

Institute of Protein Biology and Chemistry, BMSSI UMR 5086, CNRS-University of Lyon, France

"Drug Resistance Mechanism and Mxodulation" Attilio DI PIETRO CNRS Research Director a.dipietro@ibcp.fr

Modulation of cancer cell multidrug ABC transporters

10th French-Belgian ABC Meeting

UCL, Brussels, Belgium

October 19-20, 2012

Cancer cell multidrug resistance and ABC transporters

- Cell growth resistance to multiple drugs,
- Low intracellular accumulation of cytotoxic drugs,
- Due to **overexpression of ABC transporters** (P-glycoprotein/ABCB1, MRP1/ABCC1 and/or BCRP/ ABCG2) within plasma membranes.
- Prevented in vitro by characteristic inhibitors:
 - * verapamil/cyclosporine A / P-glycoprotein
 - * MK571/probenecid / MRPs
 - * FTC/Ko143 / BCRP

3 main multidrug ABC-transporters:

belong to 3 different classes of the 48 human ABC proteins

TMD1

TMD2

TMD0

NBD1 NBD2

Different strategies to antagonize MDR cancer cells overexpressing ABCB1, ABCC1 or ABCG2

<u>unconjugated</u>

glutathione/glucuronate/sulfate

Overlapping patterns for

transported

<u>substrates</u>

> inhibition of a single transporter <u>not sufficient</u> to fully abolish cell multidrug resistance

MDR-substrate anticancer agents.

Abbreviations: VCR: vincristine, VBL: vinblastine, VP-16: etoposide, STER: steroids, TAM: tamoxiphen, TKI-INHIB: tyrosine kinase inhibitors, e.g. STI-57<u>1, DOX: doxorubicine or adriamycin™,</u> DNR: daunorubicin, EPIR: epirubicin, MX: mitoxantrone, TOPOT: topotecan, iridotecan, BISANT: bisanthrone, COLCH: colchicin, ACT-D: actinomycin D, MYTOM: mytomycin, TX: methorexate, CPHAM: cyclophosphamide, CHLB: chlorambucil, CARM: carmustine, LCV: leucovorin, HUR: hydroxyruea, CISPL: cisplatin, TAXOL™: paclitaxel

Abbreviations: CSA: cyclosporin A, VERAP: verapamil, STAURO: staurosporine, ECON: econazole, PRAZ: prazosine, FTC: fumitremorgin C, PROB: probenecide, BBR: benzbromarone, SUPYR: sulfinpyrazone, INDOM: indomethacine, GENIS: genistein, PGA2: prostaglandine A2, CCCP: chlorocarbonyl cyanide phenylhydrazone.

>> Specific inhibitors may be found

Third-generation inhibitors against P-glycoprotein

The half-transporter BCRP / ABCG2 (ABCP / MXR) [discovered in 1998]

- Located within plasma membranes,
- Naturally overexpressed in <u>placenta</u>, liver, small intestine and colon, supporting a role in **protection / secretion.**,
- Physiological transport substrates :
 - * pheophorbide a (= chlorophyll catabolite) and porphyrins,
 - * <u>urate</u> in kidney proximal tubule cells (Q141K >> gout),
- Identified as a marker of stem cells ("side-population").
- Overexpressed in many types of tumors,
- Transports <u>mitoxantrone</u>, <u>methotrexate</u> and topotecan (and anthracyclines and rhodamine 123 <u>upon R482 hot-spot mutation)</u>.
- Since discovered more recently than ABCB1
 > less inhibitors known.

