Pharmacological comparison of the activity of antibiotics against intracellular S. aureus

M. Barcia-Macay, M.P. Mingeot-Leclercq, P.M. Tulkens, F. Van Bambeke

Unité de Pharmacologie cellulaire et moléculaire, Université catholique de Louvain, Brussels, Belgium
www.facm.ucl.ac.be
S. aureus is an opportunistic intracellular pathogen

infection of the vacuolar apparatus in macrophages

Seral et al. (2003) AAC 47:2283-92
PK-PD to rationalize antibiotic choice

- Metabolism
- Binding
- Cooperation with host defences
- Physico-chemical conditions
- Bacterial responsiveness
- Accumulation and bioavailability
- Influx
- Efflux

Aim of the study

to compare the concentration-effect relationships
• against extracellular AND intracellular *S. aureus*
• for antibiotics with markedly different cellular pharmacokinetic properties
Methods

Extracellular activity
- exposure of bacteria to antibiotics (0.05-1000 X MIC) in RPMI medium

Intracellular activity
- infection of THP-1 human macrophages (4 bacteria/cells)
- elimination of extracellular bacteria by washing with GEN
- incubation for 24 h with antibiotics (0.05-1000 X MIC) or to GEN 1 X MIC (control)

Based on Seral et al. (2003) AAC 47:2283-92
Extracellular activity

All AB are concentration-dependent
Intracellular activity

Decrease of CFU is observed at clinically-achievable concentr.
Extracellular activity vs intracellular activity

But intracellular activity is always < than extracellular activity
Comparison of concentrations needed for a static effect

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Extracellular</th>
<th>Intracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXA</td>
<td>0.52</td>
<td>2.09</td>
</tr>
<tr>
<td>MXF</td>
<td>0.29</td>
<td>0.63</td>
</tr>
<tr>
<td>GEN</td>
<td>0.30</td>
<td>2.09</td>
</tr>
<tr>
<td>ORI</td>
<td>0.29</td>
<td>4.79</td>
</tr>
</tbody>
</table>

- OXA: X 3-4
- MXF: X 6-12
Comparison of maximal effects

<table>
<thead>
<tr>
<th>antibiotic</th>
<th>maximal effect (log CFU decrease from 0h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>extracellular</td>
</tr>
<tr>
<td>OXA</td>
<td>-3.70</td>
</tr>
<tr>
<td>MXF</td>
<td>-4.29</td>
</tr>
<tr>
<td>GEN</td>
<td>-5.76</td>
</tr>
<tr>
<td>ORI</td>
<td>-5.55</td>
</tr>
<tr>
<td>antibiotic</td>
<td>effect at Cmax</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA</td>
<td>-2.12</td>
</tr>
<tr>
<td>MXF</td>
<td>-2.64</td>
</tr>
<tr>
<td>GEN</td>
<td>-0.66</td>
</tr>
<tr>
<td>ORI</td>
<td>-2.88</td>
</tr>
</tbody>
</table>
Conclusion

Intracellular activity is always << extracellular activity
• irrespective to the antibiotic accumulation level
• for all drug classes tested

Acid pH is not the only culprit for this decrease of activity

► higher extracellular concentrations are needed to kill intracellular bacteria
► intracellular activity cannot been predicted from accumulation levels only, and should therefore be tested in appropriate models
► among the drugs studied, a definite bactericidal intracellular effect at clinically achievable extracellular concentrations can be obtained for a few of them only (ORI, MXF) ...