin [136]. In addition, carbapenems, particularly imipenem and panipenem, are considered the most nephrotoxic beta-lactams. Consequently, they are used in combination with an Organic Anion Transporter (OAT)-inhibitor (such as the renal dehydropeptidase inhibitor cilastatin or betamipron) to limit their internalization in renal tubular cells [137,138]. Moreover, a recent case report highlighted the role of increased ceftriaxone concentrations in serum and cerebrospinal fluid in an (adult) patient with ceftriaxone-associated encephalopathy [139]. Ceftriaxone, like cefazolin, is also known to cause biliary pseudolithiasis, particularly in children. Concerning the neurotoxic risk of β -lactam antibiotics, their pro-convulsant effects, especially with cefazolin and cefepime, should be noted [140]. Overall, these findings highlight the susceptibility of particular risk groups to adverse drug reactions, advocating for the implementation of TDM as a proactive measure to mitigate toxicity risks in these vulnerable cohorts.

The lack of widespread implementation of β -lactam TDM in the adult population as standard-of-care stems from multiple interconnected factors [141]. The main obstacle is of a scientific nature: the evidence that TDM-based dosing results in improved clinical outcomes over standard dosing strategies is very limited, in particular in the field of pediatrics. Related to this, it remains unclear which specific pediatric subpopulations would benefit most from such individualized approaches to dose optimization. Practical barriers, including the lack of commercial assays and technical challenges like the need for specialized equipment, limit accessibility. Educationally, the lack of awareness and training among health-care providers creates resistance, while economic

3.3. Model-informed precision dosing (MIPD)

Optimal pharmacotherapy for critically ill patients should ideally be initiated as soon as possible, taking advantage of the 'golden' window within the first few hours after hospitalization to ensure adequate exposure. Model-Informed Precision Dosing (MIPD) is an advanced approach that blends population pharmacokinetic (popPK) modeling with TDM, applying Bayesian principles to assess drug PK. This allows for the potentially needed modification of drug dosages both prior to and during treatment, ensuring tailored therapy for each patient. In contrast to traditional TMD-guided dosing, MIPD provides the opportunity to a priori determine an individualized dosing regimen based on patient characteristics, such as age, weight, and renal function, even without blood sampling. Moreover, it provides a posteriori quidance in dose optimization based on individualized PK profiles. In the a posteriori phase, sparse sampling may be used to inform the patient's model, an especially practical approach in the pediatric population

due to constraints in blood volume [142]. Table 3 provides an overview of all the approaches with their respective pros and cons.

To the authors' knowledge, no research investigating the application of MIPD for β -lactam antibiotics in the pediatric population has been published. Conversely, for vancomycin, multiple MIPD studies are available, mainly due to its frequent application as a first-line treatment for Methicillin-resistant Staphylococcus aureus (MRSA) treatment and its linear exposure and nephrotoxicity relationship [144,147,148]. These studies reveal that MIPD can result in better antibiotic exposure, enhance efficacy, and minimize toxicity. However, in the adult population, MIPD of β-lactams in critically ill patients has yielded limited insights. For instance, patients with a SOFAscore <8 exhibited an increased ICU length of stay yet demonstrated lower 28-day mortality [149]. Building upon these findings, using pediatric-specific assessment tools such as the Pediatric Logistic Organ Dysfunction (PELOD) score [150], could help identify pediatric subgroups that might benefit from MIPD-guided dosing. Nonetheless, targeted research efforts are required to validate the applicability and efficacy of such approaches within the pediatric context.

Moreover, MIPD presents a potential method for tailoring antibiotic treatment in pediatric patients and may provide clinical benefits eventually leading to better clinical outcomes. However, additional studies, particularly concerning β -lactams, are essential to validate its clinical relevance and cost-effectiveness, addressing the challenges hindering its widespread adoption.

	Table	3.	The	pros and	cons	of the	different	approaches	toward	dose	optimization	of I	ß-lactam	antibiotics	; in t	the	pediatric	por	oulatio	on.
--	-------	----	-----	----------	------	--------	-----------	------------	--------	------	--------------	------	----------	-------------	--------	-----	-----------	-----	---------	-----

Approach	Pros	Cons
Body weight/ nomograms	Readily application/accessible and simple	Limited subpopulation dosing regimens available, may not account for patient's characteristics, less precise
	Suitable for Low- and Middle-Income Countries	Sharp age range cutoffs
		Pre-defined PK targets which may not be universally applicable to all ICU patients
Therapeutic drug monitoring (TDM)	Trough sampling sufficient to determine PTA ($\%$ T > MIC)	Steady-state intervention, no acute phase correction of dosing ('golden hour')
		Prone to inter-clinician/country/institution variability in dosing recommendations
		Blood concentrations do not reflect concentrations site of infection
Model informed precision dosing (MIPD)	First time right (<i>a priori</i>) dosing	How to select the right model? [143]
	Integration of patient characteristics in model for individualized approach	PopPK Model availability
	Ideal for sparse, time flexible blood sampling	Expertise (education and training) required to work with MIPD software tools – available staff ((clinical) pharmacists)
	Real-time integration of patient data from Electronic Health Record (EHR)	Risk of extrapolation/generalizing of popPK models
	Use of MIC _{ecoff} of the presumed pathogen (local drug resistance epidemiology)	Models without incorporation of inflammatory biomarkers
	Flattening priors to allow for more extreme PK parameter estimation [144]	Model validation available
	Update model with collected data ('(continuous) Learning model') [145]	No evidence of improved clinical outcomes/cost effectiveness for MIPD
	Weighting of data (constant altering patient physiology) [15,146]	Limited access to (timely) β -lactam TDM services
	Knowledge-sharing between institutions which have implemented ΜIPD of β-lactam antibiotics	
	Identify subpopulations which may benefit from MIPD	
	Model averaging to prevent subpopulation/heterogeneity	
	bias	

4. Conclusion

β-Lactam antibiotics are widely prescribed in pediatric care due to their broad antimicrobial spectrum, high efficacy and relatively low toxicity. Many popular β-lactams were patented in 1950-1980s, long before regulatory authorities such as the EMA demanded PK studies in children to allow market access (2007). Consequently, pediatric doses were extrapolated from the adult PK data and off-label use remains common. Today, the increased availability of pediatric PK data, mainly through academic efforts, has led to updated dosing guidelines for β -lactams in (inter) national pediatric formularies and SmPCs. 'Standard' dosing practices in these documents adjust the dose based on the child's weight or age. Less commonly, dosing is also adapted based on renal function, a key co-variate in the majority of β-lactam pop-PK models because most of these drugs are almost exclusively eliminated by the kidneys. Such standard doses suffice to successfully treat most children in community, ambulatory, and non-ICU hospital settings, because most of the infections are mild and the drug PK is predictable. However, this 'one dose fits all' strategy falls short in specific pediatric subpopulations, such as newborns or children in the PICU, who typically suffer from more severe infections and show significantly altered, highly variable PK. The TDM of β -lactams in these vulnerable patients, which is increasingly explored in critically ill adults today, could help to achieve PK/PD targets and optimize dosing. A limitation of conventional TDM, next to bioanalytical, technical, and practical challenges, is that TDM is often initiated in a post-steady state, which means that the critical 'golden hour' of early antimicrobial therapy is missed and dose adjustment is delayed. MIPD emerges as a promising frontier that combines patient-specific TDM, biochemical, microbiological, and clinical data with population PK models to provide timely recommendations for dose adaptations. Though current evidence supporting its impact on clinical success remains weak (non-RCT data) and restricted to adults, TDM/MIPD may present an opportunity for tailored β-lactam dosing to optimize therapeutic efficacy and safety in critically ill neonates and children in the future.

