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The pathogen Staphylococcus aureus uses various strategies for persisting in the host, among which switching
to a small-colony variant (SCV) phenotype is of particular biological and therapeutic significance. Phenotypic-
ally, SCVs are characterized by a slow growth rate, atypical colony morphology and unusual biochemical fea-
tures, constituting a real challenge for identification by the clinical microbiology laboratory. Their metabolic
defects also alter their susceptibility to antibiotics, which, combined with the ability to survive intracellularly
and, for some strains, to form biofilms, largely contributes to therapeutic failures. This paper reviews the avail-
able literature on antibiotic activity against SCVs of S. aureus in vitro, in animal models and in clinics. In vitro,
aminoglycosides and antifolate agents show high MICs for electron-transport-defective and thymidine-
dependent SCVs, respectively. The other antibiotic classes usually show MICs comparable to those measured
for the parental strains, but they are less bactericidal. Intracellularly, auxotrophs for thymidine, haemin or
menadione show contrasting behaviours with respect to their response to antibiotics, resulting from differences
in their intracellular fate. In animal models, SCVs often persist in various locations, including metastatic ones,
in spite of the administration of active antibiotics. In healthcare, several case reports mention the selection of
SCVs after prolonged administration of not only aminoglycosides and antifolate agents, but also several other
antibiotic classes. Apparent eradication requires several weeks or even months of aggressive polytherapy com-
bined, whenever possible, with surgical intervention. Further research is thus warranted for optimizing the treat-
ment of infections caused by SCVs.
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Introduction
Small-colony variants (SCVs) of Staphylococcus aureus are
found in antibiotic-refractory infections such as osteomyelitis,
chronic airway infections in patients with cystic fibrosis and
device-related infections (see Proctor et al.1 for a review).
These naturally occurring variants gain a survival advantage by
their ability to persist within eukaryotic cells, which protects
them from host defences and antibiotics.2 – 4 SCVs are character-
ized by non-pigmented, non-haemolytic colonies �10 times
smaller than those of the normal phenotype. This tiny size is
often due to auxotrophy for distinct growth factors such as
menadione, haemin and/or thymidine.1 – 4 Worryingly, SCVs
often escape detection in routine laboratory investigations
because these uncommon morphological and physiological fea-
tures make their recovery and identification often difficult. As
specific nutritional supplementation and prolonged culture are

required for their isolation,1,5 their prevalence may be largely
underestimated in clinical specimens.

Two major types of SCV are found in clinical isolates, namely
electron-transport-defective strains that are auxotrophs for
menadione or haemin, and thymidine auxotrophs (Figure 1 illus-
trates how these auxotrophisms may affect susceptibility to anti-
biotics). Auxotrophism for menadione or haemin makes the
bacteria unable to synthesize menaquinone and cytochromes,
respectively.6,7 This most probably results from mutations in
genes coding for enzymes involved in the biosynthesis of these
two molecules.5,8 Thiamine auxotrophs can be considered as a
subtype of menadione-dependent strains because thiamine-
pyrophosphate is a cofactor in menadione synthesis. Yet these
strains have rarely been identified in human infections,9 and
will therefore not be considered as such in this review.

The decrease in transmembrane potential observed in
electron-transport-defective mutants impairs the penetration

# The Author 2013. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com

J Antimicrob Chemother 2013; 68: 1455–1464
doi:10.1093/jac/dkt072 Advance Access publication 13 March 2013

1455

 by Paul T
ulkens on June 21, 2013

http://jac.oxfordjournals.org/
D

ow
nloaded from

 

http://jac.oxfordjournals.org/


of cationic antimicrobial compounds,6,10 – 12 as well as the activ-
ity of aminoglycosides and antifolate antibiotics.2,13 Gentamicin
treatment can select for these SCVs,13 which can show asso-
ciated resistance to fusidic acid due to combined mutations in
the rplF gene encoding the ribosomal protein L6 and in genes
required for haemin or menadione biosynthesis.14

Thymidine dependence relies on mutations in thymidylate
synthase (thyA), the enzyme responsible for the conversion of

dUMP to dTMP.15 As sulphonamides and diaminopyridines act
upon the biosynthetic pathway of tetrahydrofolic acid, a by-
product of the reaction, thymidine-dependent SCVs often
emerge after long-term treatment with trimethoprim/sulfa-
methoxazole in cystic fibrosis or other patients, and are resistant
to these agents.2

