Modulation of cancer cell multidrug ABC transporters

10th French-Belgian ABC Meeting

UCL, Brussels, Belgium

October 19-20, 2012
Cancer cell multidrug resistance and ABC transporters

- Cell growth resistance to multiple drugs,
- Low intracellular accumulation of cytotoxic drugs,
- Due to overexpression of ABC transporters (P-glycoprotein/ABCB1, MRP1/ABCC1 and/or BCRP/ABCG2) within plasma membranes.
- Prevented in vitro by characteristic inhibitors:
 * verapamil/cyclosporine A / P-glycoprotein
 * MK571/probenecid / MRP1
 * FTC/Ko143 / BCRP
3 main multidrug ABC-transporters:

- **class B**: \(\text{ABCB1}\)
- **class C**: \(\text{ABCC1}\)
- **class G**: \(\text{ABCG2} (\text{MXR/BCRP})\)

belong to 3 different classes of the 48 human ABC proteins.
Different strategies to antagonize MDR cancer cells overexpressing ABCB1, ABCC1 or ABCG2

Using nontransported inhibitors:
ABCB1
ABCG2

Using "Collateral Sensitivity" = Achilles' heel
ABCC1

Bypass
Synthesizing nontransported chemotherapeutics (but generally less active ...)

Inhibit
Target
Overlapping patterns for transported substrates

>> inhibition of a single transporter not sufficient to fully abolish cell multidrug resistance

MDR-substrate anticancer agents.
Very few common inhibitors. None for the 3 transporters (even for ABCC1 and ABCG2).

>>> Specific inhibitors may be found
Third-generation inhibitors against P-glycoprotein

S9788

XR9051

MS-209

GF120919 (Elacridar)

VX-710 (Biricodar)

OC144-093

ONT-093 (Ontogen)

LY335979 (Zosuquidar)

Inhibitors having reached clinical trials:

XR-9576 (Tariquidar)

R-101933 (Laniquidar)

OC144-093

ONT-093 (Ontogen)

LY335979 (Zosuquidar)

Specific for P-glycoprotein

No

??

??

YES
The half-transporter BCRP / ABCG2 (ABCP / MXR) [discovered in 1998]

- Located within plasma membranes,
- Naturally overexpressed in placenta, liver, small intestine and colon, supporting a role in protection / secretion.
- Physiological transport substrates:
 * pheophorbide a (= chlorophyll catabolite) and porphyrins,
 * urate in kidney proximal tubule cells (Q141K >> gout),
- Identified as a marker of stem cells (“side-population”).
- Overexpressed in many types of tumors,
- Transports mitoxantrone, methotrexate and topotecan (and anthracyclines and rhodamine 123 upon R482 hot-spot mutation).
- Since discovered more recently than ABCB1 >> less inhibitors known.
Inhibition of ABCG2-mediated mitoxantrone efflux by Flavonoids

- Mitoxantrone efflux measured by flow cytometry with ABCG2-transfected HEK-293 cells

- High-affinity inhibition by 6-prenylchrysin and tectochrysin
 >> natural compounds as potent inhibitors

SARs for flavonoid inhibition of wild-type ABCG2

Hydrophobic flavones are specific for ABCG2, versus ABCB1 and ABCC1

Flavone benzopyrane and benzofurane derivatives
Boeravinone derivatives

Acridone derivatives
Pharmacophore molecular modeling

>> good correlation for nearly all compounds

Descriptors:
- Positive roles of the size, polarisability and hydrophobicity
- No clear effect of H-bond acceptor
- Negative effect of H-bond donor

>> different from ABCB1

Specific inhibitors >> likely bind outside the catalytic transport site

The ABCG2-specific inhibitory site overlaps the dual site

- Acridone 4c binding is prevented by GF120918. >> both sites are widely overlapping.

- The specific site of flavonoids is distinct from another specific site related to ATPase inhibition.

- Chromones bind to this FTC/Ko143 site.