5. Expert opinion

As children show higher PK variability than adults for many drugs, including for β -lactam antibiotics, pediatric PK studies to identify the determinants that can explain inter- and intrapatient variability in drug exposure are essential to guide the design of optimal dosing regimens. We identified some significant shortcomings and gaps in currently available research, including small sample sizes, significant underrepresentation of (preterm) neonates and critically ill pediatric patients, and limited external validity of the available population PK models for β -lactams. As is the case in adults, the optimization of β -lactam therapy in children is also hampered by a lack of consensus about PK/PD targets linked to improved clinical outcomes and the absence of validated biomarkers to assess renal function, (nephro)toxicity, and efficacy. To address these gaps in current research, there is an urgent need for larger PK studies that pool data from multiple clinical centers. Such trials should include understudied pediatric populations (neonates, ARC, RI) and β -lactams (older ones such as flucloxacillin, cefuroxime, temocillin and aztreonam, but also novel agents under development-like ceftaroline and cefiderocol).

Depending on the specific β -lactam and the population, a relatively simple-dose stratification approach may be sufficient, for example depending on age (or gestational age because of prematurity), or by increasing the dose in patients with higher renal function and clearance. This could be the case in populations with predictable and stable PK (e.g. non-critically ill patients with common childhood infections, such as uncomplicated pneumonia or otitis media or toddlers, infants, and adolescents). Yet in patients with extensive and difficult-to-predict PK variability (e.g. critically ill patients with severe infections, or (premature) neonates) TDM or MIPD may be needed to guide dosing to achieve therapeutic drug exposure. Standard TDM will probably be inadequate in this context, as such patients will likely never reach a true steady-state, hence impeding a correct interpretation and its general usefulness. In contrast, MIPD can calculate the right dose for each patient early on during therapy (presteady state), which would be of the greatest benefit for the youngest and most severely ill pediatric patients. We believe piperacillin/tazobactam and meropenem would be interesting candidate drugs for this approach as they are frequently used in ICU settings for severe and difficult-to-treat infections.

To implement β-lactam TDM/MIPD in pediatric clinical practice, we have identified a number of barriers, solutions, and future perspectives for individualized dosing (see Figure 1). The primary and most fundamental obstacle is the lack of strong scientific evidence for their clinical benefit. Many TDM studies available today are retrospective or observational in design, or are performed in adults rather than in children. Prospective and long-term randomized clinical trials (RCTs) are needed that directly compare the clinical benefits in terms of both efficacy and toxicity of advanced-dose optimization (TDM/MIPD) over fixed dosing regimens and nomograms. New principles to improve RCT primary endpoints such as the Desirability of Outcome Ranking (DOOR) [151] may be useful in this context, yet questions remain about which exact end point should be measured. Options in this context include Sequential Organ Failure Assessment (SOFA) score, Pediatric Logistic Organ Dysfunction (PELOD) score, Length of Stay (LOS) or overall mortality. Related to this is the identification of the specific pediatric subpopulations that would benefit most from TMD/MIPD-optimized dosing. We believe this would be the groups with the highest PK variability: (preterm) neonates, patients in the pediatric ICU (potentially undergoing AKI, ECMO, CRRT) and children with unstable or altered renal function. Finally, the PK/PD targets required for efficacy that need to be attained in these clinical studies must be further elucidated and confirmed. Considering the ethical and practical difficulties to identify such targets in pediatric clinical trials, we see here a possible role for laboratory research, in particular for the 'Hollow Fiber System.' This preclinical tool is approved by the EMA for PK/PD research on new anti-tuberculosis drugs [152] and has already been used to simulate human pediatric PK profiles under in vitro conditions to evaluate antibacterial effects and propose dosing strategies for pyrazinamide in young children [153].

Other, secondary barriers currently hinder the use of TDM/ MIPD for β -lactams in children. One is technical and financial in nature: as few commercial (immuno)assays for β -lactam

Figure 1. Barriers and future perspectives for pediatric β-lactam Therapeutic Drug Monitoring (TDM) and Model-Informed Precision Dosing (MIPD). Pop-pk: population pharmacokinetics; PK: pharmacokinetics; PD: pharmacodynamics; RCT: randomized controlled trial.

bioanalysis are currently available, chromatography methods are most commonly used. Such methods have prolonged turnover times, rely on specialized equipment and expertise to operate and require additional quality control and crossvalidation efforts as many are developed in-house. In the absence of clinical benefit and cost-effectiveness data, such costs further hamper the implementation of TDM, in particular in resource-limited settings where other compounds for which more solid and clear evidence is available (e.g. cytostatics). Another challenge is education. Compared to other drugs such as cytostatics and vancomycin, TDM for β -lactams is a relatively new concept and guidelines are still under development and discussion. The multidisciplinary nature of TDM, involving physicians, clinical pharmacists, microbiologists, nurses, pharmacometricians, and IT support, adds complexity for TDM implementation in routine care. A final challenge, specific to the pediatric population, is the difficulties in blood sampling. This could potentially be mitigated by scavenged blood sampling methods.

So, how do we see the field of β -lactam dose optimization in children evolving in the next 5 years? We foremost hope for the availability of robust prospective data from large-scale RCTs, providing clinical evidence for optimized dosing using TDM/MIPD, for β -lactams but also for other antibiotic classes. Such studies are currently ongoing in adults; evidence will also need to be generated in the pediatric population. Alongside, novel data PK and PK/ PD data for β -lactams in neonates remain needed. In this context, new and improved markers of renal function in critically ill young children and neonates (e.g. Cystatin C [154]) to timely detect changes in glomerular filtration rate and adequately adapt β -

lactam dosing would also be most welcomed. From the pharmacometrics perspective, model averaging and continuous learning approaches could further improve existing pop-PK models and guide the selection of the 'best' model (or combination of models) for MIPD [155,156]. New antibiotic PK/PD targets and indices that could overcome the limitations of the current MIC-based approaches [157] are under experimental investigation [158] but still require clinical validation. Mechanism-based models (that describe the relation between bacterial killing kinetics and varying drug exposure) could be integrated with pop-PK models and other patient-specific factors in another step toward antibiotic precision dosing in patients [159].