Worryingly also, exposure to antiseptic agents used in health-
care such as the biguanide triclosan can select for an SCV
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Figure 1. Illustration of the mechanisms leading to the SCV phenotype in Staphylococcus aureus and of their link to reduction in susceptibility to
specific antibiotic classes (adapted from Proctor et al.1 and McNamara and Proctor6). Double arrows refer to metabolites whose concentrations
are reduced in the corresponding SCVs. Electron-transport-deficient SCVs show alterations in the pathways leading to the synthesis of menadione
or haemin (subsequent to mutations in biosynthetic enzymes), which causes a reduction in the amount of ATP produced. This leads to a reduced
growth rate, which may affect the efficacy of antibiotics active against dividing bacteria, such as cell-wall-active agents, and to a reduction in
transmembrane potential, which impairs aminoglycoside uptake. Menadione-dependent SCVs are hypersusceptible to oxidant species, possibly
because of reduced electron transport and alteration of the induction of antioxidant pathways (shown to be regulated by menaquinone in
Gram-negative bacteria54). Thymidine-dependent SCVs are unable to convert dUMP into dTMP [using dihydrofolate (DHF) as a cofactor] due to
mutations in thymidylate synthase (TS), leading to dTMP depletion. These strains are non-susceptible to antifolate agents that act on successive
steps in this pathway, namely to sulphonamides such as sulfamethoxazole (SMX) [inhibitors of dihydropteroate synthase (DHPS) producing
dihydropteroate (DHP) from dihydropteridine pyrophosphate (DHPP) and para-aminobenzoic acid (PABA)], and to diaminopyridines such as
trimethoprim (TMP) [inhibitors of dihydrofolate reductase (DHFR), which catalyses the reduction of DHF to tetrahydrofolate (THF)]. They also show
a reduced growth rate. Globally, antibiotics may also be less bactericidal towards electron-transport-deficient SCVs due to a reduced production of
reactive oxygen species (ROS).55 Haemin-dep, haemin dependent; Men-dep, menadione dependent; Thy-dep, thymidine dependent.
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phenotype that does not show any particular auxotrophism, but
is resistant to this biocide.16

Finally, SCVs may appear in the absence of any selective pres-
sure through a constitutive process depending on bacterial repli-
cation.17 Conversely, they can spontaneously revert to a normal
phenotype, depending on the basal mutation rate of the strain
and/or of the type of mutation conferring the SCV phenotype,
with point mutations being presumably more easily reversible
than base deletions.17

Like normal phenotypes, SCVs can also acquire and express all
classical mechanisms of resistance to antimicrobial agents. Poor
intrinsic susceptibility to specific antibiotics combined with such
acquired resistance creates a real challenge for effective treat-
ment. This paper reviews the current literature describing anti-
biotic activity against S. aureus SCVs, from in vitro and animal
models to clinical data.

In vitro studies

Susceptibility to antibiotics

Routine in vitro susceptibility methods have been developed and
approved for testing rapidly growing bacteria. Because SCVs fail
to meet this first key property, MIC data need to be interpreted
with caution.18 No large epidemiological survey is as yet avail-
able. Anecdotal reports for specific strains suggest, however,
that MICs are globally similar for SCVs and their normal pheno-
type counterparts for most antibiotics (see Table S1, available
as Supplementary data at JAC Online). Because of the mechan-
ism leading to auxotrophism, however, aminoglycosides and
antifolate agents show an almost systematic loss of activity in
menadione- or haemin-dependent-, and in thymidine-dependent,
SCVs, respectively (Table 1). One clinical isolate with an SCV
phenotype was described with high-level resistance to rifampicin,
but this was due to a mutation in rpoB and was therefore unre-
lated to its SCV character.19 Another study also reported
increased MICs of tigecycline for a collection of 48 SCVs isolated
from patients with cystic fibrosis (Table S1).20 Although MICs may
not be affected, pharmacodynamic studies suggest that the bac-
tericidal activity of several antibiotics against SCVs may be mark-
edly reduced. This has been shown for daptomycin (for which a
bactericidal effect was only obtained after prolonged exposure at
high concentrations)21 and for vancomycin and b-lactams
(decreased efficacy against menadione- or haemin-dependent
SCVs).18,22 For cell-wall-active agents, this may result from the
slow multiplication rate of SCVs.

