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Objectives: The aim of this study was to investigate different hydrophobic gentamicin formulations
[gentamicin-bis(2-ethylhexyl) sulfosuccinate (GEN-AOT), microstructured GEN-AOT (PCA GEN-AOT) and GEN-
AOT-loaded poly(lactide-co-glycolide) acid (PLGA) nanoparticles (NPs)] in view of improving its therapeutic
index against intracellular bacteria. The intracellular accumulation, subcellular distribution and intracellular
activity of GEN-AOT and NPs in different monocytic–macrophagic cell lines were studied.

Methods: Human THP-1 and murine J774 phagocytic cells were incubated with GEN-AOT formulations at relevant
extracellular concentrations [from 1× MIC to 18 mg/L (human Cmax)], and their intracellular accumulation,
subcellular distribution and toxicity were evaluated and compared with those of conventional unmodified genta-
micin. Intracellular activity of the formulations was determined against bacteria showing different subcellular
localizations, namely Staphylococcus aureus (phagolysosomes) and Listeria monocytogenes (cytosol).

Results: GEN-AOT formulations accumulated 2-fold (GEN-AOT) to 8-fold (GEN-AOT NPs) more than gentamicin in
phagocytic cells, with a predominant subcellular localization in the soluble fraction (cytosol) and with no
significant cellular toxicity. NP formulations allowed gentamicin to exert its intracellular activity after shorter
incubation times and/or at lower concentrations. With an extracellular concentration of 10× MIC, a 1 log10

decrease in S. aureus intracellular inoculum was obtained after 12 h instead of 24 h for NPs versus free gentamicin,
and a static effect was observed against L. monocytogenes at 24 h with NPs, while free gentamicin was ineffective.

Conclusions: GEN-AOT formulations yielded a high cellular accumulation, especially in the cytosol, which resulted
in improved efficacy against both intracellular S. aureus and L. monocytogenes.
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Introduction
Despite their highly bactericidal character, aminoglycoside
antibiotics are considered poorly active against intracellular bac-
teria,1,2 which has been attributed to their inappropriate cellular
pharmacokinetic profile. Because of their high hydrophilicity,
aminoglycosides penetrate cells only slowly and, once inside
them, remain confined in the lysosomal compartment, where
their activity is reduced by the acidic pH.3 Considerable efforts
are therefore made to enhance their cellular concentration.

Drug delivery system-based approaches are being explored
in this context.4 Although they have shown very promising

results, their in vivo stability and drug loading efficiency in
the carriers remain important issues. A new approach consists
in the chemical modification of gentamicin with the anionic
surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT)
(GEN-AOT) and its micronization by precipitation using a
compressed fluid-based methodology (precipitation with a
compressed antisolvent, PCA) to obtain a microstructured
GEN-AOT (PCA GEN-AOT), or incorporation in poly(lactide-co-
glycolide) (PLGA) nanoparticles (NPs) with a very high encapsu-
lation efficiency.5

We compared the cellular pharmacokinetics and phar-
macodynamics of these new formulations using bacteria
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thriving in different intracellular locations, namely Staphylococcus
aureus (phagolysosomes) and Listeria monocytogenes (cytoplasm).

Materials and methods

Materials
Gentamicin sulphate and AOT were purchased from Sigma-Aldrich (St
Louis, MO, USA) and PLGA 502H (Resomerw RG 502H, PLGA 50:50,
13.7 kDa) and 752H (Resomerw RG 752H, PLGA 75:25, 17 kDa) were sup-
plied by Boehringer Ingelheim (Ingelheim, Germany). Reagents for cell
culture were from Invitrogen Inc. (Carlsbad, CA, USA) and bacterial
culture medium was from Becton Dickinson (Franklin Lakes, NJ, USA).
Other reagents were obtained from Sigma-Aldrich or Merck (Madrid, Spain).

Preparation of GEN-AOT, PCA GEN-AOT and GEN-AOT NPs
All gentamicin formulations were prepared as previously described. The
ionic complex of gentamicin and the anionic surfactant AOT was
obtained by the hydrophobic ion pairing (‘HIP’) method6 and was either
micronized by PCA technology5 or encapsulated into PLGA 502H or
752H NPs by the oil-in-water emulsion solvent evaporation method5

(nominal drug loading of 20 mg per 200 mg of polymer).