Looking further into the future, MIPD for a priori dosage recommendations may become the norm for a number of drugs. Whether the β-lactam class will be included will depend on evidence generation on the clinical benefit from RCTs in the adult and pediatric population, implementation and ongoing legal/regulatory hurdles (i.e. MIPD software and tools as a medical device and/or clinical decision support system [160]). As digital tools rise, artificial intelligence and machine learning will increasingly assist in real time dose adjustment. Drawing insights from precision dosing in fields like oncology, biomarkers, and pharmacogenetics may also come to play an increasingly important role in antimicrobial therapy in general. We express hopes for fully integrated precision dosing within electronic patient records, closedloop systems where biosensors measure drug exposure in real-time to guide β -lactam dosing at the bedside, novel antimicrobial agents to combat bacterial strains that have become resistant to current β-lactams, and rapid diagnostics to guide

therapeutic decisions. Such precision medical tools can pave the way for a future where individualized dosing stands as a cornerstone to optimize clinical outcomes of β -lactam and other antibiotic therapy in the most vulnerable pediatric populations.

Funding

This paper was not funded.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Acknowledgments

GJ Wijnant was a postdoctoral fellow from the BEWARE program of the Region Wallonne (program REBEL). F Van Bambeke is research director from the Belgian Fonds de Recherche Scientifique (FRS-FNRS).

ORCID

Perrin Ngougni Pokem (a) http://orcid.org/0000-0001-9713-3069 Dorian Vanneste (a) http://orcid.org/0000-0002-8871-7385 Stef Schouwenburg (a) http://orcid.org/0000-0003-1835-0749 Alan Abdulla (a) http://orcid.org/0000-0002-2158-6376 Matthias Gijsen (a) http://orcid.org/0000-0002-2158-6376 Matthias Gijsen (a) http://orcid.org/0000-0002-8969-2941 Dimitri Van der Linden (a) http://orcid.org/0000-0002-8969-2941 Dimitri Van der Linden (a) http://orcid.org/0000-0002-696-4559 Isabel Spriet (a) http://orcid.org/0000-0001-6342-0676 Pieter De Cock (a) http://orcid.org/0000-0001-7634-7471 Birgit Koch (b) http://orcid.org/0000-0002-1202-3643 Françoise Van Bambeke (a) http://orcid.org/0000-0003-2083-4523

References

Papers of special note have been highlighted as either of interest (+) or of considerable interest (+-) to readers.

- Molloy L, Barron S, Khan N, et al. Oral β-lactam antibiotics for pediatric otitis media, rhinosinusitis, and pneumonia. J Pediatr Health Care. 2020;34(3):291–300. doi: 10.1016/j.pedhc.2019.11.001
- Willems J, Hermans E, Schelstraete P, et al. Optimizing the Use of antibiotic agents in the pediatric intensive care unit: a narrative review. Pediatr Drugs. 2021;23(1):39–53. doi: 10.1007/s40272-020-00426-y
- Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. doi: 10. 1101/cshperspect.a025247
- Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021 Feb;19 (2):123–132. doi: 10.1038/s41579-020-00443-1
- Craig WA. State-of-the-art clinical article: Pharmacokinetic/ Pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10. quiz 11–12. doi: 10.1086/516284

- McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>mic) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351. doi: 10.1016/j.ijantimicag.2007.12.009
- Morales Junior R, Pereira GO, Tiguman GMB, et al. Beta-lactams Therapeutic monitoring in septic children–what target are we aiming for? A scoping review. Front Pediatr. 2022 10;10. doi: 10.3389/ fped.2022.777854
- Highlights the current uncertainties in β-lactam exposure profiles and dosing strategies linked to efficacy and toxicity in critically ill children.
- 8. Smith PW, Zuccotto F, Bates RH, et al. Pharmacokinetics of β -lactam antibiotics: clues from the past to help discover long-acting oral drugs in the future. ACS Infect Dis. 2018;4(10):1439–1447. doi: 10. 1021/acsinfecdis.8b00160
- 9. Veiga RP, Paiva J-A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care. 2018;22(1):233. doi: 10.1186/s13054-018-2155-1
- Abrams EM, Wakeman A, Gerstner TV, et al. Prevalence of beta-lactam allergy: a retrospective chart review of drug allergy assessment in a predominantly pediatric population. Allergy Asthma Clin Immunol. 2016;12(1):59. doi: 10.1186/s13223-016-0165-6
- Joint-Task-Force-on-Practice-Parameters, American-Academy-of-Allergy A-a-I, American-College-of-Allergy, Asthma-and-Immunology, Joint-Council-of-Allergy -A-a-I. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010;105(4):259–273.e78. doi: 10.1016/j.anai.2010.08.002
- Buhlinger KM, Fuller KA, Faircloth CB, et al. Effect of concomitant vancomycin and piperacillin-tazobactam on frequency of acute kidney injury in pediatric patients. Am J Health Syst Pharm. 2019;76(16):1204–1210. doi: 10.1093/ajhp/zxz125
- Roger C, Louart B. Beta-lactams toxicity in the intensive care unit: an underestimated collateral damage? Microorganisms. 2021;9 (7):1505. doi: 10.3390/microorganisms9071505
- Nakaharai K, Sakamoto Y, Yaita K, et al. Drug-induced liver injury associated with high-dose ceftriaxone: a retrospective cohort study adjusted for the propensity score. Eur J Clin Pharmacol. 2016;72 (8):1003–1011. doi: 10.1007/s00228-016-2064-7
- Tang Girdwood S, Pavia K, Paice K, et al. β-lactam precision dosing in critically ill children: current state and knowledge gaps. Front Pharmacol. 2022;13:1044683. doi: 10.3389/fphar.2022.1044683
- Excellent overview on the potential of β-lactam TDM/MIPD to improve clinical outcomes on the Pediatric Intensive Care Unit
- Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319–329. doi: 10.1016/j.jiac. 2015.02.001
- Barker CIS, Standing JF, Kelly LE, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018;103(7):695–702. doi: 10.1136/archdischild-2017-314506
- Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. The J Pediatr Pharmacol And Ther. 2014;19 (4):262–276. doi: 10.5863/1551-6776-19.4.262
- Ruggiero A, Ariano A, Triarico S, et al. Neonatal pharmacology and clinical implications. Drugs Context. 2019;8:212608. doi: 10.7573/ dic.212608
- Bansal N, Momin S, Bansal R, et al. Pharmacokinetics of drugs: newborn perspective. Pediatr Med. 2024;7:1–14. doi: 10.21037/ pm-22-11
- 21. Fuchs A, Li G, van den Anker JN, et al. Optimising β -lactam dosing in neonates: a review of pharmacokinetics, drug exposure and pathogens. Cur Pharm Des. 2017;23(38):5805–5838. doi: 10.2174/1381612823666170925162143
- Excellent overview of the causes of high β-lactam PK variability among neonates and young children.
- 22. Gijsen M, Vlasselaers D, Spriet I, et al. Pharmacokinetics of antibiotics in pediatric intensive care: fostering variability to attain

precision medicine. Antibiotics. 2021;10(10):1182. doi: 10.3390/ antibiotics10101182