In comparative studies examining several antibiotics against
SCVs with different auxotrophisms, fluoroquinolones (e.g.
moxifloxacin) appeared consistently highly effective against
thymidine-, menadione- or haemin-dependent SCVs. Gentamicin
was very active against the thymidine-dependent strain only,
and rifampicin and daptomycin against the menadione- and
haemin-dependent ones.22,23 Another study showed that cipro-
floxacin MICs were higher for SCVs than for isolates with
normal phenotype, while no marked difference was observed
for other fluoroquinolones (moxifloxacin, levofloxacin and fina-
floxacin).24 Of particular interest, the enhanced activity of fina-
floxacin at low pH might facilitate SCV eradication in acidic
environments such as in foci of osteomyelitis, skin infections,
abscesses, and lung infections in patients with cystic fibrosis.24

Among other investigational agents, two membrane-active
drugs, the lipoglycopeptide oritavancin22,23 and the dicationic
porphyrin XF-70,25 have proved as bactericidal against SCVs as
against their parental normal phenotype strain. At a still earlier
stage in discovery, tomatidine, the aglycon form of the tomato
secondary metabolite tomatine described as an antimicrobial
saponin, shows lower MICs for menadione- and haemin-
dependent SCVs than for normal-phenotype strains (Table 1).
While tomatidine is only bacteriostatic, its activity seems to be
linked to the dysfunction of the electron transport system in
SCVs.26 Tomatidine has therefore been reported as synergistic
with aminoglycosides against electron-defective SCVs.27

Antimicrobial peptides are an integral part of the host defence
against invading microorganisms. Unfortunately, haemin- and
menadione-dependent SCVs can emerge upon exposure to
sub-MIC concentrations of protamine,10 and both types of SCV
are resistant to lactoferrin B.28 In addition, higher MICs of host
cationic peptides such as thrombin-induced platelet microbicidal
protein (tPMP) were observed.12,29

Based on these in vitro studies, it remains difficult to define
optimal therapy for infections due to S. aureus SCVs. Reversion
to the normal phenotype has been observed in several in vivo
and in vitro models of persistent infection.30 Revertants might
also occur upon in vitro testing, making the organisms apparent-
ly susceptible to antibiotics and thereby misrepresenting the
actual values. In the case of menadione auxotrophs, this reversal
can also be obtained in vivo by administering vitamin K to
patients.31

Activity against intracellular bacteria

SCVs easily persist intracellularly3,4 and can even be selected in
the intracellular milieu.32 Studying antibiotic activity against
intracellular SCVs is therefore particularly relevant. Several in
vitro models using human or animal cells have been developed
to test intracellular activity.

In models using human monocytes, a haemin-dependent
SCV showed an intracellular growth similar to that of a normal
phenotype strain, suggesting that it finds inside cells the haem-
like compounds required for growth. Conversely, a thymidine-
dependent SCV was reported to grow more slowly, and a
menadione-dependent strain not to grow over a 24 h incubation
time,22,23 which is supposed to decrease their response to
antibiotics.

Systematic comparisons of anti-staphylococcal agents have
therefore been performed in this model using a pharmacody-
namic approach allowing characterizing antibiotic potency and
efficacy. The three types of SCV displayed contrasting behaviours,
which rely, at least in part, on their respective capacity to grow
inside the cells. Against the stable thymidine-dependent SCV iso-
lated from a patient with cystic fibrosis, vancomycin, oxacillin,
fusidic acid, clindamycin, linezolid and daptomycin were much
less active than quinupristin/dalfopristin, moxifloxacin, rifampi-
cin, and oritavancin. Yet, for all drugs, the maximal efficacy
was markedly reduced against the thymidine-dependent SCV
when compared with the normal-phenotype and revertant iso-
genic strains, probably due to its slower growth.23 Against the
haemin-dependent SCV derived from the COL methicillin-
resistant S. aureus (MRSA) strain, oritavancin and moxifloxacin
were also much more effective than vancomycin, gentamicin,
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Table 1. MICs of antibiotics for Staphylococcus aureus with a normal or SCV phenotypea

Class Antibiotic

MICs (mg/L) of antibiotics according to phenotypeb

Reference(s)

strains

wild-type

SCV and auxotrophismc

not specified MSSA MRSA

not

specified MSSA MRSA not specified men

not

specified men haem thy

not

specified men haem

Aminoglycosides amikacin 2 ,0.031–2 1 64 64 0.5–2 39,44

gentamicin ,0.125–4 ,0.031–8 0.25–1 <0.125 to >128 16 8 to >8 8; 12 0.5–16 0.125; 4 0.3 0.5; 32 1; 32 2,4,8,18 – 20,22,