Inhibition of ABCG2-mediated mitoxantrone efflux by Flavonoids

		IC 50	(μM)
	Inhibitor substitution	BCRP-R482	BCRP-T482
 Mitoxantrone efflux 	Flavone	2.8 ± 0.6	1.7 ±0.4
measured by flow cytometry	3-OH-flavone	8.1 ± 1.9	4.9 ± 0.1
	7-OH-flavone	7.1 ±0.3	13.9 ± 1.51
with ABCG2-transfected	Chrysin (5, 7-diOH-flavone)	4.6 ± 0.5	4.5 ± 0.8
HEK-293 cells	Tectochrysin (5-OH, 7-OCH ₃ -flavone)	3.0 ± 0.9	1.9 ± 0.3
	6-Prenylchrysin	0.29 ± 0.06	3.6 ± 1.9
	6-(1.1-Dimethylallyl)chrysin	0.78 ± 0.15	>10
	8-Prenylchrysin	0.89 ± 0.31	>10
	8-(1.1-Dimethylallyl)chrysin	1.4 ± 0.5	>10
	6-Geranylchrysin	1.0 ± 0.4	ND
	6-Farnesylchrysin	>10	ND
Later a company of the test state of the	6.8-Digeranylchrysin	2.1 ± 0.5	ND
 High-affinity inhibition 	GF120918	0.31 ±0.14	6.9 ± 2.6
by 6-prenylchrysin		г. т	F . 7
and tectochrysin			
-	2 2		
>> <u>natural compounds</u>	prenyl 1.1-dimethylallyl	geranyl	farnesyl
as potent inhibitors			1
SARs for flavonoid inhibition of wild-type ABCG2			41 - XOH 3'
Hydrophobic flavones are spec i for ABCG2, <i>versus</i> ABCB1 and a	ADCC1 OH	d-Belkacem et al	. Cancer Res. (2005)

2/2

Specific inhibitors >> likely bind <u>outside</u> the catalytic transport site

Nicolle et al. Eur. J. Pharm. Sci. (2009)

Pharmacophore molecular modeling

>> good correlation for nearly all compounds

Descriptors:

- Positive roles of the size, polarisability and hydrophobicity

The ABCG2-specific inhibitory site overlaps the dual site

Chromone derivatives: the best candidates for *in-vivo* assays

Mouse model with ABCG2-expressing human xenografts

ABCG2 allows tumor growth in the presence of irinotecan, by conferring **chemoresistance**

In vivo chemosensitization of tumor growth to irinotecan by either Gefitinib or acridone 4c (MBLI-87)

Arnaud et al. Eur. J. Cancer. (2011)

no effect of Gefitinib or vector alone on tumor growth
ABCG2-dependent tumor growth in

presence of irinotecan is delayed by Gefitinib

>> MBLI-87 also delayed tumor cell proliferation, at lower concentration than Gefitinib

But MBLI-87: low solubility and relatively high cytotoxicity >> improve formulation >>> use more potent and less toxic compounds (chromone 6g).

Is resistance useless? Multidrug resistance and <u>collateral sensitivity</u>

Matthew D. Hall, Misty D. Handley and Michael M. Gottesman

Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA

Review

2009

Trends in Pharmacological Sciences Vol.30 No.10

Targeting the Achilles' heel of Multidrug Resistant Cancer

Gergely Szakacs¹, Matthew D. Hall², Michael M. Gottesman², Ahcène Boumendjel³, Remy Kachadourian⁴, Brian J. Day⁴, Hélène Baubichon-Cortay⁵ and Attilio Di Pietro^{5, *}

¹ Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary;

²Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA;

³ Université de Grenoble/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, Grenoble, France;

⁴ Department of Medicine, National Jewish Health and University of Colorado Denver, USA;

⁵ Institut de Biologie et Chimie des Protéines, BMSSI UMR 5086 CNRS/Université Lyon 1, Lyon, France.

Review to appear in Chemical Reviews (2012/2013)

TRENDS in Pharmacological Sciences

Schematic structure of MRP1/ABCC1 [discov. 1992]

- Additional TMD0

- Physiological role in inflammation: efflux of leukotriene LTC4 from leukocytes
- Also transports a number of drugs, such as vincristine

MRP1 is modulated by <u>hydrophobic compounds</u> such as Verapamil

Fast and massive MRP1-mediated **GSH** <u>efflux</u> induced by Verapamil

Trompier et al. Cancer Res. (2004)

Lauriane DURY, Short Talk, Saturday 10:40

Summary of verapamil-induced collateral sensitivity

- Verapamil binds to MRP1 (competitively to the drug site ? Is it transported ?)
- 1) It promotes a massive and fast GSH efflux through MRP1
- 2) Only the S-verapamil enantiomer is active [Perrotton et al. J. Biol. Chem. (2007)]
- 3) Role of ROS ? amplified effects upon GSH efflux ?
- 4) This induces a selective apoptosis of MDR cells expressing MRP1 (transfected BHK-21, or SCLC drug-selected H69AR) >> in vivo experiments on xenografts
 >> New potential therapeutic strategy:
 - targeting cancer cells >> limited side effects,
 - new alternative, especially after chemotherapy failure.