Cell culture conditions and viability assessment
The J774 macrophage cell line (ATCC TIB-67) and human THP-1 mono-
cytes (ATCC TIB-202) were maintained in RPMI 1640 medium supplemen-
ted with 10% fetal calf serum at 378C in a humidified 5% CO2

atmosphere. Differentiation of the THP-1 cells into adherent macrophages
(A-THP-1) was obtained by incubation of the cells with 75 ng/mL phorbol
12-myristate 13-acetate (‘PMA’) in complete RPMI medium for 48 h. Cell
viability was checked in cells exposed for 24 h to 18 mg/L gentamicin for-
mulations [see Figure S1, available as Supplementary data at JAC Online;
assays used were release of the cytoplasmic enzyme lactate dehydrogen-
ase (LDH) in the culture medium (LDH assay)7 and formation of blue forma-
zan crystals by mitochondrial dehydrogenases in metabolically active cells
(MTT assay)8].

Cellular accumulation and fractionation studies
The cellular accumulation of the antibiotic formulations was studied
in THP-1 cells, A-THP-1 cells and J774 cells as previously reported.9,10

Their subcellular distribution was studied in J774 cells after 24 h of incuba-
tion using the cell fractionation procedure described previously.11 Gentami-
cin content was quantified by microbiological assay using antibiotic
medium 11 and Bacillus subtilis ATCC 6633 as test organism (limit of
detection 0.125 mg/L, linear response between 0.125 and 64 mg/L;
r2¼0.989)7 and expressed by reference to the total cell protein content
(determined by the Lowry method). Cellular accumulation was estimated
using a conversion factor of 5 mL cell volume/mg of cell protein.12,13

Bacterial strains, susceptibility testing and cell infection
studies
MICs and MBCs were determined in Mueller–Hinton broth (for methicillin-
susceptible S. aureus strain ATCC 25923, methicillin-resistant S. aureus
strain ATCC 33591 and Pseudomonas aeruginosa strain PAO1) or trypticase
soy broth (for L. monocytogenes serotype 1/2a strains EGD and 5614) by
broth microdilution, according to the CLSI15 recommendations. MICs for
S. aureus ATCC 25923 were also determined with Mueller–Hinton broth
adjusted to different pHs.

Antibiotic intracellular activity was evaluated in J774 cells infected
with S. aureus ATCC 25923 (bacteria/cell ratio of 4) or L. monocytogenes

strain 56 (bacteria/cell ratio 5) using fully validated procedures (described
in detail in Carryn et al.1 and Seral et al.2). Intracellular growth of the
bacteria was evaluated after 12 or 24 h of incubation in control condi-
tions (gentamicin at 0.5× MIC to prevent extracellular bacterial growth)
or in the presence of antibiotic formulations.

Statistical analysis
Data analysis and graphical presentation were performed using
GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA, USA).
Statistical comparison between different groups was performed using
the Mann–Whitney U-test.

Results and discussion

Micronized GEN-AOT and GEN-AOT polymeric NPs

Micronization of GEN-AOT (PCA GEN-AOT) resulted in a powdered
solid with a mean particle diameter of 1 mm and a zeta poten-
tial of around 21 mV. GEN-AOT-loaded PLGA 502H and
PLGA 752H NPs presented mean diameters of 263+10 nm
and 269+24 nm and a zeta potential of 23.3+0.5 mV and
23.5+0.9 mV, respectively. Encapsulation efficiencies of 100%
were achieved for both NP formulations with drug loadings of
21.9+0.5 and 22.7+0.7 mg of gentamicin/mg of NPs for PLGA
502H and PLGA 752H NPs, respectively.

Kinetics of cellular accumulation

The cellular uptake of gentamicin has been extensively studied in
different cell lines and conditions,3 and was found to be low in
phagocytic cells.16 We therefore firstly exposed cells for 24 h to
an extracellular concentration of each formulation corresponding
to 18 mg/L gentamicin (human Cmax after a conventional
dose).17 Macrophages accumulated more antibiotic than mono-
cytes (see Figure S2, available as Supplementary data at JAC
Online) and were therefore used for kinetic experiments
(Figure 1). Gentamicin accumulation proceeded in a slow and
linear fashion (r2¼0.988) (Figure 1c) to reach an apparent cellu-
lar to extracellular concentration ratio of 1.5 at 24 h with no ap-
pearance of a plateau (Figure 1a and b). This compares very well
with the rate of uptake of horseradish peroxidase, a fluid-phase
endocytosis tracer, in J774 macrophages10 and is consistent with
the mechanism of pinocytosis proposed to explain the slow
accumulation of gentamicin.13,18 Non-encapsulated GEN-AOT
also followed linear kinetics of accumulation. Yet its rate of
uptake was 1.5 to 2-fold higher (Figure 1c). This could be attrib-
uted to the lower charge of the ion pair, which would increase
the partition coefficient of gentamicin, as reported for cisplatin19