23,26,34,39,44,

45,56,57

kanamycin 0.25 2–4 2 64–128 64–128 4,56

tobramycin 0.5–1 32 32 56

Antifolates trimethoprim 2 1–8 8 57

trimethoprim/

sulfamethoxazole

0.004–32 0.06; 0.064 0.023 to >32 0.06–0.5 0.5 >32 2,20,57,58

Other agents tomatidine .16 0.12 0.12 26

lactoferrin B 16–64 256 >256 >256 >256 >256 >256 28

aOnly studies comparing normal phenotype and SCV strains have been included in this table.
bThe table only shows antimicrobial agents for which MICs are systematically different between the normal phenotype and SCVs (values in bold correspond to MICs that are at least
two dilutions higher than those for the corresponding parental strain with a normal phenotype, and values in italics correspond to MICs that are at least two dilutions lower than those
for the corresponding parental strain with a normal phenotype). See Table S1, available as Supplementary data at JAC Online for a comprehensive table showing MIC data for all
antimicrobial agents investigated so far.
cmen, menadione dependent; haem, haemin dependent; thy, thymidine dependent.
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daptomycin or rifampicin, and their activity was indistinguishable
from that observed against the parental strain, in line with the
restored intracellular growth of this SCV.22 Against the
menadione-dependent SCV also derived from the COL MRSA
strain, the maximal efficacy of antibiotics remained unaffected,
which is surprising in view of its slow intracellular growth. Yet
the affected pharmacodynamic parameters were rather the
amplitude of the dose–response curve (which was reduced)
and the potency of antibiotics (which was increased).

Among other agents that are highly active extracellularly,
XF-70 showed a rapid bactericidal effect at low concentrations
against a methicillin-susceptible S. aureus (MSSA) and its
haemin-dependent SCV phagocytized by human polymorpho-
nuclear neutrophils.25 Conversely, the bacteriostatic tomatidine
only inhibited the intracellular replication of SCVs within polarized
cystic fibrosis-like epithelial cells, but did not decrease their
number.26

Because of the difficulty of eradicating intracellular SCVs, two
strategies have been evaluated to improve antibiotic activity. The
first consists of combining antibiotics with different modes of
action. Several studies indeed suggest that combinations allow
for an improved intracellular killing of SCVs, especially when
they include rifampicin or a highly bactericidal agent such as ori-
tavancin.33,34 The second strategy aims to reinforce the cell
defence mechanisms. Thus, when human monocytes were acti-
vated into macrophages by phorbol 12-myristate 13-acetate, the
intracellular growth of menadione- or haemin-dependent SCVs
and of their normal parental strains was reduced. This did not
affect the maximal efficacy of the antibiotics, but rather
increased their potency (a lower concentration being needed to
reach a static effect intracellularly).

Interestingly, this effect was not, however, systematic. First,
an increase in potency was observed only for certain antibiotics
such as gentamicin or moxifloxacin, the MICs of which were
reduced in the presence of H2O2, but not for oritavancin or
vancomycin, the MICs of which were not affected by H2O2. This
suggests that a synergy between reactive oxygen species and
certain antibiotics may actually require functional oxidative
host defences for optimal activity. Conversely, antibiotics for
which cell activation has a minimal effect on intracellular activity
should remain as effective when host defences are weakened.
Second, this higher potency was seen for the haemin-dependent
mutant and its parental strain, but not for the menadione-
dependent mutant.35,36 The latter may not have been influenced
by cell activation simply because the antibiotics already showed
a higher potency towards this strain in non-activated cells.36

Thus, these data suggest that the menadione-dependent strain
is hypersusceptible to oxidant species (see Figure 1 for an illustra-
tion of the potential link between menadione dependence and
susceptibility to oxidant species).

This is further corroborated by the strain’s unanticipated sus-
ceptibility to b-lactams. b-Lactams have been shown to regain
activity against normal-phenotype MRSA intracellularly, due to
a conformational change of PBP2a occurring at a pH (�5.5)
similar to that prevailing in phagolysosomes, which allows its
acylation at a much faster rate than at neutral pH.37 Interesting-
ly enough, this effect was exacerbated for the menadione-
dependent SCV of the COL MRSA strain, which was 100- to
900-fold more susceptible to b-lactams than its parental strain
when inside the cells.35 The same trend was also observed for

an MSSA strain, but the shift in potency was less marked. In
vitro studies have suggested that this high potency is due to a
cooperation between an acidic pH and oxidant species because
it can be reproduced when measuring MICs at acidic pH after
pre-exposure to H2O2.35