>> Polyspecificity for inhibitors and substrates

- ABCG2-specific inhibitory site (acridones 4a-c, Tariq. deriv. 5/6, flavones, rotenoids, OMe trans-stilbenes chalcones)
- Dual inhibitory site (GF120918, Tariquidar, bosutinib)
- Second ABCG2-specific inhibitory site FTC, Ko143, chromones
- Catalytic transport sites for substrates
Chromone derivatives: the best candidates for in-vivo assays

Chromone 6g
high affinity (IC$_{50}$ = 0.11 µM)
complete, non-competitive, inhibition
and low cytotoxicity (IG$_{50}$ > 100 µM)

> very high Therapeutic Ratio (TR) > 1,000

Not transported (only inhibits ATPase activity)

Chemosensitizes resistant cancer cell growth
to mitoxantrone or SN-38 (irinotecan metabolite)

>> suitable for in-vivo assays
Mouse model with ABCG2-expressing human xenografts

Implantation of ABCG2-positive cells

Implantation of control cells

Anticancer chemotherapy

(Irinotecan)

Drug efficiency on xenograft growth

ABCG2 allows tumor growth in the presence of irinotecan, by conferring chemoresistance
In vivo chemosensitization of tumor growth to irinotecan by either Gefitinib or acridone 4c (MBLI-87)

- no effect of Gefitinib or vector alone on tumor growth
- ABCG2-dependent tumor growth in presence of irinotecan is delayed by Gefitinib

But MBLI-87: low solubility and relatively high cytotoxicity

>> **improve formulation**

>>> use more potent and less toxic compounds (**chromone 6g**).
Targeting the Achilles' heel of Multidrug Resistant Cancer

Gergely Szakacs¹, Matthew D. Hall², Michael M. Gottesman², Ahcène Boumendjel³, Remy Kachadourian⁴, Brian J. Day⁴, Hélène Baubichon-Cortay⁵ and Attilio Di Pietro⁵, *

¹ Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary;
² Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA;
³ Université de Grenoble/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, Grenoble, France;
⁴ Department of Medicine, National Jewish Health and University of Colorado Denver, USA;
⁵ Institut de Biologie et Chimie des Protéines, BMSS UMR 5086 CNRS/Université Lyon 1, Lyon, France.

SR > 2

Collateral sensitivity

Resistance Ratio

$$RR = \frac{IC_{50} \text{ (resistant)}}{IC_{50} \text{ (parental)}}$$
Schematic structure of MRP1/ABCC1 [discov. 1992]

- Additional TMD0

- Physiological role in inflammation: efflux of leukotriene LTC4 from leukocytes

- Also transports a number of drugs, such as vincristine
MRP1 is modulated by hydrophobic compounds such as Verapamil

Selective cytotoxicity identified as apoptosis (PS, caspases)

Lauriane DURY, Short Talk, Saturday 10:40

Fast and massive MRP1-mediated GSH efflux induced by Verapamil
Summary of verapamil-induced collateral sensitivity

1) Verapamil binds to MRP1 (competitively to the drug site ? Is it transported ?)
2) It promotes a massive and fast GSH efflux through MRP1
3) Only the S-verapamil enantiomer is active [Perrotton et al. J. Biol. Chem. (2007)]
4) Role of ROS ? amplified effects upon GSH efflux ?
5) This induces a selective apoptosis of MDR cells expressing MRP1 (transfected BHK-21, or SCLC drug-selected H69AR) >> in vivo experiments on xenografts

>> New potential therapeutic strategy:
 - targeting cancer cells >> limited side effects,
 - new alternative, especially after chemotherapy failure.

Since Verapamil is known to be cardiotoxic
>> HTS of chemical libraries > new classes of apoptogenic compounds,
>> Xanthones and Flavones.
Structure-activity relationships of xanthones to promote GSH efflux and cytotoxicity

Table 1. Structures of the xanthones studied and net GSH efflux induced in BHK-21-MRP1 cells.