- Excellent overview of the causes of high β-lactam PK variability among critically ill children.
- 23. Van Der Heggen T, Dhont E, Willems J, et al. Suboptimal beta-lactam therapy in critically III children: risk factors and outcome. Pediatric Critical Care Medicine. 2022;23(7):e309–e318. doi: 10.1097/PCC.00000000002951
- Overview of risk factors for suboptimal β-lactam exposure and dosing in the Pediatric Intensive Care Unit.
- 24. Lonsdale DO, Baker EH, Kipper K, et al. Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol. 2019;85(2):316–346. doi: 10.1111/bcp.13756
- 25. Simeoli R, Dorlo TPC, Hanff LM, et al. Editorial: therapeutic drug monitoring (TDM): a useful tool for pediatric pharmacology applied to routine clinical practice. Front Pharmacol. 2022;13:931843. doi: 10.3389/fphar.2022.931843
- 26. Cies JJ, Moore WS, Enache A, et al. β-lactam therapeutic drug management in the PICU. Crit Care Med. 2018;46(2):272–279. doi: 10.1097/CCM.00000000002817
- 27. Dhaese S, Van Vooren S, Boelens J, et al. Therapeutic drug monitoring of β -lactam antibiotics in the ICU. Expert Rev Anti Infect Ther. 2020;18(11):1155–1164. doi: 10.1080/14787210.2020.1788387
- General overview of β -lactam TDM.
- Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41 (2):220–233. doi: 10.1002/phar.2505
- 29. Bernhard M, Lichtenstern C, Eckmann C, et al. The early antibiotic therapy in septic patients milestone or sticking point? Crit Care. 2014;18(6):671. doi: 10.1186/s13054-014-0671-1
- 30. Abdulla A, Edwina EE, Flint RB, et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 2021;9:624639. doi: 10.3389/fped.2021.624639
- Tyson RJ, Park CC, Powell JR, et al. Precision dosing priority criteria: drug, disease, and patient population variables. Front Pharmacol. 2020;11:11. doi: 10.3389/fphar.2020.00420
- Tang Girdwood S, Hasson D, Caldwell JT, et al. Relationship between piperacillin concentrations, clinical factors and piperacillin/tazobactam-associated acute kidney injury. J Antimicrob Chemother. 2023;78(2):478–487. doi: 10.1093/jac/dkac416
- One of the few currently available studies providing evidence for the role of β-lactam TDM and MIPD to reduce toxicity and improve clinical outcomes.
- D'Agate S, Musuamba FT, Della Pasqua O. Dose rationale for amoxicillin in neonatal sepsis when referral is not possible. Front Pharmacol. 2020;11:521933. doi: 10.3389/fphar.2020.521933
- Wu YE, Wang YK, Tang BH, et al. Population pharmacokinetics and dosing optimization of amoxicillin in Chinese infants. J Clin Pharmacol. 2021;61(4):538–546. doi: 10.1002/jcph.1752
- 35. Tang BH, Wu YE, Kou C, et al. Population pharmacokinetics and dosing optimization of amoxicillin in neonates and young infants. Antimicrob Agents Chemother. 2019;63(2). doi: 10.1128/AAC. 02336-18
- Bijleveld Y, Mathôt R, van der Lee J, et al. Population pharmacokinetics of amoxicillin in term neonates undergoing moderate hypothermia. Clin Pharmacol Ther. 2018;103(3):458–467. doi: 10. 1002/cpt.748
- 37. Pullen J, Stolk LM, Nieman FH, et al. Population pharmacokinetics and dosing of amoxicillin in (pre)term neonates. Ther Drug Monit. 2006;28(2):226–231. doi: 10.1097/01.ftd.0000198648.39751.11
- Charles BG, Preechagoon Y, Lee TC, et al. Population pharmacokinetics of intravenous amoxicillin in very low birth weight infants. J Pharm Sci. 1997;86(11):1288–1292. doi: 10.1021/js970068l
- De Cock PA, Standing JF, Barker CI, et al. Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother. 2015;59 (11):7027–7035. doi: 10.1128/AAC.01368-15
- Highlights the high risk for subtherapeutic drug exposure in critically ill children when standard doses of β-lactam antibiotics are applied.

- Kado J, Salman S, Hand R, et al. Population pharmacokinetic study of benzathine penicillin G administration in indigenous children and young adults with rheumatic heart disease in the Northern Territory, Australia. J Antimicrob Chemother. 2022;77 (10):2679–2682. doi: 10.1093/jac/dkac231
- Padari H, Metsvaht T, Germovsek E, et al. Pharmacokinetics of penicillin G in preterm and term neonates. Antimicrob Agents Chemother. 2018;62(5):e02238–17. doi: 10.1128/AAC.02238-17
- 42. Bijleveld YA, de Haan TR, van der Lee JH, et al. Evaluation of a system-specific function to describe the pharmacokinetics of Benzylpenicillin in term neonates undergoing moderate hypothermia. Antimicrob Agents Chemother. 2018;62(4):e02311– 17. doi: 10.1128/AAC.02311-17
- Schmitz ML, Rubino CM, Onufrak NJ, et al. Pharmacokinetics and optimal dose selection of Cefazolin for surgical prophylaxis of pediatric patients. J Clin Pharmacol. 2021;61(5):666–676. doi: 10. 1002/jcph.1785
- Salvador E, Oualha M, Bille E, et al. Population pharmacokinetics of cefazolin in critically ill children infected with methicillin-sensitive staphylococcus aureus. Clin Microbiol Infect. 2021;27(3):413–419. doi: 10.1016/j.cmi.2020.04.022
- 45. De Cock PA, Mulla H, Desmet S, et al. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J Antimicrob Chemother. 2017;72(3):791–800. doi: 10.1093/jac/dkw496
- 46. Schmitz ML, Blumer JL, Cetnarowski W, et al. Determination of appropriate weight-based cutoffs for empiric cefazolin dosing using data from a phase 1 pharmacokinetics and safety study of cefazolin administered for surgical prophylaxis in pediatric patients aged 10 to 12 years. Antimicrob Agents Chemother. 2015;59 (7):4173–4180. doi: 10.1128/AAC.00082-15
- 47. De Cock RF, Smits A, Allegaert K, et al. Population pharmacokinetic modelling of total and unbound cefazolin plasma concentrations as a guide for dosing in preterm and term neonates. J Antimicrob Chemother. 2014;69(5):1330–1338. doi: 10.1093/jac/dkt527
- 48. de Cacqueray N, Hirt D, Zheng Y, et al. Cefepime population pharmacokinetics and dosing regimen optimization in critically ill children with different renal function. Clin Microbiol Infect. 2022;28 (10):.e1389.1–.e1389.7. doi: 10.1016/j.cmi.2022.05.007
- 49. Al-Shaer MH, Neely MN, Liu J, et al. Population pharmacokinetics and target attainment of cefepime in critically III patients and guidance for initial dosing. Antimicrob Agents Chemother. 2020;64(9). doi: 10.1128/AAC.00745-20
- Liu J, Neely M, Lipman J, et al. Development of population and bayesian models for applied use in patients receiving cefepime. Clin Pharmacokinet. 2020;59(8):1027–1036. doi: 10.1007/s40262-020-00873-3
- Zhao Y, Yao BF, Kou C, et al. Developmental population pharmacokinetics and dosing optimization of cefepime in neonates and young infants. Front Pharmacol. 2020;11:14. doi: 10.3389/fphar. 2020.00014
- 52. Zuppa AF, Zane NR, Moorthy G, et al. A population pharmacokinetic analysis to study the effect of extracorporeal membrane oxygenation on cefepime disposition in children. Pediatr Crit Care Med. 2019;20(1):62–70. doi: 10.1097/PCC.000000000001786
- 53. Shoji K, Bradley JS, Reed MD, et al. Population pharmacokinetic assessment and pharmacodynamic implications of pediatric cefepime dosing for susceptible-dose-dependent organisms. Antimicrob Agents Chemother. 2016;60(4):2150–2156. doi: 10. 1128/AAC.02592-15
- 54. Lima-Rogel V, Medina-Rojas EL, Del Carmen Milan-Segovia R, et al. Population pharmacokinetics of cefepime in neonates with severe nosocomial infections. J Clin Pharm Ther. 2008;33(3):295–306. doi: 10.1111/j.1365-2710.2008.00913.x
- 55. Capparelli E, Hochwald C, Rasmussen M, et al. Population pharmacokinetics of cefepime in the neonate. Antimicrob Agents Chemother. 2005;49(7):2760–2766. doi: 10.1128/AAC.49.7.2760-2766.2005
- 56. Hartman SJF, Upadhyay PJ, Mathot RAA, et al. Population pharmacokinetics of intravenous cefotaxime indicates that higher doses