Activity against biofilms

Biofilms are another form of persistent infection presenting
major difficulties for eradication.18 A recent study has suggested
that menadione-dependent SCVs are more prone to form bio-
films in vitro than are thymidine-auxotrophic ones38 (due to an
enhanced production of polysaccharide intercellular adhesin).39

This is consistent with the fact that menadione-dependent
strains are mainly recovered from foci of osteomyelitis or
device-associated infections, which are often biofilm-related.
The situation may, however, be different in vivo, since biofilms
are also frequent in patients with cystic fibrosis, who are more
frequently infected by thymidine-dependent SCVs. In this case,
the switch to a high biofilm producer SCV phenotype could be
induced by the presence of quorum-sensing molecules produced
by Pseudomonas aeruginosa, which is also present in the respira-
tory tract of these patients.40

Exposure to antibiotics may actually induce the formation of a
biofilm. Thus, subinhibitory concentrations of gentamicin have
been shown to trigger not only the emergence of SCVs, but
also the development of S. aureus biofilms owing to activation
of the alternative transcription of sigma factor B.41 Conversely,
non-auxotrophic SCVs selected by triclosan were reported to be
weak biofilm producers.42

Very few studies have examined antibiotic activity against
SCVs growing in biofilms. Biofilms of the reference MSSA strain
ATCC 29213 are much more resistant to the action of oxacillin,
cefotaxime, amikacin, ciprofloxacin or vancomycin, with none
of these drugs being able to reduce bacterial counts even at
high multiples of their respective MICs.43 Thus, surviving bacteria
within the biofilm seem to harbour a persister phenotype, but
only ciprofloxacin also selected for SCVs within the biofilm.
These SCVs did not seem to be associated with increased resist-
ance within the biofilm as they easily reverted to a normal
phenotype upon subculture. A few studies also examined
stable menadione-dependent mutants, demonstrating (i) a
higher propensity to biofilm formation39 and (ii) a profound
decrease in antibiotic activity against bacteria growing on
fibronectin-coated surfaces compared with the planktonic
forms.18 These studies were, however, carried out with single ref-
erence strains and need to be extended to more strains, includ-
ing clinical isolates.

Animal models
A few animal models have been developed to study the fate of
SCVs as well as their response to antibiotics. Interestingly
enough, the data obtained in these models are coherent with
those obtained in vitro, including for the intracellular forms.
These studies are summarized below. They suggest in many
cases, but not systematically, that SCVs can not only persist
and spread in the body, but also be more difficult to eradicate
than their normal-phenotype counterparts, thereby contributing
to the chronic character of the infection.

Review

1459

JAC
 by Paul T

ulkens on June 21, 2013
http://jac.oxfordjournals.org/

D
ow

nloaded from
 

http://jac.oxfordjournals.org/


In rabbit endocarditis models, both haemin- and menadione-
dependent mutants of the 8325-4 strain were equally able to es-
tablish the infection, but only the haemin-dependent mutant
achieved the same bacterial density in the spleen or kidneys as
its parental strain, which was not the case for the corresponding
menadione-dependent mutant.11 In agreement with observa-
tions made in infected cells, this suggests that the target
organs may have been replete with haemin during the course
of endocarditis as a consequence of haemorrhagic necrosis, re-
storing the wild-type phenotype. In these studies, oxacillin
reduced bacterial counts in all target tissues for animals infected
with the parent strain or the haemin-dependent mutant, but
only in vegetations and not in kidneys and spleen for animals
infected by the menadione-dependent mutant, probably due
to its low multiplication rate.11

In another study, gentamicin treatment easily selected for
SCVs which, although being less virulent, were themselves able
to re-establish the infection and to colonize blood, heart valve
vegetations, spleen, kidney and liver as efficiently as the parental
strain.44 b-Lactams were effective in this model, and combin-
ation with an aminoglycoside was useful against the normal-
phenotype strain, but not against the SCV.

In a mouse mastitis model, the cephalosporin cefapirin
showed a reduced ability to control the infection caused by the
haemin-dependent mutant of the strain Newbould 305 com-
pared with its isogenic parent.45 This occurred despite the fact
that both strains displayed similar MICs and that the SCV
mutant showed a lower propensity to colonize the mammary
glands.

