S. aureus is a versatile and aggressive pathogen creating significant public health threat. Intracellular survival of this bacterium is often considered as an important determinant in the persistent and relapsing character of S. aureus infections (Lowy, Trends Microbiol. 2000;8:341-343). In this context, selecting an optimal treatment to eradicate the intracellular forms of S. aureus remains challenging, since routine evaluation of antibiotic activity is only performed against extracellular bacteria. Yet, the intracellular activity of most anti-staphylococcal antibiotics is markedly lower compared to what is observed extracellularly.

We recently showed that moxifloxacin (MXF) is among the most active agents against the intracellular forms of the fully sensitive S. aureus strain ATCC 25923 (Barcia-Macay, Antimicrob Agents Chemother. 2006;50:841-851). MXF also shows cidal effects against an American isolate of CA-MRSA (strain NRS 192, ECCMID 2007 Poster T02). Our objective was to expand these studies to CA-MRSA isolates of more diverse geographical origins.

We recently showed that moxifloxacin (MXF) is among the most active agents against the intracellular forms of the fully sensitive S. aureus strain ATCC 25923 (Barcia-Macay, Antimicrob Agents Chemother. 2006;50:841-851). MXF also shows cidal effects against an American isolate of CA-MRSA (strain NRS 192, ECCMID 2007 Poster T02). Our objective was to expand these studies to CA-MRSA isolates of more diverse geographical origins.

We recently showed that moxifloxacin (MXF) is among the most active agents against the intracellular forms of the fully sensitive S. aureus strain ATCC 25923 (Barcia-Macay, Antimicrob Agents Chemother. 2006;50:841-851). MXF also shows cidal effects against an American isolate of CA-MRSA (strain NRS 192, ECCMID 2007 Poster T02). Our objective was to expand these studies to CA-MRSA isolates of more diverse geographical origins.

We recently showed that moxifloxacin (MXF) is among the most active agents against the intracellular forms of the fully sensitive S. aureus strain ATCC 25923 (Barcia-Macay, Antimicrob Agents Chemother. 2006;50:841-851). MXF also shows cidal effects against an American isolate of CA-MRSA (strain NRS 192, ECCMID 2007 Poster T02). Our objective was to expand these studies to CA-MRSA isolates of more diverse geographical origins.

We recently showed that moxifloxacin (MXF) is among the most active agents against the intracellular forms of the fully sensitive S. aureus strain ATCC 25923 (Barcia-Macay, Antimicrob Agents Chemother. 2006;50:841-851). MXF also shows cidal effects against an American isolate of CA-MRSA (strain NRS 192, ECCMID 2007 Poster T02). Our objective was to expand these studies to CA-MRSA isolates of more diverse geographical origins.