are required for critically ill children. J Antimicrob Chemother. 2022;77(6):1725–1732. doi: 10.1093/jac/dkac095

- 57. Maksoud E, Koehl B, Facchin A, et al. Population pharmacokinetics of cefotaxime and dosage recommendations in children with sickle cell disease. Antimicrob Agents Chemother. 2018;62(4):e00637–17. doi: 10.1128/AAC.00637-17
- Beranger A, Oualha M, Urien S, et al. Population pharmacokinetic model to optimize cefotaxime dosing regimen in critically III children. Clin Pharmacokinet. 2018;57(7):867–875. doi: 10.1007/ s40262-017-0602-9
- 59. Leroux S, Roue JM, Gouyon JB, et al. A population and developmental pharmacokinetic analysis to evaluate and optimize Cefotaxime dosing regimen in neonates and young infants. Antimicrob Agents Chemother. 2016;60(11):6626–6634. doi: 10. 1128/AAC.01045-16
- 60. van der Veer MAA, de Haan TR, Franken LGW, et al. Population pharmacokinetics and dosing optimization of ceftazidime in term asphyxiated neonates during controlled therapeutic hypothermia. Antimicrob Agents Chemother. 2023;67(5):e0170722. doi: 10.1128/ aac.01707-22
- 61. Li X, Qi H, Jin F, et al. Population pharmacokinetics-pharmacodynamics of ceftazidime in neonates and young infants: dosing optimization for neonatal sepsis. Eur J Pharm Sci. 2021;163:105868. doi: 10.1016/j.ejps. 2021.105868
- Bui S, Facchin A, Ha P, et al. Population pharmacokinetics of ceftazidime in critically ill children: impact of cystic fibrosis. J Antimicrob Chemother. 2020;75(8):2232–2239. doi: 10.1093/jac/ dkaa170
- 63. Cojutti PG, Maximova N, Schillani G, et al. Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: implications for target attainment for empirical treatment against Pseudomonas aeruginosa. J Antimicrob Chemother. 2019;74(6):1648–1655. doi: 10.1093/jac/dkz065
- 64. Shi Z-R, Chen X-K, Tian L-Y, et al. Population pharmacokinetics and dosing optimization of ceftazidime in infants. Antimicrob Ag Chemother. 2018 Apr;62(4):e02486–17. doi: 10.1128/AAC.02486-17
- Wang H, Li X, Sun S, et al. Population pharmacokinetics and dosing simulations of ceftazidime in Chinese neonates. J Pharm Sci. 2018;107(5):1416–1422. doi: 10.1016/j.xphs.2017.12.018
- 66. Franzese RC, McFadyen L, Watson KJ, et al. Population pharmacokinetic modeling and probability of pharmacodynamic target attainment for ceftazidime-avibactam in pediatric patients aged 3 months and older. Clin Pharmacol Ther. 2022;111(3):635–645. doi: 10.1002/cpt.2460
- Arrieta AC, Ang JY, Zhang Z, et al. Plasma pharmacokinetics of ceftolozane/tazobactam in pediatric patients with cystic fibrosis. Pediatr Pulmonol. 2020;55(8):2025–2032. doi: 10.1002/ppul.24815
- 68. Larson KB, Patel YT, Willavize S, et al. Ceftolozane-tazobactam population pharmacokinetics and dose selection for further clinical evaluation in pediatric patients with complicated urinary tract or complicated intra-abdominal infections. Antimicrob Agents Chemother. 2019;63(6):e02578–18. doi: 10.1128/AAC.02578-18
- 69. Tang Girdwood S, Dong M, Tang P, et al. Population pharmacokinetic modeling of total and free ceftriaxone in critically III children and young adults and monte carlo simulations support twice daily dosing for target attainment. Antimicrob Agents Chemother. 2022;66(1):e0142721. doi: 10.1128/AAC.01427-21
- 70. Hartman SJF, Upadhyay PJ, Hagedoorn NN, et al. Current ceftriaxone dose recommendations are adequate for most critically III children: results of a population pharmacokinetic modeling and simulation study. Clin Pharmacokinet. 2021;60(10):1361–1372. doi: 10.1007/s40262-021-01035-9
- Wang YK, Wu YE, Li X, et al. Optimal dosing of ceftriaxone in infants based on a developmental population pharmacokinetic-pharmacodynamic analysis. Antimicrob Agents Chemother. 2020;64(11):e01412–20. doi: 10. 1128/AAC.01412-20
- 72. Khan MW, Wang YK, Wu YE, et al. Population pharmacokinetics and dose optimization of ceftriaxone for children with community-acquired pneumonia. Eur J Clin Pharmacol. 2020;76 (11):1547–1556. doi: 10.1007/s00228-020-02939-4

