Activity of combinations of an enzymatic cocktail (CDD) with antibiotics against biofilms of clinical isolates of ESKAPE pathogens

W. Siala¹,², A. Hoche², F. Van Bambeke¹, T. Vanzieleghem²

¹ Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute
Université catholique de Louvain
² OneLIFE SA, Louvain-la-Neuve, Belgium
“ESKAPE” Pathogens

- Enterococcus faecium
- Staphylococcus aureus
- Klebsiella pneumoniae
- Acinetobacter baumannii
- Pseudomonas aeruginosa
- Enterobacter species

There is no Escape from the ESKAPE Pathogens

DEVICE-RELATED INFECTIONS
- Ventricular derivations
- Oro-tracheal tubing
- Vascular central
- Prosthetic cardiac valves and pacemakers
- Peripheral vascular
- Urinary catheters
- Orthopedic prosthesis

CHRONIC INFECTIONS
- Oral infections
- Endocarditis
- Cystic fibrosis
- Urinary tract infections
- Chronic wounds
Biofilms facts

- 99% of bacteria grow as aggregated, sessile communities (biofilm)
- Bacteria within biofilm are highly protected and highly resistant to antibacterial treatments (up to 1000 times more resistant to antibiotics than planktonic bacteria)
- Bacteria within biofilm are genetically different than bacteria in the planktonic state
- NIH estimates more than 80% of infections in humans are caused by microbial biofilm.
Current therapy and prophylaxis of Biofilm Infections

Physical and surgical methods: in cases of infected medical devices, removal of the device is often necessary to treat the infection.

Antimicrobial therapy: poor access
β-lactams, fluoroquinolones, aminoglycoside,

Preventing microbial attachment

Goal of the study
Develop a new enzymatic combination to specifically restore activity of antibiotics and eradicate ESKAPE biofilm.
Methods

In vitro static biofilm model

- Assessment of enzymatic activity against Biofilm matrix
 - Crystal violet assay

Ex vivo biofilm model:
- Human urinary catheter

- Assessment of enzymes-antibiotics activity against bacterial viability
 - Resazurin assay
Design of a broad spectrum enzymatic cocktail

![Graph showing biofilm removal percentages for E.coli and P.aeruginosa with different enzymes.](image-url)
Design of a broad spectrum enzymatic cocktail

E. faecalis

- Amylase
- Cellulase
- Dispersin B
- **Dnase I**
- Lipase
- Mannanase
- Protease
- Viscozyme

S. aureus

- Amylase
- Cellulase
- Dispersin B
- **Dnase I**
- Lipase
- Mannanase
- Protease
- Viscozyme
Design of a broad spectrum enzymatic cocktail

K.pneumoniae

S.epidermidis

![Graphs showing biofilm removal for K. pneumoniae and S. epidermidis using different enzymes.](image-url)
Percentage of biofilm removal after exposure to combinations used for enzymatic cocktail design

![Graph showing biofilm removal percentages for different strains after exposure to enzymatic cocktail CDD.](chart.png)

Legend:
- E.coli
- E.faecalis
- E.faecalis
- K.pneumoniae
- P.aeruginosa
- S.aureus
- S.epidermidis

Enzymatic cocktail CDD
Percentage of biofilm removal after exposure to enzymatic cocktail CDD in *In vitro* biofilm models

In vitro static biofilm model
Percentage of biofilm removal after exposure to enzymatic cocktail CDD in *Ex vivo* biofilm models

Ex vivo biofilm model: Human urinary catheter

Crystal violet assay

Biofilm removal %

<table>
<thead>
<tr>
<th>Biofilm</th>
<th>Untreated</th>
<th>CDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>J40589D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J06829C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E62049Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R55712H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B37470X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
highlights combinations for which the mean reduction was higher than that observed for drugs alone (Statistical analysis: one-way ANOVA with Tukey’s post-hoc test)

reduction in viability compared to untreated control
CDD showed highest biofilm removal against ESKAPE biofilms of *S.aureus* (89%), *S.epidermidis* (94%), *P.aeruginosa* (83%), *E.faecalis* (81%), *E.coli* (74%) and *K.pneumoniae* (55%)

At human Cmax TOB, AMK, MXF, CIP, VAN, LDZ were weakly active against bacteria growing in biofilms

Combining CDD with 6 antibiotics belonging to 4 classes proves highly synergistic against biofilms of 6 clinical isolates.

This opens perspectives for testing these enzymes as adjuvant for the treatment of biofilm infections.
Acknowledgments

Pr. Françoise Van Bambeke

Dr. Hector RODRIGUEZ-VILLALOBOS

OneLife R&D team
CEO. Jean-Michel Vanderhofstadt
MD. Guy Heynen
Dr. Thomas Vanzieleghem
Martine Weickmans
Aline Lardinois
Thank you for your attention!

Contact : W.siala@onelife-bf.com