Study of the effect of pulsed washing on antibiotic susceptibility of *Staphylococcus aureus* biofilms

Poilvache Hervé\(^1,2,3\), Ruiz-Sorribas A.\(^3\), Rodriguez-Villalobos H.\(^4\), Sakoulas G.\(^5\), Cornu O.\(^1,2\), Van Bambeke F.\(^3\)

1. Neuromusculoskeletal Laboratory, UCLouvain, Woluwe-Saint-Lambert, Belgium
2. Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Woluwe-Saint-Lambert, Belgium
3. Cellular and Molecular Pharmacology Laboratory, UCLouvain, Woluwe-Saint-Lambert, Belgium
4. Microbiology Department, Cliniques Universitaires Saint-Luc, Woluwe-Saint-Lambert, Belgium
5. UCSD School of Medicine, San Diego, CA

No related COI
Introduction

- Prosthetic Joint Infections (PJI) are challenging to treat complications of arthroplasties.
- Staphylococci cause over 50% of those infections and are known to form biofilms on the surfaces of the implants.
Introduction

- The treatment of acute PJI relies on debridement and irrigation followed by antibiotic therapy.
- Pulsed-washing (PW) using specific devices is a frequent irrigation technique.
- The effect of PW on biofilms has been scarcely reported (1,2).
- PW combined with antibiotics at clinically pertinent concentrations has not been previously reported.

Objective

To investigate the effects of the combination of pulsed-washing and flucloxacillin or vancomycin, and compare it to their independent effects, against methicillin-resistant and methicillin-sensitive *S. aureus* (MRSA; MSSA) biofilms grown on Ti6Al4V.
Methods

Strains: 3 MRSA: ATCC 33591 (reference strain), 749, 676 & 3 MSSA: ATCC 25923 (ref. strain), 578, 611.

Antibiotics: Susceptibilities against oxacillin, flucloxacillin (FLX) and vancomycin (VAN) were tested for all strains following the CLSI guidelines. (Table 1) VAN was used against MRSA biofilms and FLX was used against MSSA biofilms. Concentrations used:

- MIC in [TSB + 1% Glucose + 2% NaCl] (TGN);
- Therapeutic concentration (ThC):
 - VAN: 20mg/L - target through concentration for bone and joint infections (3)
 - FLX: 20mg/L - concentration observed 3h after administration in a 2g q6h regimen (4)

Biofilm culture: Incubation of bacteria suspended in TGN (initial inoculum: 6,6 log_{10} CFU/mL) with Ti6Al4V coupons for 24h at 37°C, under continuous agitation (50 rpm).

Methods

- **Treatments:** Samples were separated in irrigation and control groups. Irrigation consisted in the application of 50mL of 0.9% NaCl from 5 cm using an Interpulse (Stryker Co., Kalamazoo, MI, USA) pulsed-washing device. Samples were either analysed or reincubated for 24h in TGN +/- antibiotics (see flowchart).

- **Analysis:**
 - CFU counts: CFU were harvested by a combination of vortex and sonication before serial dilutions and TSA plating
 - Biomass assays: staining of the samples with crystal violet (CV), removal of the excess dye, resolubilisation of CV in acetic acid and absorbency reading at 570 nm

- **Statistical analysis:** 2-way ANOVA followed by Holm-Sidak post-hoc test.

- N=4 for all experiments.
Results

Table 1. MIC (mg/L) values for the tested strains

<table>
<thead>
<tr>
<th>Strains</th>
<th>Oxacillin CA-MHB</th>
<th>Flucloxacillin CA-MHB</th>
<th>Flucloxacillin TGN</th>
<th>Vancomycin CA-MHB</th>
<th>Vancomycin TGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 33591</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>749</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>676</td>
<td>>64</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>MSSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 25923</td>
<td>0.25</td>
<td>0.125</td>
<td>0.0625</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>578</td>
<td>0.25</td>
<td>0.25</td>
<td>0.125</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>611</td>
<td>0.25</td>
<td>0.25</td>
<td>0.0625</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

CLSI breakpoints values (in CA-MHB): Flucloxacillin: N/A; Oxacillin: S≤2, R≥4; Vancomycin: S≤2, R≥16.
Results - MRSA

Reincubation in TGN with VAN at either MIC or ThC did not affect the control samples. Irrigation removed ~3 log CFU, and over 90% of the biomass for all strains. Reincubation in TGN of irrigated samples restored the cells numbers and the biomass to control levels. Reincubation in TGN with VAN at MIC inhibited the restoration of the biofilms. Reincubation in TGN with VAN at ThC further reduced the CFU counts by ~3 log CFU. No further reduction of the biomass was observed.

Fig a) Log_{10} CFU counts; fig b) Biomass assays normalized as percentage of T0 control. Control samples; Irrigation: samples irrigated with 50 mL of 0.9% NaCl; T0: extemporaneously analysed; T24 TGN: 24h reincubation in TGN; T24 MIC: 24h reincubation in TGN with VAN at MIC; T24 ThC: 24h reincubation in TGN with VAN at 20mg/L (Therapeutic Concentration).

*:p<0.05 when compared to T0 control; **:p<0.001 when compared to T0 control; †:p<0.05 when compared to T0 irrigation; ††:p<0.001 when compared to T0 irrigation. 2-way ANOVA followed by Holm-Sidak test. n=4.
Results - MSSA

Reincubation in TGN FLX at both MIC and ThC reduced CFU counts and biomass of strains ATCC 25923 and 611, albeit more modestly.

Irrigation removed 3 to 4 log CFU, and over 90% of the biomass for all strains.

Reincubation of irrigated samples in TGN restored the cells numbers and the biomass to control levels.

Reincubation of irrigated samples in TGN with FLX at MIC inhibited the restoration of the biofilms of strains 578 and 611, and caused a 1 log reduction of CFU counts for strain ATCC 25923.

Reincubation of irrigated samples in TGN with FLX at ThC further reduced the CFU counts by ~2 log CFU. No further reduction of the biomass was observed.

Fig a) \log_{10} CFU counts; fig b) Biomass assays normalized as percentage of T0 control. Control: Control samples; Irrigation: samples irrigated with 50 mL of 0.9% NaCl; T0: extemporaneously analysed; T24 TGN: 24h reincubation in TGN; T24 MIC: 24h reincubation in TGN with FLX at MIC; T24 ThC: 24h reincubation in TGN with FLX at 20mg/L (Therapeutic Concentration).

*: $p<0.05$ when compared to T0 control; **: $p<0.001$ when compared to T0 control; †: $p<0.05$ when compared to T0 irrigation; ††: $p<0.001$ when compared to T0 irrigation. 2-way ANOVA followed by Holm-Sidak test. n=4.
Conclusion

- Irrigation has a **synergistic effect** with vancomycin and flucloxacillin against MRSA and MSSA biofilms grown on metallic substrates.
- Irrigation alone reduces CFU from biofilms in a more important way than previously reported (1-2) but only **transiently**.
- Vancomycin had **no effect** on MRSA biofilms, even at therapeutic concentrations.
- Flucloxacillin had a **strain-dependent effect** on MSSA biofilms.

Those results are in accordance with the hypothesis that a lowered bacterial density in biofilms improves the susceptibility to antibiotics.

This supports the assumption that a thorough debridement is needed to successfully treat patients suffering from PJI.

However, the in-vivo effectiveness of PW in patients is limited by poor access to parts of the implants due to anatomical constraints, providing an argument for the development of alternative strategies to disrupt biofilms.