- Standing JF, Ongas MO, Ogwang C, et al. Dosing of Ceftriaxone and metronidazole for children with severe acute malnutrition. Clin Pharmacol Ther. 2018;104(6):1165–1174. doi: 10.1002/cpt.1078
- Blumer JL, Reed MD, Kaplan EL, et al. Explaining the poor bacteriologic eradication rate of single-dose ceftriaxone in group a streptococcal tonsillopharyngitis: a reverse engineering solution using pharmacodynamic modeling. Pediatrics. 2005;116 (4):927–932. doi: 10.1542/peds.2004-2294
- 75. Dao K, Fuchs A, Andre P, et al. Dosing strategies of imipenem in neonates based on pharmacometric modelling and simulation. J Antimicrob Chemother. 2022;77(2):457–465. doi: 10.1093/jac/ dkab394
- 76. Dong L, Zhai X-Y, Yang Y-L, et al. Population pharmacokinetics and dosing optimization of imipenem in children with hematological malignancies. Antimicrob Ag Chemother. 2019;63(6). doi: 10.1128/ AAC.00006-19
- 77. Yoshizawa K, Ikawa K, Ikeda K, et al. Population pharmacokinetic-pharmacodynamic target attainment analysis of imipenem plasma and urine data in neonates and children. Pediatr Infect Dis J. 2013;32(11):1208–1216. doi: 10.1097/INF. 0b013e31829b5880
- Zyryanov S, Bondareva I, Butranova O, et al. Population PK/PD modelling of meropenem in preterm newborns based on therapeutic drug monitoring data. Front Pharmacol. 2023;14:1079680. doi: 10.3389/fphar.2023.1079680
- 79. Wu YE, Kou C, Li X, et al. Developmental population pharmacokinetics-pharmacodynamics of Meropenem in Chinese neonates and young infants: dosing recommendations for late-onset sepsis. Children (Basel). 2022;9(12):1998. doi: 10.3390/ children9121998
- Thy M, Urien S, Bouazza N, et al. Meropenem population pharmacokinetics and dosing regimen optimization in critically III children receiving continuous renal replacement therapy. Clin Pharmacokinet. 2022;61(11):1609–1621. doi: 10.1007/s40262-022-01179-2
- Wang Y, Chen W, Huang Y, et al. Optimized dosing regimens of Meropenem in septic children receiving extracorporeal life support. Front Pharmacol. 2021;12:699191. doi: 10.3389/fphar.2021.699191
- Zylbersztajn B, Parker S, Navea D, et al. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front Pharmacol. 2021;12:709332. doi: 10.3389/fphar.2021.709332
- Yonwises W, Wacharachaisurapol N, Anugulruengkitt S, et al. Population pharmacokinetics of meropenem in critically ill infant patients. Int J Infect Dis. 2021;111:58–64. doi: 10.1016/j.ijid.2021.08. 031
- Lima-Rogel V, Olguin-Mexquitic L, Kuhn-Cordova I, et al. Optimizing meropenem therapy for severe nosocomial infections in neonates. J Pharm Sci. 2021;110(10):3520–3526. doi: 10.1016/j. xphs.2021.05.019
- Saito J, Shoji K, Oho Y, et al. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: a case report. J Glob Antimicrob Resist. 2020;22:651–655. doi: 10.1016/j.jgar.2020.04.029
- 86. Wang ZM, Chen XY, Bi J, et al. Reappraisal of the optimal dose of meropenem in critically III infants and children: a developmental pharmacokinetic-pharmacodynamic analysis. Antimicrob Agents Chemother. 2020;64(8):e00760-20. doi: 10.1128/AAC.00760-20
- Rapp M, Urien S, Foissac F, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76(1):61–71. doi: 10.1007/s00228-019-02761-7
- Cies JJ, Moore WS 2nd, Enache A, et al. Population pharmacokinetics and pharmacodynamic target attainment of Meropenem in critically III young children. J Pediatr Pharmacol Ther. 2017;22 (4):276–285. doi: 10.5863/1551-6776-22.4.276
- Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189–195. doi: 10.1093/jac/dkv289

- Padari H, Metsvaht T, Korgvee LT, et al. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2012;56(9):4760–4764. doi: 10.1128/AAC.00655-12
- Smith PB, Cohen-Wolkowiez M, Castro LM, et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844–849. doi: 10.1097/INF.0b013e31822e8b0b
- Ohata Y, Tomita Y, Nakayama M, et al. Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic considerations. Drug Metab Pharmacokinet. 2011;26 (5):523–531. doi: 10.2133/dmpk.DMPK-11-RG-027
- Ikawa K, Morikawa N, Ikeda K, et al. Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J Infect Chemother. 2010;16(2):139–143. doi: 10.1007/ s10156-009-0025-0
- 94. van den Anker JN, Pokorna P, Kinzig-Schippers M, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009;53(9):3871–3879. doi: 10.1128/AAC.00351-09
- Bradley JS, Sauberan JB, Ambrose PG, et al. Meropenem pharmacokinetics, pharmacodynamics, and monte carlo simulation in the neonate. Pediatr Infect Dis J. 2008;27(9):794–799. doi: 10.1097/INF. 0b013e318170f8d2
- Du X, Li C, Kuti JL, et al. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J Clin Pharmacol. 2006;46(1):69–75. doi: 10.1177/0091270005283283
- Parker EM, Hutchison M, Blumer JL. The pharmacokinetics of meropenem in infants and children: a population analysis. J Antimicrob Chemother. 1995;36(Suppl A):63–71. doi: 10.1093/jac/36.suppl_A.63
- Thy M, Urien S, Foissac F, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically III children receiving continuous renal replacement therapy. Antimicrob Agents Chemother. 2022;66(12):e0113522. doi: 10.1128/aac.01135-22
- Butragueno-Laiseca L, Marco-Arino N, Troconiz IF, et al. Population pharmacokinetics of piperacillin in critically ill children including those undergoing continuous kidney replacement therapy. Clin Microbiol Infect. 2022;28(9):.e1287.9–.e1287.15. doi: 10.1016/j.cmi.2022.03.031
- 100. Thibault C, Lavigne J, Litalien C, et al. Population pharmacokinetics and safety of piperacillin-tazobactam extended infusions in infants and children. Antimicrob Agents Chemother. 2019;63(11):e01260– 19. doi: 10.1128/AAC.01260-19
- 101. Thorsted A, Kristoffersson AN, Maarbjerg SF, et al. Population pharmacokinetics of piperacillin in febrile children receiving cancer chemotherapy: the impact of body weight and target on an optimal dosing regimen. J Antimicrob Chemother. 2019;74 (10):2984–2993. doi: 10.1093/jac/dkz270
- 102. Beranger A, Benaboud S, Urien S, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically III children with normal and augmented renal clearance. Clin Pharmacokinet. 2019;58(2):223–233. doi: 10.1007/s40262-018-0682-1
- 103. De Cock P, van Dijkman SC, de Jaeger A, et al. Dose optimization of piperacillin/tazobactam in critically ill children. J Antimicrob Chemother. 2017;72(7):2002–2011. doi: 10.1093/jac/dkx093
- 104. Nichols K, Chung EK, Knoderer CA, et al. Population pharmacokinetics and pharmacodynamics of extended-infusion piperacillin and tazobactam in critically III children. Antimicrob Agents Chemother. 2016;60(1):522–531. doi: 10.1128/AAC.02089-15
- 105. Cies JJ, Shankar V, Schlichting C, et al. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr Infect Dis J. 2014;33(2):168–173. doi: 10.1097/INF.0b013e3182a743c7
- 106. Cies JJ, Jain J, Kuti JL. Population pharmacokinetics of the piperacillin component of piperacillin/tazobactam in pediatric oncology patients with fever and neutropenia. Pediatr Blood Cancer. 2015;62 (3):477–482. doi: 10.1002/pbc.25287
- 107. Li Z, Chen Y, Li Q, et al. Population pharmacokinetics of piperacillin/ tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69(6):1223–1233. doi: 10.1007/s00228-012-1413-4
- 108. Cohen-Wolkowiez M, Benjamin DK Jr., Ross A, et al. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit. 2012;34(3):312–319. doi: 10. 1097/FTD.0b013e3182587665