Since Verapamil is known to be cardiotoxic

>> HTS of chemical libraries > new classes of apoptogenic compounds,

>> Xanthones and Flavones.

Structure-activity relationships of <u>xanthones</u> to promote GSH efflux and cytotoxicity

Lorendeau et al. ChemMedChem. (2011)

Table 2. Cytotoxicity of selected xanthones on NCI-H69 (sensitive) andH69AR/MRP1 (resistant) cells.

Compd	IC ₅₀ [µм] ^[a]		
	H69AR/MRP1	NCI-H69	
1	≫ 100	≥100	
6	≥ 100	≥100	
7	24±2.32	≥100	
8	33±0.02	≥100	
9	11±0.44	>100	
10	26±0.67	≥100	
15	51 ± 0.39	>100	
18	> 100	≥100	
21	>100	>100	
22	54±0.07	>100	
23	>100	≥100	
(±)-verapamil	15 ± 0.35	≥100	
[a] Values represent the mean \pm SD of $n=3$ experiments.			

Table 1. Structures of the xanthones studied and net GSH efflux induced in BHK-21-MRP1 cells.						
$R^6 \xrightarrow{0} R^3$ $R^5 \xrightarrow{1-23}$						
Compd	R^1	R ³	R⁵	R ⁶	C log P	Efflux [%] ^[a]
1	ОН	н	н	н	3.60	0
2	OH	н	OMe	н	3.59	15
3	OH	н	н	Me	3.10	2
4	OH	н	Me	н	4.10	2
5	OH	Me	н	н	4.10	27
6	OH	Me	OMe	н	4.09	41
7	OH	OH	OMe	н	3.01	46
8	ОН	OH	н	Н	3.06	52
9	OH	ОН	Н	OMe	3.01	82
10	OH	OH	Н	Me	3.55	65
11	OH	Me	н	Me	4.60	14
12	OH	OMe	н	н	3.65	28
13	OH	OH	OH	OH	1.84	1
14	OH	OH	OH	н	2.43	29
15	OH	OH	н	OH	2.43	43
16	OH	<i>O</i> -prenyl	н	OMe	5.29	12
17	O-prenyl	<i>O</i> -prenyl	н	OMe	6.46	36
18	OH	OMe	н	OMe	3.59	66
19	OMe	OMe	н	OMe	3.06	13
20	OH	O-Bz	н	OMe	3.36	6
21	OMe	O-Bz	н	OMe	4.83	45
22	OH	OH	н	NH-COCF ₃	3.22	75
23	OH	OH	Н	NH_2	1.86	70
(±)-verapam	nil				-	75
[a] GSH efflux determined at 20 µм.						

Luciana Pereira Rangel

Glaucio Valdameri

Evelyn Winter

PARTICIPANTS

COLLABORATIONS

José M. PEREZ-VICTORIA BCRP	Susan BATES NCI, Bethesda, MD, USA
Hakim AHMED-BELKACEM / ABCG2	* Ahcène BOUMENDJEL Univ. Grenoble
Alexandre POZZA	Pierre-Alain CARRUPT <i>Univ. Geneva, CH</i>
Sira MACALOU	Orazio TAGLIATELA Univ. Naples, Italy
Ophélie ARNAUD/Pierre FALSON	Corrado TRINGALI Univ. Catania, Italy
Charlotte GAUTHIER	Balazs SARKADI, Hung. Acad. Sci., Budapest

Luciana RANGEL	Antonio FERREIRA-PEREIRA, Univ. Rio de Janeiro, Brazil
Glaucio VALDAMERI	S. WINNISHOFER & M. ROCHA, Parana Univ., Curitiba, Brazil
Evelyn WINTER	T. B. CRECKZYNSKI PASA, Univ. Santa Catarina, Florianopolis

Hélène CORTAY	MRP1	XB. CHANG / J. RIORDAN Scottsdale, USA
Doriane TROMPIER	<u>/ ABCC1</u>	Amaury d'HARDEMARE Univ. Grenoble
Thomas PERROTTON		* M. MEYER / L. PAYEN Pharma. Inst., Lyon
Doriane LORENDEAU		* Raphaël TERREUX <i>BMSSI, IBCP</i>
Sandrine MAGNARD		Larry CHOW, Univ. Hong-Kong
Lauriane DURY		