INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen responsible for worldwide nosocomial infections, with great metabolic versatility and extraordinary ability to grow in varied and daily environments (such as soil, water, food, animal tissues, so on), from which it is easily transmissible. *P. aeruginosa* presents high intrinsic resistance to several antibiotics, multiple virulence factors, and an extraordinary capacity to acquire new resistance mechanisms. In addition, the dissemination of certain multidrug-resistant epidemiological clones has been previously reported. The mucoid morphology, the ability to form biofilms in most surfaces, the quorum-sensing response among bacteria, and the ability of adherence on the host cells, altogether provide advantages to *P. aeruginosa* to colonize and multiply in different environments, to increase their levels of antibiotic resistance, and to protect from environmental pressures. *P. aeruginosa* pathogenicity is clearly multifactorial.

OBJECTIVES. To evaluate biofilm formation, pigment production, elastase activity, and antimicrobial resistance in *P. aeruginosa* isolates from clinical, healthy human, food, and environmental samples.

MATERIAL AND METHODS

Bacterial isolates. A total of 44 *P. aeruginosa* isolates from clinical samples (20), faecal samples of healthy volunteers (9), foods (5) and environmental samples (10), as well as *P. aeruginosa* PAO1 reference strain were characterised.

Susceptibility testing to 15 antipseudomonal agents was performed by disc diffusion method.

Biofilm production. Biofilm biomass and bacterial viability were quantified using crystal violet and FDA hydrolysis assays.

Pigment production, elastase activity and motility assays.

Pyocyanin, pyoverdine and pyruvlin production were quantified. Elastase activity was determined using Elastin Congo Red. Swimming and swarming motility was evaluated using LB plates with 0.3% and 0.5% agar, respectively.

Virulence and quorum-sensing markers (*exu*, *exoA*, *exoY*, *exoT*, *exoA*, *lasA*, *lasB*, *lasI*, *apr*, *rhlA*, *rhlB*, *rhlR*) were studied by PCR.

Molecular typing was determined by SpeI-PFGE and MLST (http://pubmlst.org/paeruginosa/).

Data analysis. R commander and JMP software were used for statistical analysis.

RESULTS

Sixteen isolates were multidrug resistant (MDR) (15 clinical, 1 environmental), whereas nineteen isolates (9 from healthy humans, 1 from meat food, 6 environmental and 3 clinical) were susceptible to all antibiotics tested (Figure 1).

Thirty-eight different PFGE profiles and 24 sequence types (including new STs [1059, 1455, 1456 and 2068]) were identified (Figure 2). The high risk clone ST175 was found in environmental and clinical isolates. ST253 among clinical and healthy humans, and ST111 and ST235 only among clinical isolates.

A high diversity of virulence markers was detected, with 11 isolates expressing *exu* (8 clinical and 3 from healthy humans). Five isolates had an insertion sequence in the lasR gene. (Table 1)

CONCLUSIONS

Most of environmental and clinical *P. aeruginosa* are high biofilm producers. Non-clinical isolates from different origins show high clonal diversity and variety of genetic lineages, increased elastase activity, growth rate and motility, but low antimicrobial resistance percentages. These data underline the variable capacity of *P. aeruginosa* to adapt to different environments.

REFERENCES

8. NAR 2011.