- 109. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d'Anesthésie et Réanimation—SFAR). Crit Care. 2019;23(1):104. doi: 10. 1186/s13054-019-2378-9
- 110. Saito J, Shoji K, Oho Y, et al. Population pharmacokinetics and pharmacodynamics of meropenem in critically III pediatric patients. Antimicrob Agents Chemother. 2021;65(2). doi: 10.1128/ AAC.01909-20
- 111. van der Veer MAA, de Haan TR, Franken LGW, et al. Population pharmacokinetics and dosing optimization of ceftazidime in term asphyxiated neonates during controlled therapeutic hypothermia. Antimicrob Ag Chemother. 2023 Apr 03;67(5):e01707–22. doi: 10. 1128/aac.01707-22
- 112. Dumangin G, Brenkman M, Pape E, et al. Temocillin dosage adjustment in a preterm infant with severe renal disease: a case report. J Antimicrob Chemother. 2020 Dec 01;75(12):3652–3655. doi: 10. 1093/jac/dkaa356
- 113. Hafeez M, Saleem Z, Bukhari NA, et al. Off-label antibiotic use in a specialized children care hospital in Punjab, Pakistan: findings and implications. J Infect Dev Ctries. 2020;14(5):540–544. doi: 10. 3855/jidc.12058
- 114. Porta A, Esposito S, Menson E, et al. Off-label antibiotic use in children in three European countries. Eur J Clin Pharmacol. 2010;66(9):919–927. doi: 10.1007/s00228-010-0842-1
- 115. EMA. Inventory of paediatric therapeutic needs infectious diseases 2012. [cited 2014 May 8]. Available from: https://www.ema. europa.eu/en/documents/other/inventory-paediatric-therapeuticneeds-infectious-diseases_en.pdf
- 116. Clements MN, Russell N, Bielicki JA, et al. Global antibiotic dosing strategies in hospitalised children: characterising variation and implications for harmonisation of international guidelines. PLoS One. 2021;16(5):e0252223. doi: 10.1371/journal.pone.0252223
- 117. de Jong J, van den Berg PB, Visser ST, et al. Antibiotic usage, dosage and course length in children between 0 and 4 years. Acta Paediatr. 2009;98(7):1142–1148. doi: 10.1111/j.1651-2227.2009.01309.x
- 118. Hsia Y, Lee BR, Versporten A, et al. Use of the WHO access, watch, and reserve classification to define patterns of hospital antibiotic use (AWaRe): an analysis of paediatric survey data from 56 countries. Lancet Glob Health. 2019;7(7):e861–e871. doi: 10.1016/ S2214-109X(19)30071-3
- 119. Gastine S, Hsia Y, Clements M, et al. Variation in target attainment of Beta-Lactam antibiotic dosing between international pediatric formularies. Clin Pharmacol Ther. 2021;109(4):958–970. doi: 10.1002/cpt.2180
- 120. Xu W-X, Qu Q, Teng X-Q, et al. Personalized application of antimicrobial drugs in pediatric patients with augmented renal clearance: a review of literature. Eur J Pediatr. 2024;183(1):51–60. doi: 10.1007/s00431-023-05272-x
- 121. EUCAST: New S, I and R definitions. [cited 2021 Jul 9]. Available from: https://www.eucast.org/newsiandr
- 122. EUCAST: clinical breakpoints and dosing of antibiotics. 2023. [cited 2003 Jan 2]. Available from: https://www.eucast.org/clinical_breakpoints
- 123. Aguilera-Alonso D, Cantón R, Giske CG, et al. Searching high and Low: call for a joint European society for paediatric infectious diseases-European committee on antimicrobial susceptibility testing survey on dosage of antibacterial agents in children-part one. Pediatr Infect Dis J. 2022;41(4):e182–e185. doi: 10.1097/INF. 000000000003457
- 124. Barreto EF, Webb AJ, Pais GM, et al. Setting the beta-lactam therapeutic range for critically III patients: Is there a floor or even a ceiling? Crit Care Explor. 2021;3(6):e0446. doi: 10.1097/CCE. 000000000000446
- Highlights the current uncertainties in β-lactam exposure profiles and dosing strategies linked to efficacy and toxicity in critically ill patients.
- 125. Imani S, Buscher H, Marriott D, et al. Too much of a good thing: a retrospective study of β -lactam concentration-toxicity

relationships. J Antimicrob Chemother. 2017;72(10):2891–2897. doi: 10.1093/jac/dkx209