and for antibiotics such as ampicillin and erythromycin.20 – 22 The
grossly linear kinetics of uptake of GEN-AOT could fit with this
model, but could also result from a slow endocytic process for
which the plateau of accumulation has not yet been reached,
as is the case for gentamicin. Incorporation of GEN-AOT into
polymeric NPs further increased both antibiotic uptake rate and
efficiency, especially for NPs formulated with 752H, the more
hydrophobic PLGA copolymer. It is known that uptake of particles
by phagocytic cells is critically dependent on their physico-
chemical properties.23 For PLGA particles, it is inversely related
to polymer hydrophilicity.24,25 GEN-AOT 752H NPs allowed genta-
micin to accumulate .10-fold in both macrophage cell lines (see
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Figure S2 for accumulation factors of the different formulations
at 24 h). This rate of uptake remains �10-fold lower than that
of the lipoglycopeptide antibiotic oritavancin, which is thought
to enter cells by adsorptive endocytosis,10 suggesting that
binding at the cell surface probably differs.

Subcellular distribution of gentamicin and GEN-AOT
formulations

Cellular accumulation per se is not always predictive of antibiotic
intracellular efficacy, notably because a sufficient amount of the
drug also needs to reach the infected compartment.26,27 Figure 2
shows the subcellular distribution of the formulations together
with those of the marker enzymes cytochrome c oxidase (for
mitochondria), N-acetyl-b-glucosaminidase (for lysosomes) and
LDH (for soluble proteins) in the control cells. No differences
were found in the subcellular distribution profile of the markers
between non-treated and treated J774 cells, indicating that
the treatments did not affect the biophysical properties and
integrity of the studied organelles or the distribution of the
soluble proteins (data not shown). As expected from its lysoso-
motropic nature, gentamicin showed a subcellular distribution

that was very close to that of N-acetyl-b-glucosaminidase,
predominantly localized in the granular fraction (77% of
cell-associated drug). This intracellular disposition is not specific
to macrophages as it is also reported in other non-phagocytic
cell lines,28 – 31 and is thought to be, together with the decreased
activity of gentamicin at acidic pH, the reason for its low efficacy
against a number of intracellular bacteria.1,32,33 Interestingly, ion
pairing and encapsulation processes altered the distribution
profile of gentamicin inside the cells and allowed higher accumu-
lation in their soluble fraction (containing the cytosol and the
soluble proteins). Thus, in cells incubated with GEN-AOT, 45%
of cell-associated drug was recovered in the soluble fraction,
leading to a 25-fold increase in gentamicin accumulation in
this fraction. Again, this could be explained by the non-ionized
character of GEN-AOT, which could facilitate the translocation
of the drug from the lysosomes to the cytoplasm or its diffusion
through the pericellular membrane. In cells incubated with PLGA
502H and 752H NPs, the accumulation of gentamicin was 2- to
3-fold higher in the organelles and 74- to 124-fold higher in the
soluble fraction than in cells exposed to free gentamicin. It has
been proposed that the acidic pH of lysosomes may cause an
inversion of NP surface charge, which may favour the interaction
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Figure 1. Accumulation kinetics of 18 mg/L gentamicin (GEN), GEN-AOT and its microstructured (PCA GEN-AOT) and encapsulated (GEN-AOT 502H NPs
and GEN-AOT 752H NPs) forms in A-THP-1 cells (a) and J774 cells (b) over 24 h. Data are expressed as mg of internalized drug/mg of cell protein.
(c) Rates of uptake of gentamicin and its formulations in A-THP-1 and J774 cells. Calculations were made based on mathematical regressions of
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of NPs with the lysosomal membrane and facilitate their escape
into the cytosol.34,35

Antibiotic susceptibility studies and effect of acidic pH

MIC and MBC values of gentamicin and its formulations are
shown in Table S1 (available as Supplementary data at JAC
Online). No marked differences (one dilution above or below)
were found between values measured for gentamicin and the
different formulations, confirming that AOT coupling and encap-
sulation into polymeric NPs did not affect antibiotic potency
or bactericidal character. It is noteworthy that the intrinsic
activity of all GEN-AOT formulations against S. aureus was less
affected by acidic pH than that of gentamicin itself (2–3 log2

dilutions increase between pH 7.4 and 5.0 instead of 5 dilutions;
see Figure S3, available as Supplementary data at JAC Online).
The masking of the cationic amino groups of gentamicin after
ion pairing could prevent, at least partially, the protonation of
the antibiotic at low pH, and therefore result in a smaller loss
of antibacterial activity.