In a rabbit model of chronic osteomyelitis, vancomycin loaded
in a hydroxyapatite cement proved highly effective to treat the
infection caused by S. aureus SCVs isolated from patients with
osteomyelitis, none of the infected animals that were treated
showing signs of infection after 42 days thanks to the slow
release of high concentrations of antibiotic.46

In a mouse peritonitis model allowing for simultaneous
testing of activity against both extracellular and intracellular bac-
teria, colonization of both the extracellular and intracellular com-
partments was lower for a menadione-dependent SCV than for
its parental counterpart, leading to fewer signs of sickness.
However, metastatic spread to the kidneys and persistence at
96 h were observed for the SCV.47 Linezolid and dicloxacillin
were able to control both intra- and extracellular infections
caused by either phenotype, but not to clear SCVs from the
kidney after a single dose. Parallel experiments performed in
the THP-1 in vitro model showed, as described above, reduced
intracellular growth for the menadione-dependent mutant, an
increased potency for antibiotics against this strain, but no
change in maximal efficacy, which reached about 1 log reduction
from the initial inoculum, as also observed in vivo.

Clinical data
There are no large clinical trials examining therapeutic options
for SCV infections, but only case reports or studies of small
series describing successful or unsuccessful approaches.
Table 2 summarises these studies and describes the antibiotics
used prior to SCV identification and for their subsequent treat-
ment. Globally, SCVs have been isolated after long and/or

unsuccessful antibiotic exposure. They have all needed aggres-
sive and prolonged polytherapy for their eradication. Effective
regimens have often included rifampicin or a fluoroquinolone,
as well as quinupristin/dalfopristin in one specific case,38 which
is consistent with their high intrinsic activity in vitro. b-Lactams
(for MSSA) or glycopeptides (for MRSA) are also often adminis-
tered, although they are considered to be less active against
SCVs based on in vitro testing.18,35 When applicable, surgical de-
bridement and removal of infected devices are probably key
determinants in clinical success. Two studies mention the ad-
ministration of vitamin K aimed at reversing the SCV phenotype
(see Table 2). Globally, however, antibiotic choices remain
largely empirical. At the present time, no guideline has been pro-
posed for treating infections associated with this particular
phenotype. In spite of apparent favourable clinical and microbio-
logical responses, careful patient follow-up remains essential
because SCV infections have been associated with recurrence
after intervals as long as 54 years.31

Notably, prolonged treatment may also lead to the selection
of resistance, further complicating treatment. Thus, a remarkable
adaptive response of S. aureus to antimicrobial challenge during
chronic infection was demonstrated for an SCV isolated from a
patient with persistent and recurrent MRSA bacteraemia who
received apparently extensive and appropriate antimicrobial
therapy combining rifampicin, ciprofloxacin, and vancomycin
(thereafter replaced by linezolid)19 (see Table 2). The isolated
SCV showed resistance to linezolid (23S RNA ribosomal methyla-
tion), rifampicin (a mutation in rpoB), fluoroquinolones (a muta-
tion in parC) and b-lactams (plasmid-encoded b-lactamase).
Likewise, thymidine auxotrophs of S. aureus have been shown
to be hypermutable and might therefore be more likely to
acquire mutational antimicrobial resistance than normal colony
phenotypes.48 This hypermutability may explain the emergence
of resistance to rifampicin and daptomycin during treatment in
a clinical case report.38 Yet emergence of resistance during
treatment is not systematically associated with selection of
SCVs. No correlation was found, for example, between the
treatment-related selection of macrolide-resistant S. aureus in
cystic fibrosis patients receiving long-term azithromycin and
SCV isolation.49

Conclusions
Although clearly challenging for both the microbiologist and the
clinician, SCVs of S. aureus remain an ill-explored field, at least
with respect to the more appropriate therapeutic options to
prevent their emergence on the one hand and to eradicate
them when present on the other. Although long-term therapy
with gentamicin and antifolate agents is clearly associated
with their selection, clinical reports suggest that other drugs
may also be incriminated. In vitro susceptibility testing should
also be performed in conditions that allow SCV susceptibility to
be examined (48 h incubation). Clinical investigations specifically
targeting SCV-related infections are probably difficult to perform
because their diagnosis escapes routine procedures. The present
review suggests that in vitro or animal pharmacodynamic
models may be of great help (i) to determine the conditions of
antibiotic exposure selecting for SCVs, and (ii) to define antibiotic
regimens or drug combinations most likely to act upon these
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Table 2. Summary of case reports of infections by SCVs of Staphylococcus aureus, with descriptions of antibiotics received before and after isolation of the SCV and of treatment outcome