- 126. Williams PCM, Bradley J, Roilides E, et al. Harmonising regulatory approval for antibiotics in children. Lancet Child Adolesc Health. 2021;5(2):96–98. doi: 10.1016/S2352-4642(20)30365-5
- 127. Zavicefta | European medicines agency. 2020. [cited 2020 Nov 11]. Available from: https://www.ema.europa.eu/en/medicines/human/ EPAR/zavicefta
- 128. Zinforo | European medicines agency. 2019. [cited 2019 Oct 17]. Available from: https://www.ema.europa.eu/en/medicines/human/ EPAR/zinforo
- 129. Zerbaxa | European medicines agency. 2022. [cited 2022 Sep 6]. Available from: https://www.ema.europa.eu/en/medicines/human/ EPAR/zerbaxa
- Vaborem | European Medicines Agency. 2018 [cited 2018 Dec 18]. Available from: https://www.ema.europa.eu/en/medicines/human/ EPAR/vaborem
- European Medicines Agency decision P/0260/2021 of 9 July 2021 on the acceptance of a modification of an agreed paediatric investigation plan for meropenem (trihydrate)/vaborbactam (vaborem), (p. EMEA-001731-PIP01-14-M03.
- 132. Budai KA, Tímár ÁE, Obeidat M, et al. Extended infusion of β-lactams significantly reduces mortality and enhances microbiological eradication in paediatric patients: a systematic review and meta-analysis. eClinicalmedicine. 2023;65:102293. doi: 10.1016/j.eclinm.2023.102293
- Crocoli A, Martucci C, Persano G, et al. Vascular access in pediatric oncology and hematology: state of the art. Children (Basel). 2022;9 (1):70. doi: 10.3390/children9010070
- 134. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10. doi: 10.3904/kjim.2009.24.1.1
- 135. Pai Mangalore R, Ashok A, Lee SJ, et al. Beta-lactam antibiotic therapeutic drug monitoring in critically ill patients: a systematic review and meta-analysis. Clin Infect Dis. 2022;75(10):1848–1860. doi: 10.1093/cid/ciac506
- Summary of the currently available evidence for the clinical benefits of β-lactam TDM.
- 136. Blair M, Cote JM, Cotter A, et al. Nephrotoxicity from vancomycin combined with Piperacillin-Tazobactam: a comprehensive review. Am J Nephrol. 2021;52(2):85–97. doi: 10.1159/000513742
- 137. Huo X, Meng Q, Wang C, et al. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019 Sep;9 (5):986–996. doi: 10.1016/j.apsb.2019.02.005
- 138. Goa KL, Noble S. Panipenem/Betamipron. Drugs. 2003;63(9):913–925; discussion 926. doi: 10.2165/00003495-200363090-00005
- 139. Nishioka H, Cho Y, Irie K, et al. Ceftriaxone-associated encephalopathy in a patient with high levels of ceftriaxone in blood and cerebrospinal fluid. Int J Infect Dis. 2022;116:223–225. doi: 10.1016/ j.ijid.2022.01.023
- 140. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French society of pharmacology and therapeutics (Societe Francaise de Pharmacologie et therapeutique-sfpt) and the French society of anaesthesia and intensive care medicine (Societe Francaise d'Anesthesie et reanimation-sfar). Crit Care. [2019 Mar 29];23(1):104. doi: 10.1186/s13054-019-2378-9
- 141. Abdulla A, van den Broek P, Ewoldt TMJ, et al. Barriers and facilitators in the clinical implementation of beta-lactam therapeutic drug monitoring in critically III patients: a critical review. Ther Drug Monit. 2022;44(1):112–120. doi: 10.1097/FTD.000000000000937
- Complete overview of the challenges to implement β -lactam TDM in routine clinical care in the ICU
- 142. Schouwenburg S, van der Klip RFJ, Smeets TJL, et al. Review of scavenged sampling for sustainable therapeutic drug monitoring: do more with less. Ther Drug Monit. 2022;44(1):215–223. doi: 10. 1097/FTD.000000000000928
- 143. Keizer RJ, Ter Heine R, Frymoyer A, et al. Model-informed precision dosing at the bedside: scientific challenges and opportunities. CPT: Pharmacometrics & Syst Pharmacol. 2018;7(12):785–787. doi: 10. 1002/psp4.12353

- 144. Hughes DM, Goswami S, Keizer RJ, et al. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population. J Antimicrob Chemother. 2020;75 (2):434–437. doi: 10.1093/jac/dkz444
- 145. Maier C, de Wiljes J, Hartung N, et al. A continued learning approach for model-informed precision dosing: updating models in clinical practice. CPT Pharmacometrics Syst Pharmacol. 2022;11 (2):185–198. doi: 10.1002/psp4.12745
- 146. Guo T, van Hest RM, Zwep LB, et al. Optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients. Pharm Res. 2020;37(9):171. doi: 10.1007/ s11095-020-02908-7
- 147. Frymoyer A, Stockmann C, Hersh AL, et al. Individualized empiric vancomycin dosing in neonates using a model-based approach.
 J Pediatric Infect Dis Soc. 2019;8(2):97–104. doi: 10.1093/jpids/ pix109
- 148. Leroux S, Jacqz-Aigrain E, Biran V, et al. Clinical utility and safety of a model-based patient-tailored dose of vancomycin in neonates. Antimicrob Ag Chemother. 2016;60(4):2039–2042. doi: 10.1128/ AAC.02214-15
- 149. Ewoldt TMJ, Abdulla A, Rietdijk WJR, et al. Which patients benefit from model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin at the ICU? Int J Antimicrob Ag. 2023;62 (4):106931. doi: 10.1016/j.ijantimicag.2023.106931
- As the recent DOLPHIN RCT failed to show a clear clinical benefit for β-lactam MIPD in (adult) critically ill patients, this retrospective analysis investigates which patient subgroups would benefit most from such approaches in the future.
- 150. Dewi W, Christie CD, Wardhana A, et al. Pediatric logistic organ dysfunction-2 (pelod-2) score as a model for predicting mortality in pediatric burn injury. Ann Burns Fire Disasters. 2019;32(2):135–142.
- 151. Evans SR, Rubin D, Follmann D, et al. Desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR). Clin Infect Dis. 2015;61(5):800–806. doi: 10.1093/cid/civ495
- 152. Cavaleri M, Manolis E. Hollow fiber system Model for tuberculosis: the European Medicines Agency experience. Clin Infect Dis. 2015;61(suppl_1):S1-S4. doi: 10.1093/cid/civ484
- 153. Srivastava S, Pasipanodya JG, Ramachandran G, et al. A long-term Co-perfused disseminated tuberculosis-3D liver hollow fiber Model for both drug efficacy and hepatotoxicity in babies. EBioMedicine. 2016;6:126–138. doi: 10.1016/j.ebiom.2016.02.040
- 154. Smeets NJL, Bökenkamp A, Grubb A, et al. Cystatin C as a Marker for glomerular filtration rate in critically III neonates and children: validation against iohexol plasma clearance. Kidney Int Rep. 2023;8 (8):1672–1675. doi: 10.1016/j.ekir.2023.05.028
- 155. Pai Mangalore R, Peel TN, Udy AA, et al. The clinical application of beta-lactam antibiotic therapeutic drug monitoring in the critical care setting. J Antimicrob Chemother. 2023;78(10):2395–2405. doi: 10.1093/jac/dkad223
- 156. Uster DW, Stocker SL, Carland JE, et al. A Model Averaging/ Selection approach improves the predictive performance of Model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109(1):175–183. doi: 10.1002/cpt.2065
- 157. Mouton JW, Muller AE, Canton R, et al. Mic-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–568. doi: 10.1093/jac/dkx427
- 158. Seeger J, Guenther S, Schaufler K, et al. Novel Pharmacokinetic/ Pharmacodynamic parameters quantify the exposure–effect relationship of levofloxacin against fluoroquinolone-resistant Escherichia coli. Antibiotics. 2021;10(6):615. doi: 10.3390/antibiotics10060615
- 159. Landersdorfer CB, Nation RL. Limitations of antibiotic MIC-Based PK-PD metrics: looking back to move forward. Front Pharmacol. 2021;12:770518. doi: 10.3389/fphar.2021.770518
- 160. Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–245. doi: 10.1146/annurevpharmtox-033020-113257