Achieving pharmacokinetic/pharmacodynamic (PK/PD) targets of \(\beta \)-lactams in critically ill patients at first dose:

Can we do it with standard dosing?

Isabelle K. Delattre\(^1,7\), Fabio S. Taccone\(^2\), Frédérique Jacobs\(^3\), Thierry Dugernier\(^4\), Herbert Spapen\(^5\), Pierre-François Laterre\(^6\), Pierre E. Wallemacq\(^7\), Vincent Tam\(^8\), Françoise Van Bambeke\(^1\), Paul M. Tulkens\(^1\)

\(^1\) Université catholique de Louvain, Louvain Drug Research Institute, Brussels, Belgium
\(^2\) Hôpital universitaire Erasme, Service des soins intensifs, Brussels, Belgium
\(^3\) Hôpital universitaire Erasme, Service des maladies infectieuses, Brussels, Belgium
\(^4\) Clinique St-Pierre, Ottignies, Service des soins intensifs, Brussels, Belgium
\(^5\) Universitair Ziekenhuis Brussel, Service des soins intensifs, Brussels, Belgium
\(^6\) Cliniques Universitaires St-Luc, Service des soins intensifs, Brussels, Belgium
\(^7\) Université catholique de Louvain, Institut de recherche expérimentale et Clinique, Brussels, Belgium
\(^8\) University of Houston, College of Pharmacy, Houston, United States
General Considerations

PK/PD parameter predictive of β-lactam efficacy?

Concentration vs. time profile

T>MIC
Time during which concentrations are above the minimal inhibitory concentration (MIC)

Maximize the exposure time
% of Time? Threshold?

%fT>MIC required for β-lactams

Prevention of Resistance: A Goal for Dose Selection for Antimicrobial Agents

G. L. Drusano
Division of Clinical Pharmacology, Clinical Research Institute, Albany Medical College and New York State Department of Health, Albany, New York

Table 1. Percentage of the dosing interval required for free drug concentrations that exceed the MIC of the pathogen for β-lactam antibiotics.

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Stasis end point</th>
<th>Max kill end point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenems</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Penicillins</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>40</td>
<td>60–70</td>
</tr>
</tbody>
</table>

NOTE. Data are % of dosing interval. Max kill is the fraction of the dosing interval needed to be covered by free drug to achieve maximal kill of the pathogen; stasis is the fraction of the dosing interval needed to be covered by free drug to prevent pathogen growth. From W. A. Craig (personal communication).
% of Time? Threshold?

Literature review

- Original papers in PubMed published from 2000 to 2015
- Serum or plasma concentrations in critically ill patients
- Search terms:
 - title: piperacillin, ceftazidime, cefepime or meropenem
 - text: pharmacokinetics or PK, pharmacodynamics or PD and minimal inhibitory concentration or MIC

Example for piperacillin: what is the target?

70 papers reviewed…
… 22 usable papers

<table>
<thead>
<tr>
<th>Reported PK/PD targets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100%T>1xMIC</td>
<td>14/27</td>
</tr>
<tr>
<td>50%T>1xMIC</td>
<td>9/27</td>
</tr>
<tr>
<td>50%T>4xMIC</td>
<td>3/27</td>
</tr>
<tr>
<td>100%T>4xMIC</td>
<td>1/27</td>
</tr>
</tbody>
</table>
% of Time? Threshold?

Literature review

- Original papers in PubMed published from 2000 to 2015
- Serum or plasma concentrations in critically ill patients
- Search terms:
 - title: piperacillin, ceftazidime, cefepime or meropenem
 - text: pharmacokinetics or PK, pharmacodynamics or PD and minimal inhibitory concentration or MIC

Example for piperacillin: which Mics?

70 papers reviewed…
… 22 usable papers

<table>
<thead>
<tr>
<th>Reported MIC data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual MIC</td>
<td>7/23</td>
</tr>
<tr>
<td>EUCAST</td>
<td>8/23</td>
</tr>
<tr>
<td>CLSI</td>
<td>1/23</td>
</tr>
<tr>
<td>Unknown</td>
<td>7/23</td>
</tr>
</tbody>
</table>
% of Time? Threshold?