Intracellular activity of the antibiotic against
S. aureus and L. monocytogenes

Because aminoglycosides are concentration-dependent antibio-
tics, the dramatic increase in cellular concentration may contrib-
ute to improvement of their intracellular activity, especially
against cytosolic bacteria. We therefore examined the activity
of gentamicin and its formulations using for comparison
S. aureus (phagolysosomal) and L. monocytogenes (cytosolic).
In a first experiment, intracellular activity was evaluated at a
fixed extracellular concentration (18 mg/L) and incubation time

(12 h for L. monocytogenes and 24 h for S. aureus). These condi-
tions made it possible to achieve a similar intracellular prolifer-
ation rate in both cases (�1.5 log10 unit increase in cfu/mg
of protein) and, therefore, to compare activity against similar
inocula (Figure 3, left-hand panels). In these conditions, all for-
mulations yielded similar intracellular reductions of S. aureus
infection (1.1–1.45 log10 unit reduction). This corresponds to
the maximal effect that can be achieved in cells exposed to gen-
tamicin extracellular concentrations .10 mg/L (50× MIC),36 so
that a further increase in its intracellular concentration does
not add much to the intracellular effect. In contrast, GEN-AOT
treatments improved gentamicin intracellular activity against
L. monocytogenes. GEN-AOT and PCA GEN-AOT significantly
decreased intracellular bacterial growth compared with control
cells and cells incubated with gentamicin alone. GEN-AOT 502H
NPs allowed a static effect to be reached, and GEN-AOT 752H
NPs caused a slight decrease in intracellular inoculum. These
data nicely correlate with the commensurate increase in
gentamicin concentration observed in the soluble fraction of
cells incubated with these formulations.

In the next experiment, we followed activity over time
and upon incubation with increasing concentrations of either
free gentamicin or GEN-AOT 752H NPs. Against intracellular
S. aureus, gentamicin was bacteriostatic at 2× MIC and reached
its maximal effect at 24 h at 10× MIC. In contrast, a significant
decrease in intracellular inoculum was observed when cells
were incubated for 12 h with NPs. Against L. monocytogenes,
gentamicin was inactive whatever the time of incubation or
the concentration used. In contrast, NPs markedly reduced intra-
cellular growth at an extracellular concentration of 10× MIC.
These data confirm the time- and concentration-dependent
character of gentamicin activity.2,36,37 They also suggest that
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NPs can improve the activity of gentamicin not only against
L. monocytogenes, but also against S. aureus, allowing it to
control intracellular growth at lower concentrations and for
shorter incubation times.

The right-hand panels of Figure 3 illustrate the correlation
between the intracellular activity and the relative concentration
of gentamicin in the infected subcellular fraction after 24 h of incu-
bation with the different formulations. To better evidence the
capacity of formulations to increase antibiotic concentration

and activity, subcellular concentrations were expressed as the
ratio to the value measured in cells incubated with 18 mg/L free
gentamicin. Against both bacteria, the data fitted a sigmoidal
regression, allowing us to calculate the intracellular static concen-
tration, i.e. the gentamicin concentration in the infected fraction
needed to prevent bacterial growth. Against S. aureus, the figure
shows that most of the concentration effect takes place for lyso-
somal gentamicin concentrations that are 100- to 10-fold lower
than are obtained in cells incubated with 18 mg/L free gentamicin,
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with the static effect obtained for cells incubated with 1 mg/L. If it
is considered that lysosomes may represent �2% of cell volume,
and using accumulation data from Figure 2, this would correspond
to a drug concentration in these organelles of �50 mg/L (12×MIC
at pH 5.4) [calculated as gentamicin concentration in the consid-
ered fraction (in mg/mg of protein)×cell volume (in mL/mg of
protein)21×percentage of cell volume represented by the consid-
ered fraction×Cs (as a ratio to the concentration of gentamicin in
the considered fraction for cells incubated with 18 mg/L), with
cell volume estimated to be 0.005 mL/mg of protein, the gentami-
cin concentration in the considered fraction obtained from data in
Figure 2, the percentage of cell volume estimated to be 2% for
lysosomes and 70% for cytosol, and Cs interpolated from the
sigmoidal regression presented in the right-hand panels of
Figure 3 (highlighted by the vertical broken lines)]. Against L. mono-
cytogenes, the effect of concentration is manifest in the range of
cytosolic concentrations obtained upon incubation with NPs at
increasing concentrations, while free gentamicin is clearly subopti-
mal in the range of concentrations tested. Accordingly, a static
effect is observed for a cytosolic concentration that is 6-fold
higher than that which can be obtained upon incubation with gen-
tamicin at its Cmax. If it is considered that the cytosol represents
�70% of the cell volume, this means that a concentration of
18 mg/L (18× MIC at pH 7.4) is needed to prevent Listeria
growth. These data therefore suggest that the intracellular
medium defeats the activity of gentamicin and/or that bacterial
responsiveness is reduced in the intracellular environment,
making gentamicin 10-fold less potent than it is extracellularly.
By increasing the gentamicin concentration, NPs compensate for
this loss of potency.