Infection Previous treatment SCV characteristics Treatment

Clinical outcome (time

after diagnosis of SCV) Reference

Bacteraemia ciprofloxacin, rifampicin,

vancomycin, linezolid

MRSA, resistant to fluoroquinolones,

rifampicin, linezolid; not haemin or

menadione dependent

linezolid+SXT unknown 19

Osteomyelitis cefotaxime, gentamicin beads surgical debridement coupled with

antibiotic combination

(cefotaxime+ciprofloxacin)

cure (2 years) 59

Osteomyelitis (four cases) gentamicin beads haemin or menadione dependent failure 13

Sternoclavicular arthritis haemin or menadione dependent;

resistant to gentamicin

intravenous nafcillin followed by

oral rifampicin; cloxacillin; oral

vitamin K

cure (1 month) 50

Prosthetic joint infection

(five cases)

rifampicin+ levofloxacin in

5/5 after flucloxacillin (2/5) or

vancomycin+cefepime (1/5)

1/85 resistant to SXT; 1/5 resistant to

rifampicin

flucloxacillin+rifampicin (1/5);

levofloxacin+rifampicin (1/5);

flucloxacillin (1/5); flucloxacillin

followed by

levofloxacin+rifampicin (1/5);

penicillin+ levofloxacin (1/5)

cure or probable cure

(3–23 months)

60

Recurrent abscess in AIDS

patient

clindamycin thymidine dependent, MRSA, resistant to

erythromycin, clindamycin, ciprofloxacin,

gentamicin, SXT

vancomycin failure 61

Abscess clindamycin haemin or menadione dependent;

resistant to penicillin, ampicillin and

tetracycline

flucloxacillin+rifampicin cure (4 weeks) 62

Infection of peritoneal

dialysis exit site

ciprofloxacin, vancomycin,

amoxicillin/clavulanic acid,

cefalexin

MRSA 63

Endocarditis related to pacemaker

lead infection

aminoglycoside and vancomycin haemin dependent; resistant to

rifampicin

flucloxacillin cure (7 months) 64

Endocarditis in a patient with a

pacemaker on haemodialysis

cefuroxime, rifampicin, fusidic acid,

dicloxacillin, vancomycin

intravenous cefuroxime and

vancomycin for 4 weeks followed

by prophylactic oral cefuroxime

cure 65

Left ventricular assist device

infection and prosthetic valve

and pacemaker endocarditis

vancomycin, rifampicin,

gentamicin, daptomycin,

and SXT

thymidine dependent; MRSA; resistant to

tobramycin, amikacin, kanamycin,

rifampicin, daptomycin, erythromycin,

levofloxacin and SXT

replacement of infected prosthetic

tricuspid valve and left ventricular

assist device+vancomycin,

gentamicin, quinupristin/

dalfopristin, rifampicin, SXT

cure (.7 months) 38

Brain abscess meropenem, clindamycin and

gentamicin; intrathecal

gentamicin

haemin dependent; MRSA combination of vancomycin and

rifampicin followed by prolonged

treatment with teicoplanin

cure (3 months) 66

Meningitis and ventriculoperitoneal

shunt infection

ciprofloxacin, vancomycin MRSA combination of ciprofloxacin,

vancomycin and rifampicin

cure (4 months) 67

Multiorgan infection amoxicillin/clavulanate, ampicillin,

gentamicin, cefotaxime,

doxycycline, vancomycin

MSSA, gentamicin resistant combination of oxacillin, rifampicin,

SXT and vitamin K

cure (3 months) 51

SXT, trimethoprim/sulfamethoxazole.
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slow-growing, metabolically defective strains. Strategies aimed
at favouring reversion may also be worth investigating in the
future. Vitamin K supplementation to restore growth and, sub-
sequently, susceptibility to antibiotics, has attracted interest in
anecdotal situations of infection by menadione-dependent
mutants.50,51 Taking advantage of spontaneous reversion may
be more dangerous, because it may be associated with hyper-
mutators17,48 that are notably more prone to acquiring resist-
ance to antibiotics.48,52,53
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Supplementary data 

Table S1. MICs of antibiotics for S. aureus with a normal or SCV phenotypea   

MICs (mg/L) of antibiotics according to phenotypea 

strains 

wild-type SCV and auxotrophismb 

not specified MSSA MRSA 

Class Antibiotic 
not 

specified MSSA MRSA 
not 

specified men haem thy 
not 

specified men haem thy not specified men haem thy 

Referen

ce(s) 

amikacin 2 <0.031-2 1  
 

64   
 

    64  
 

0.5-2      1,2 

gentamicin <0.125-4 <0.031-8 0.25 -1 <0.125 to 
>128 

16   8 to >8  
 

8; 12 

 