<table>
<thead>
<tr>
<th>Compd</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>R⁵</th>
<th>ClogP</th>
<th>Efflux [%][a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>3.60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OH</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>3.59</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>3.10</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>4.10</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4.10</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>OH</td>
<td>Me</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>4.09</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>OH</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>3.01</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>3.06</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>3.01</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>3.55</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>4.60</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>3.65</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>1.84</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>2.43</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>2.43</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>OH</td>
<td>O-prene</td>
<td>H</td>
<td>OMe</td>
<td></td>
<td>5.29</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>O-prene</td>
<td>O-prene</td>
<td>H</td>
<td>OMe</td>
<td></td>
<td>6.46</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>3.59</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>OMe</td>
<td>OMe</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>3.06</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>OH</td>
<td>O-Bz</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>3.36</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>OMe</td>
<td>O-Bz</td>
<td>H</td>
<td>OMe</td>
<td></td>
<td>4.83</td>
<td>45</td>
</tr>
<tr>
<td>22</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH-COf</td>
<td></td>
<td>3.22</td>
<td>75</td>
</tr>
<tr>
<td>23</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH</td>
<td></td>
<td>1.86</td>
<td>70</td>
</tr>
</tbody>
</table>

[a] GSH efflux determined at 20 μM.

Table 2. Cytotoxicity of selected xanthones on NCI-H69 (sensitive) and H69AR/MRP1 (resistant) cells.

<table>
<thead>
<tr>
<th>Compd</th>
<th>I⁵₀ [μM][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H69AR/MRP1</td>
</tr>
<tr>
<td>1</td>
<td>>100</td>
</tr>
<tr>
<td>6</td>
<td>>100</td>
</tr>
<tr>
<td>7</td>
<td>24±2.32</td>
</tr>
<tr>
<td>8</td>
<td>33±0.02</td>
</tr>
<tr>
<td>9</td>
<td>11±0.44</td>
</tr>
<tr>
<td>10</td>
<td>26±0.67</td>
</tr>
<tr>
<td>15</td>
<td>51±0.39</td>
</tr>
<tr>
<td>18</td>
<td>>100</td>
</tr>
<tr>
<td>21</td>
<td>>100</td>
</tr>
<tr>
<td>22</td>
<td>54±0.07</td>
</tr>
<tr>
<td>23</td>
<td>>100</td>
</tr>
</tbody>
</table>

[b] Values represent the mean ± SD of n = 3 experiments.

SR > 9
Brazilian CAPES ("Sandwich PhD")

Luciana Pereira Rangel

Glaucio Valdameri

Evelyn Winter
PARTICIPANTS

José M. PEREZ-VICTORIA BCRP
Hakim AHMED-BELKACEM / ABCG2
Alexandre POZZA
Sira MACALOU
Ophélie ARNAUD/Pierre FALSON
Charlotte GAUTHIER

COLLABORATIONS

Susan BATES NCI, Bethesda, MD, USA
* Ahcène BOUMENDJEL Univ. Grenoble
Pierre-Alain CARRUPT Univ. Geneva, CH
Orazio TAGLIATELA Univ. Naples, Italy
Corrado TRINGALI Univ. Catania, Italy
Balazs SARKADI, Hung. Acad. Sci., Budapest

Luciana RANGEL Antonio FERREIRA-PEREIRA, Univ. Rio de Janeiro, Brazil
Glaucio VALDAMERI S. WINNISHOFER & M. ROCHA, Parana Univ., Curitiba, Brazil
Evelyn WINTER T. B. CRECKZYNSKI PASA, Univ. Santa Catarina, Florianopolis

Hélène CORTAY MRP1
Doriane TROMPIER / ABCC1
Thomas PERROTTON
Doriane LORENEAU
Sandrine MAGNARD
Lauriane DURY

X.-B. CHANG / J. RIORDAN Scottsdale, USA
Amaury d'HARDEMARE Univ. Grenoble
* M. MEYER / L. PAYEN Pharma. Inst., Lyon
* Raphaël TERREUX BMSSI, IBCP
Larry CHOW, Univ. Hong-Kong