Cooperation between active efflux and porin alteration is sufficient to confer high-level resistance to meropenem in *Pseudomonas aeruginosa* clinical isolates

H. Chalhoub1, Y. Säen2, H. Rodríguez-Villalobos3, O. Denis4, B.C. Kah5, P.M. Tuikens1, F. Van Bambeke1

1 Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; 2 Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; 3 Cliniques Universitaires Saint-Luc, Brussels, Belgium; 4 Hôpital Erasme, Brussels, Belgium; 5 University Hospital Münster, Münster, Germany.

Introduction & Purpose

- Carbapenems are used for treating infections caused by multidrug-resistant Gram-negative bacteria, which may promote the risk of emergence of high-level resistance usually associated with carbapenemase expression [1]. Upon screening of a collection of *Pseudomonas aeruginosa* (PA) isolates from patients suffering from cystic fibrosis, MICs ≥ 64 mg/L for meropenem were observed in carbapenemase(-) negative strains.

- Six meropenem resistant (MEM-R) strains isolated from clinically-confirmed cystic fibrosis (CF) cases were compared to seven MEM-R strains collected from patients suffering from hospital-acquired pneumonia (HAP) (Table 1).

- Our aim was to examine whether activity of efflux pumps, alterations of porins and expression of other β-lactamase(s) than carbapenemase(s) could explain the high-level resistance to meropenem in these strains.

Methods

- Six meropenem resistant (MEM-R) strains isolated from clinically-confirmed cystic fibrosis (CF) cases were compared to seven MEM-R strains collected from patients suffering from hospital-acquired pneumonia (HAP) (Table 1).

- Memopenem (MEM) MICs were measured by microdilution in CA-MHB according to CLSI [2] in the absence or presence of the efflux pump inhibitor Phe-Arg-β-Naphthylamide (PAβN) at the concentration used.

- Carbapenemases (VIM, IMP, NDM, OXA-48, KPC), ESBLs, blaBELL, (BEL-1 to 3), PER (PER-1 to 5), GES (GES-1 to 18), VEB (VEB-1 to 7), CTX-M (2, 3, 9), blatEM, blatSHV, and blaoXA (1, 2, 9, 10, 18, 20, 23, 30, 58, 198), and AmpC expression was assessed by molecular techniques (PCR) and/or phenotypic tests (double disk for metallo-β-lactamases).

- β-lactamase expression was assessed by molecular techniques (PCR) and/or phenotypic tests (double disk for metallo-β-lactamases ; ESBL NDM and Carbapen MIC tests (3)).

- oprD2 gene and its promoter were sequenced.

Results

- Carbapenemase phenotypic detection returned negative results for CF strains but positive results for HAP strains (Fig. 1), with presence of blaMEX-2 (metallo-β-lactamase gene) confirmed by PCR.

- Meropenem MICs were decreased of 2 to 4 log dilutions in the presence of PAβN for all CF strains but not for HAP strains (Fig. 2).

- Complete restoration of susceptibility upon in vitro addition results from the coexistence of OprD2 mutations, AmpC production and/or possibly incomplete inhibition of MEM efflux by PAβN at the concentration used.

- As active efflux can confer cross-resistance to other antipseudomonal agents, i.e. other β-lactams or quinolones for example, determining the mechanism of resistance to meropenem is recommended in clinical settings in order to optimize the antibiotic therapy.

Conclusions

- Antibiotic exclusion from bacteria by concomitant efflux and reduced uptake is as effective as carbapenemases to confer high-level resistance to meropenem in strains expressing AmpC.

- Incomplete restoration of susceptibility upon PAβN addition results from the coexistence of OprD2 mutations, AmpC production and/or possibly also incomplete inhibition of MEM efflux by PAβN at the concentration used.

- As active efflux can confer cross-resistance to other antipseudomonal agents, i.e. other β-lactams or quinolones for example, determining the mechanism of resistance to meropenem is recommended in clinical settings in order to optimize the antibiotic therapy.

References

Acknowledgments

H.C. is Boursier of the Belgian Fonds de la recherche in l’industrie et l’agriculture (FRIBA). This work was supported by the Region Wallonne and the Belgian Fonds de la Recherche scientifique.