Intracellular activity of daptomycin (DAP) against Methicillin-Sensitive (MSSA), Methicillin-Resistant (MRSA) and Vancomycin-Intermediate (VISA) S. aureus

S. Lemaire, F. Van Bambeke, M.-P. Mingeot-Leclercq and P.M. Tulkens,
Unité de pharmacologie cellulaire et moléculaire, Université catholique de Louvain, Brussels;

Abstract

Objectives: Relapsing and chronic S. aureus infections has been ascribed to intracellular bacterial persistence and emergence of resistance. The activity of antibiotics may differ markedly between the extracellular and intracellular milieu (JAC 2005; 50:841-851). Intracellular activity needs, therefore, to be assessed in specific models. In this context, we have examined the activity of DAP, a cyclic lipopeptide with fast and extensive bactericidal activity against S. aureus.

Methods: MSSA (ATCC 25923), HA-MRSA (ATCC 33591), and VISA (NRS 23) were used. MICs were determined in broth (supplemented with 50 mg/L of CaCl2) by microdilution method. Infection of THP-1 macrophages was performed as described previously (JAC 2005; 50:887-904) and the intracellular localization of the bacteria was ascertained by confocal and electron microscopy. Activity was measured after 24 h exposure to a drug concentration corresponding to reported human Cmax (77 mg/L) (controls cells: gentamicin [0.5 x MIC] to prevent extracellular growth).

Results: In controls, phagocytosed bacteria were seen in membrane-bounded vacuoles (phagolysosomes). MICs and intracellular activities are shown in the table.

<table>
<thead>
<tr>
<th>Strains</th>
<th>MIC (mg/L)</th>
<th>THP-1</th>
<th>Δ Log cfu ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSA</td>
<td>0.125</td>
<td>-1.5 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>HA-MRSA</td>
<td>0.125</td>
<td>-1.5 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>VISA</td>
<td>0.5</td>
<td>-1.2 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: DAP shows intracellular activity against MSSA, HA-MRSA and VISA.

Background

Intracellular survival is often considered as an important determinant in the relapsing and recurrent character of staphylococcal infections. We have shown that the activity of antibiotics towards phagocytized S. aureus developing in phagolysosomes is often considerably weaker than their extracellular activity. Yet, major differences exist among antibiotics with respect to their capacity to decrease the intracellular inoculum. It should, therefore, be possible to optimize therapy by selecting antibiotics active against both extracellular and intracellular forms of S. aureus.

Daptomycin (DAP) is a cyclic lipopeptide which shows extensive bactericidal effect towards extracellular S. aureus. Because there is evidence that DAP could localize in lysosomes of eukaryotic cells, we have, therefore, examined its intracellular activity against S. aureus with different resistance phenotypes (MSSA, HA-MRSA and VISA).

Conclusions

DAP, known to be highly bacterial extracellularly, displays intracellular concentration-dependent activity with:

- EC50 and Cstatic values close to 9-10 x its MIC in broth (denoting a loss of intrinsic activity similar to that of gentamicin) and Emax value of about -1.6 log cfu (denoting a limit in the extent of its intracellular activity similar to that of ciprofloxacin).
- is not markedly influenced by the resistance phenotype (towards beta-lactams or vancomycin).

Methods

MICs:
Susceptibility testing was performed by micro-dilution in Mueller-Hilton broth supplemented with 50 mg/L CaCl2.

Intracellular infection and determination of the intracellular activity of daptomycin
THP-1 macrophages were infected with opsonized bacteria (1 h; 37°C), washed with phosphate-buffered saline, and incubated for 45 minutes with gentamicin (50 mg/Liter) to eliminate non-adherent and non-internalized bacteria.

Infected cells were then exposed for 24 h to antibiotics while control cells were maintained in the continuous presence of gentamicin (0.5 x MIC) to prevent the extracellular growth of bacteria released from dead cells (this method is described in details in refs. 3 and 5).

References


Acknowledgments

This work was supported by the Belgian Fonds de la Recherche Scientifique Medicale (FRSM) and the Belgian Federal Science Policy Office (Research project P5332, research action PS).