Mechanisms of Resistance in *S. pneumoniae* Exposed to Half MICs of CIP and MXF

L. AVRAIN,1 N. MESAROS,1 Y. GLUPCZYNSKI,2 F. VAN BAMBEKE,1 R. VANHOOF,3 AND P.M. TULKENS1

1Pharmacologie cellulaire et moléculaire, Université catholique de Louvain – Brussels - Belgium
2Laboratoire de Microbiologie, Cliniques universitaires Mont-Godinne – Belgium
3Unité antibactériennes et infections hospitalières, Institut Pasteur – Brussels – Belgium

PRESENTATION

C1-0041

ICAC

Mechanisms of Resistance in S. pneumoniae Exposed to Half MICs of CIP and MXF

L. AVRAIN,1 N. MESAROS,1 Y. GLUPCZYNSKI,2 F. VAN BAMBEKE,1 R. VANHOOF,3 AND P.M. TULKENS1

1Pharmacologie cellulaire et moléculaire, Université catholique de Louvain – Brussels - Belgium
2Laboratoire de Microbiologie, Cliniques universitaires Mont-Godinne – Belgium
3Unité antibactériennes et infections hospitalières, Institut Pasteur – Brussels – Belgium

REVISED ABSTRACT

Background: Efflux is now increasingly recognized as an important resistance mechanism for *S. pneumoniae*. Little is however known about its emergence in bacteria exposed to subtherapeutic concentrations.

Methods: *S. pneumoniae* ATCC49619 (fully sensitive, no mechanism of resistance detected) and SP32 (40X MICs) were exposed for up to 13 days to CIP or MXF at 0.5x their MIC, with daily readjustment to meet the increase in MIC (measured with arithmetic dilutions). Efflux was detected by the reversal of MIC increase in the presence of reserpine (R) and by real time PCR of pmrA. Mutations in parC, pmrA and gyrA genes were detected by sequencing.

Results: The table shows the changes in MIC and the expression of pmrA at day 0 and day 13, and the additional mutations detected at day 13.

AIM OF THE STUDY

- To evaluate whether exposure of *S. pneumoniae* to sub-MIC concentrations of ciprofloxacin or moxifloxacin triggers the development of efflux-mediated resistance and/or selects for target mutations.

METHODS

Induction of resistance: *S. pneumoniae* ATCC49619 (fully sensitive to quinolones; no mechanism of resistance detected) and SP32 (mutation in parC; pmrA over producer) strains were exposed to CIP and MXF at half their MIC for 13 days, with daily readjustment to meet MIC increases.

Minimal Inhibitory Concentrations (MICs) were determined by agar dilution method, in the absence or the presence of reserpine as inhibitor of efflux (10 µg/mL).

pmrA gene expression was quantified by Real Time PCR using Sybr Green method, gene expression over expression.

Mutations in parC, pmrA and gyrA genes were detected by sequencing.

Strain characterization was performed by PFGE (McEllhain et al., 2000).

RESULTS

- **Strains characterization** by PFGE shows that the restriction patterns of DNA from both ATCC 49619 and SP32 are different from one other, and remained unmodified throughout the experiment.
- **Before induction,** SP 32 strain shows a reserpine-sensitive resistance to CIP, associated to an elevated expression of pmrA (~9x the basal expression level measured in ATCC 49619).
- **Exposure of both strains to both quinolones causes an elevation of CIP MIC** – when induced by CIP, CIP resistance is reversed by reserpine, but this increase in not associated with the level of pmrA over expression.
- **when induced by MXF, CIP resistance is not reversed by reserpine and associated to target mutations.**

CONCLUSION

- **CIP easily induces efflux-mediated (reserpine-sensitive) resistance, which, however, is not correlated with the level of pmrA over expression.**
- **In contrast, MXF, which is not susceptible to efflux, selects for resistance by target mutation.**
- **Both mechanisms, however, may lead to similar levels of resistance (MIC = 8-10X increase in MIC values).**

ACKNOWLEDGMENTS

This work was supported by the Institut pour l’encouragement de la Recherche Scientifique et de l’Innovation de Bruxelles (IISBBI) à l’Institut de Recherche de la Faculté de Médecine et Chirurgie of the Brussels Capital Region, within the framework of the “Research in Brussels” programme. We thank M. Vergauwen and E. Vanbossuyt for help in MICs determination and PFGE characterization, S. Decraeye and S. Paul for helpful advice concerning Real-Time PCR methodology, and I. Derclay for topoisomerase sequencing.

REFERENCES

This poster will be available for download after the meeting at http://www.facm.ucl.ac.be/posters.htm