Prevalence of Mex-mediated resistance in Pseudomonas aeruginosa from patients with ventilator-associated pneumonia in 4 Belgian hospitals

N. Mesaros,1 Y. Glupczynski,2 D. Pierard,3 A. Dediste,4 Y. Van Laethem,4 F. Jacobs,5 M. Struelens,5 D. De Vos,6 J-P Pirnay,8 F. Van Bambeke,1 P.M. Tulkens 1

1 Unité de Pharmacologie cellulaire et moléculaire, Université catholique de Louvain, Brussels; 2 Laboratoire de microbiologie, Clinique universitaire UCL Mont-Godinne,Yvoir; 3 Laboratorium voor Microbiologie, AZ-Vrije Universiteit Brussel, Brussels; 4 Service des maladies infectieuses, CHU-Saint-Pierre, Brussels; 5 Hôpital Erasme, Université libre de Bruxelles, 6 Queen Astrid Military Hospital, Brussels - Belgium

ABSTRACT

Objectives: Mex-mediated resistance is difficult to detect in Pseudomonas aeruginosa (Pa) by routine susceptibility testing. Yet, it may confer cross-resistance to unrelated classes of drugs and contribute to selection of other resistance mechanisms. Our aim was to determine the prevalence of Mex efflux pumps in Pa isolates obtained from patients with ventilator-associated pneumonia (VAP).

Methods: Pa isolates were collected as pairs from each patient (first isolate before initiation of antibiotic treatment [A], second isolate, after 5 to 10 days of treatment [post]). In three hospitals (A-C), isolates were randomly collected from all eligible patients; in the 4th hospital, isolates were selected on the basis of interpretative reading of the susceptibility tests and resistance phenotype. Mex and mex transcription levels were determined by real-time PCR: mexC and mexE transcription was detected by semi-quantitative PCR (their basal expression being undetectable in wild-type strains). Isolates typing was performed by AFLP.

Results: The table shows the number of isolates in which overexpression of mex genes was detected (pre and post) by hospital. DNA-based typing globally confirmed the clonality of the successive isolates in each patient, and excluded the occurrence of epidemic strains in the non-selected isolates.

Conclusions: A variable prevalence of Mex efflux is found before treatment in isolates from patients selected at random, and increases in several cases following antibiotic exposure. In non-randomly collected samples, prevalence was very high, confirming the value of the interpretative algorithms used to detect mechanisms of efflux resistance. These data highlight the need of detecting efflux-mediated resistance in Pa clinical isolates originating from hospitalised ICU patients.

INTRODUCTION

Among resistance mechanisms present in P. aeruginosa (Pa), active efflux is of particular interest because it can confer cross-resistance to unrelated classes of antibiotics and favor the selection of other resistance mechanisms (1,2). Yet, it is difficult to evidence by routine susceptibility testing.

AIMS OF THE STUDY

• To compare the prevalence of Mex efflux pumps in Pa isolates obtained from patients with ventilator-associated pneumonia (VAP) from 3 University hospitals of the Brussels Region (see map).

• To examine whether the expression of these efflux pumps is modified upon antibiotic treatment

• To confront these data with those obtained for Pa isolates obtained from a 4th hospital (Mt Godinne) located in another Region (Wallonia) and selected based on antibiotic resistance patterns suggestive of resistance by efflux.

RESULTS

Prevalence of efflux pump gene expression in isolates collected before (A) or after (P) antibiotic treatment

MexC and MexE: positive or negative detection

MexA and MexX: ratio with expression level in a wide-type strain

increased expression; increased expression during treatment

Genotyping of the strains using AFLP

REFERENCES


Mailing address:
P.M. Tulkens
UCL 73.70 av. Mounier 73
1200 Brussels - Belgium

tulkens@facm.ucl.ac.be

http://www.facm.ucl.ac.be/posters.htm