Literature review

- Original papers in PubMed published from 2000 to 2015
- Serum or plasma concentrations in critically ill patients
- Search terms:
 - title: piperacillin, ceftazidime, cefepime or meropenem
 - text: pharmacokinetics or PK, pharmacodynamics or PD and minimal inhibitory concentration or MIC

Ex. Piperacillin

<table>
<thead>
<tr>
<th>Reported MIC data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual MIC</td>
<td>30%</td>
</tr>
<tr>
<td>EUCAST</td>
<td>35%</td>
</tr>
<tr>
<td>CLSI</td>
<td>4%</td>
</tr>
<tr>
<td>Unknown</td>
<td>31%</td>
</tr>
</tbody>
</table>

!Lack of clinical outcome data!

Impossible to assess and/or compare the clinical efficacy of the PK/PD targets
The authors “would advocate a PD target of 100%T>1xMIC for intermittent dosing as this is likely to result in a concentration 4xMIC for 40-70% of the dosing interval as required for the different classes of β-lactams”.

(Minerva Anestesiol 2011;77:1-2) REVIEW

Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics

MOHD HAFIZ ABDUL AZIZ 1, C. E. STAATZ 2, C. M. J. KIRKPATRICK 3, J. LIPMAN 4, 5, J. A. ROBERTS 4, 6
The ‘Houston’ Target

Maximal killing: $100\% T > 4x\text{MIC}$

Figure 1. The relationship between microbiological success and $T > 4.3 \times \text{MIC}$, determined by univariate logistic regression analysis. Probability $= e^{L}/(e^{L} + 1)$, where $L = 0.064699x - 3.9234$; OR = 645, $P = 0.006$.

FIG. 2. Observed microbiologic responses to various meropenem exposures. Data are presented as the means ± standard deviations of the bacterial burden. WT, wild type; AmpC, ceftazidime-resistant (AmpC) mutant.
The ‘Houston’ Target

Maximal killing: 100%T > 4xMIC

100%fT > 4xMIC for microbiological success

Figure 1. The relationship between microbiological success and $T > 4.3 \times \text{MIC}$, determined by univariate logistic regression analysis. Probability is $e^L/(e^L + 1)$, where $L = 0.064699x - 3.9234$; OR = 645, $P = 0.006$.

D

$\frac{fC_{\text{min}}}{\text{MIC}} = 6$ to suppress resistance emergence

FIG. 2. Observed microbiologic responses to various meropenem exposures. Data are presented as the means ± standard deviations of the bacterial burden. WT, wild type; AmpC, ceftazidime-resistant (AmpC) mutant.
Objectives of the Study

In critically-ill patients receiving a first dose of β-lactam:

1. Do we reach ‘Australian double target’
 \((100\%\text{T}>1\times\text{MIC} \sim 40-70\%\text{T}>4\times\text{MIC})\) with the standard dosage?

2. Which dose do we need to reach the ‘Houston’ target
 \((100\%\text{T}>4\times\text{MIC})\)?
Critically ill septic patients treated with a first dose of:

- piperacillin [4g] \((n=22)\),
- ceftazidime [2g] \((n=18)\),
- cefepime [2g] \((n=19)\) or
- meropenem [1g] \((n=19)\)

infused over 30 minutes

* Taccone FS et al. Crit Care 2010;14:R126
Modeling and Simulations (1/2)

- **PK data**
 - Population modeling (Delattre *et al.* Clin Biochem 2012;45:780-6)
 - Two-compartment model
 - Population estimates (basic model):

<table>
<thead>
<tr>
<th></th>
<th>Piperacillin</th>
<th>Ceftazidime</th>
<th>Cefepime</th>
<th>Meropenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 (L for 70kg)</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>CL (L/h for 70kg)</td>
<td>6.8</td>
<td>3.5</td>
<td>4.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

V1, central volume of distribution; CL, total body clearance

- Simulations: NONMEM

 For each β-lactam → 1000 patients
Modeling and Simulations (2/2)