Conclusions

Although this study was not designed to evaluate the therapeut-
ic potential of new formulations of gentamicin, the results
presented here indicate that GEN-AOT and its polymeric nanocar-
riers, especially GEN-AOT 752H NPs, allow gentamicin to accu-
mulate to higher levels inside the cells and to distribute in both
lysosomal and cytosolic compartments, which results in an
improved intracellular activity against intracellular bacteria
thriving in the cytosol, such as L. monocytogenes, and those
thriving in the lysosomes, such as S. aureus. These NPs may
therefore make it possible to reduce both the required dose
and the administration frequency of gentamicin, with potential
subsequent reduction of its toxicity.
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Supplementary data 

 

Figure S1. Effect of 18 mg/L gentamicin (GEN) and the different GEN-AOT 

formulations on the viability of human THP-1 monocytes, A-THP-1 cells and murine 

J774 macrophages as determined by the LDH release assay (top) and MTT cytotoxicity 

assay (bottom) after 24 h of incubation. Data are expressed as the means and standard 

deviations of three independent determinations. MeOH, methanol. 
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Figure S2. Cellular accumulation of gentamicin in THP-1, A-THP-1 or J774 cells 

incubated for 24 h with 18 mg/L gentamicin or the formulations containing the same 

antibiotic concentration. Data are expressed as the means and standard deviations of 

three independent determinations. Statistical analysis: *P<0.05 or **P<0.01 when 

compared with gentamicin (GEN); a=P<0.05 when compared with GEN-AOT; 

b=P<0.05 when compared with GEN-AOT-loaded PLGA 502H nanoparticles (GEN-

AOT 502H NP).  
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Figure S3. Effect of pH on the MICs of gentamicin (GEN) and GEN-AOT treatments 

against S. aureus strain ATCC 25923. Results are expressed as the MIC in mg/L of 

antibiotic. 
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Table S1. MICs and MBCs (mg/L) of gentamicin (GEN) and different GEN-AOT 

formulations for various bacterial isolates 

aMSSA, methicillin-susceptible S. aureus obtained from ATCC (Manassas, VA, USA). 

S. aureus ATCC 
25923 (MSSA)a 

S. aureus 
ATCC 33591 

(MRSA)b 
P. aeruginosa 

PAO1c 

L. 
monocytogenes 

EGDd 

L. 
monocytogenes 

56e 

Antimicrobial MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 
GEN 0.25 1 2 4-8 0.5 2 0.5 1 1-2 4 

GEN-AOT 0.125 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

PCA GEN-AOT 0.125-0.25 0.5 1-2 2-4 0.25-0.5 1-2 0.25-0.5 0.5 1 2-4 

GEN-AOT 502H NPs 0.25 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

GEN-AOT 752H NPs 0.25 0.5 1 2 0.25-0.5 1 0.25-0.5 0.5 1 2-4 

502H NPs >32 >32 >32 >32 >32 >32 >32 >32 >32 >32 

752H NPs >32 >32 >32 >32 >32 >32 >32 >32 >32 >32 

AOT 32 >32 >32 >32 32 >32 32 >32 >32 >32 

bMRSA, methicillin-resistant S. aureus obtained from ATCC (Manassas, VA, USA). 
cObtained from ATCC (Manassas, VA, USA). 
dProvided by P. Berche (Hôpital Necker, Paris, France). 
eProvided by Dr I. García-Jalón (Department of. Microbiology, University of Navarra, 
Pamplona, Spain). 
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