0.5-16 
- 

0.125;
4 

0.3   
 

0.5; 
32  
 

1;   
32  
 

 1-15 

kanamycin  0.25  
 

2-4  
 

      2  
 

  64-128 64-128  6,13 

Aminoglycosides 

tobramycin   0.5-1          32 32  6 

trimethoprim  2  
 

     1-8  
 

 8  
 

     10 Antifolates 

trimethoprim/ 
sulfamethoxazol

e 

0.004-32 0.06; 
0.064 

 

 

0.023 to 
>32 

 

 

 

 

 

 

0.06-0.5  

 

0.5  
 

>32 
 

    10,14-16 

penicillin 0.016-24   0.016-32            14 

cloxacillin  0.25 128      0.125    128 128  17 

nafcillin 0.5   0.5            1 

oxacillin <0.06-2 0.06-0.5  <0.06 to 
>64 

  0.125; 
0.5 

0.06-1 0.25-2 0.03-0.5      2,3,8-12,18 

Penicillins 

piperacillin 0.064-32   0.19-32            14 

cefuroxime  1-2 4 to 
>128 

    1-2    2 to >128    19 

cefotaxime  1       4       2 

ceftazidime 0.5-3   3-8            14 

Cephalosporins 

ceftobiprole  0.13-0.5 0.5-2     0.13-0.25    0.5-4    19 



cefapirin  0.12        0.06      12 

doripenem  0.06 16      0.03    32 16  17 Carbapenems 

meropenem  0.125 32      0.06    32 32  17 

ciprofloxacin 0.032-32 0.12-0.5 0.5-32 0.03 to >32    0.12 0.5 0.06-0.5 0.5 2-32    2,7,11,12,20 

levofloxacin  0.25-0.38 3 to 
>32 

      0.25 0.25 4 to >32    20 

moxifloxacin  <0.03-
0.25 

0.03-4     <0.03-0.13  0.094 0.094; 
0.125 

1-8 0.125 0.125  5,9,19,20 

Fluoroquinolones 

finafloxacin  0.19-0.38 1.5-4       0.5 0.25 1-6    20 

Quinolones fleroxacin  1       1       3 

vancomycin 0.25-2 0.5-2 1-4 0.125-2    1;2 

 

0.5-2 0.5-2 0.5-22 8 1 1  2,3,7-

12,17,21,22 

teicoplanin   3         8    7 

telavancin  0.125         0.125     9 

Glycopeptides 

oritavancin  0.03 0.25        0.015  0.125 0.03  5,9 

Lipopeptides daptomycin  0.125-1 0.19-1       1;2 0.125;
0.5 

0.38  
 

0.5  
 

0.5; 
2 

 5,7-9,19,23 

Ansamycins rifampicin  

 

0.002-
0.125 

0.016-
0.023 

    0.03-0.008  0.008-
0.06 

0.0005 >256 0.016 0.016  5,7-10,12 

Macrolides erythromycin  0.25-0.5      0.12  1-2      11,12 

Lincosamides clindamycin  0.060.12
5 

       0.25 0.125;
0.25 

    8,9 

Oxazolidinones linezolid 0.25-4 0.5-4 0.5-1 0.25-4    0.5-4   2 1-2    7,9,15,19,19 

fusidic acid  0.125         0.03     9 

quinupristin/dalf
opristin 

 0.5         0.5     9 

tigecycline 0.015-0.5 0.125 0.19 0.015-2       0.125 0.19    7,9,15 

Other antibiotics 

XF-70  0.5-1 0.25-1       0.25-0.5    0.25-1  24 

tomatine  >16      >16  >16      11 Other agents 

tomatidine  >16      0.12  0.12      11 



lysostaphin  2      1-4  1      10,12 

lactoferrin B  16-64 256 >256     >256 >256   >256 >256  25 
 

aOnly studies comparing normal phenotype and SCV strains have been included in this table. 
 bValues in bold correspond to MICs that are at least 2 dilutions higher than those for the corresponding parental strain with a normal phenotype and values in italics correspond to MICs 
that are at least 2 dilutions lower than those for the corresponding parental strain with a normal phenotype. 
cmen, menadione-dependent; hem, haemin dependent; thy, thymidine dependent. 
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