- Target MIC

EUCAST “S” breakpoints for *Pseudomonas* spp.*

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>EUCAST breakpoints for Pseudomonas spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin</td>
<td>S ≤ 16 mg/L</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>S ≤ 8 mg/L</td>
</tr>
<tr>
<td>Cefepime</td>
<td>S ≤ 8 mg/L</td>
</tr>
<tr>
<td>Meropenem</td>
<td>S ≤ 2 mg/L</td>
</tr>
<tr>
<td></td>
<td>R > 16 mg/L</td>
</tr>
<tr>
<td></td>
<td>R > 8 mg/L</td>
</tr>
</tbody>
</table>

S, susceptibility; R, resistance

2016-01-01, v 6.0; http://www.eucast.org

Last access: April 1, 2016
The ‘Australian’ Targets (1/3)

100%T > 1xMIC ~ 40-70%T > 4xMIC

“S” breakpoint from EUCAST for Pseudomonas spp.: 16 mg/L for piperacillin, 8 mg/L for ceftazidime
The ‘Australian’ Targets (1/3)

100%T>1xMIC ~ 40-70%T>4xMIC

Piperacillin 4g q6h, 0.5-h infusion

Ceftazidime 2g q8h, 0.5-h infusion

“S” breakpoint from EUCAST for *Pseudomonas* spp.: 16 mg/L for piperacillin, 8 mg/L for ceftazidime
The ‘Australian’ Targets (2/3)

100%T>1xMIC ~ 40-70%T>4xMIC

Ceftazidime 2g q8h, 0.5-h infusion

Cefepime 2g q8h, 0.5-h infusion

Meropenem 1g q8h, 0.5-h infusion

"S" breakpoint from EUCAST for Pseudomonas spp.: 8 mg/L for cefepime, 2 mg/L for meropenem
Are 'Australian' targets reached?

Is a PK/PD target of 100%T>1xMIC likely to result in a concentration 4xMIC for 40-70% of the dosing interval as required for the different classes of β-lactams?

For 1,000 critically-ill septic patients treated with a first dose of β-lactam:

<table>
<thead>
<tr>
<th></th>
<th>Dosage (0.5h inf.)</th>
<th>no. of patients with 100%T>MIC</th>
<th>no. of patients with 100% T>1xMIC and 40-70%T>4xMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin</td>
<td>4g [q6h]</td>
<td>560 (56%)</td>
<td>257 (26%)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>2g [q8h]</td>
<td>871 (87%)</td>
<td>307 (31%)</td>
</tr>
<tr>
<td>Cefepime</td>
<td>2g [q8h]</td>
<td>628 (63%)</td>
<td>128 (13%)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>1g [q8h]</td>
<td>592 (59%)</td>
<td>555 (55%)</td>
</tr>
</tbody>
</table>

NO at first dose except for meropenem
The ‘Houston’ Target …

Required median first doses to reach 100% at 4 × MIC

<table>
<thead>
<tr>
<th>Infusion time (h)</th>
<th>Piperacillin</th>
<th>Ceftazidime</th>
<th>Cefepime</th>
<th>Meropenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Required dose** (25%-75%)
- **Standard dose**
The ‘Houston’ Target …

<table>
<thead>
<tr>
<th>First dose of β-lactam in critically ill patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard dose</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.5h infusion</td>
</tr>
<tr>
<td>Piperacillin</td>
</tr>
<tr>
<td>Ceftazidime</td>
</tr>
<tr>
<td>Cefepime</td>
</tr>
<tr>
<td>Meropenem</td>
</tr>
</tbody>
</table>

Which dose is needed to reach 100% \(T > 4 \times \text{MIC} \)?

~ 50% to 150% increase of the standard dose even with a 3-h infusion
Conclusions

- The ‘Australian’ targets (100%T>1xMIC ~ 40-70%T>4xMIC)
 - Not reached with standard dosing
 (except for meropenem but low target MICs !!)

- The ‘Houston’ target (100%T>4xMIC)
 - Will require a 50-150% increase over standard dose
 - Systematic 3-h infusion?

Increasing the first dose is probably essential to be optimal in severely-ill patients.

100%T>4xMIC : a new Graal ?

The discussion is open…