Future design of (comparative) clinical trials...
or how to bring antibiotics to the bed side

Paul M. Tulkens, MD, PhD
Cellular and Molecular Pharmacology
Louvain Drug Research Institute
Université catholique de Louvain,
Brussels, Belgium

Ceftaroline Fosamil (ZINFORO™) Speaker Summit
The Role of Ceftaroline in our Antibiotic Armamentarium
7–8 March 2013
London Heathrow, UK

With thanks to Dr Christian Giske (Karolinska Institutet, Stockholm, Sweden)
for use of slides produced for ECCMID 2012

With approval of the Belgian Ethical Healthplatform – visa no. 13/V1/5450/049454
Disclosures

Financial support from

• the Belgian *Fonds de la Recherche Scientifique* for basic research on pharmacology antibiotics and related topics

• *Université catholique de Louvain* for personal support

• Commercial Relationships:
 • AstraZeneca, GSK, Sanofi-Aventis, Bayer HealthCare, Cempra Pharmaceuticals, The Medicines Company, Northern Antibiotics, Vetoquinol

• Other relationships in relation to this talk
 • Belgian Antibiotic Policy Coordination Committee,
 • Belgian Transparency and Reimbursement Committees
 • Participation to EMA expert meetings for novel antibiotics and as Industry supporting expert for assessment of toxicity of older ones
Are antibiotics following a path to madness? *

discovery in soil bacteria and fungi

1928 - …

* a pictorial story based on Van Gogh’s paintings from grey Belgium to sunny Provence
Are antibiotics following a path to madness?

and then we all saw the blooming tree of semi-synthetic and totally synthetic antibiotics

1950 – 1980 …

* a pictorial story based on Van Goch’s paintings from grey Belgium to sunny Provence
Are antibiotics following a path to madness?

and the US General Surgeon told us that the fight was over 1970 …

* a pictorial story based on Van Gogh's paintings from grey Belgium to sunny Provence
Are antibiotics following a path to madness?
Our first problem: antibiotics from discovery to demise
If you do not believe me ...

London, UK, 1944 *

* see the top ad

London, UK, 2013

Gonorrhea Cases Soar 25% in England as Superbugs Take Hold
Feb 27, 2013

LONDON (Reuters) Feb 27 - Gonorrhea cases have soared by
25% in the past year in England as drug-resistant strains of the
sexually transmitted infection (STI) take hold worldwide, British
health officials said on Wednesday.

London, UK, 2013

1 http://ihm.nlm.nih.gov/images/A20824
Our second problem: a drying pipeline

Our second problem: a drying pipeline

14 classes of antibiotics were introduced for human use between 1935 and 1958; since then, 5 have been introduced.

- Antibiotics made up only 1.6% of drugs in development in 2004
- Currently the industry pipeline contains few late-stage antibiotics that can effectively combat the emergence and spread of resistant strains

Chemotherapy exists to facilitate the acquisition and dissemination of knowledge in the field of antimicrobial chemotherapy.

Key factors contributing to underinvestment in antibiotic R&D

- Availability of inexpensive, generic antibiotics

Communiqué de presse
Bruxelles, 24 avril 2012

Prescription et délivrance de médicaments :
Nouveautés

Deux nouvelles mesures ont pour objectif de réaliser des économies et sont donc favorables pour l’assurance soins de santé et pour le patient qui paiera moins cher ses médicaments.

- Le pharmacien devra délivrer un des antibiotiques ou antifongiques les moins chers, à partir du 1er mai 2012.

The pharmacist must deliver one of the cheapest antibiotic as from 1 May 2012 …
Key factors contributing to underinvestment in antibiotic R&D

- Availability of inexpensive, generic antibiotics
- Antibiotics are not considered profitable compared with drugs for chronic conditions
 - Relatively short treatment duration
 - Antibiotics effective against severe infection need to be used carefully
 - Impression of treatment of last resort only
 - Small patient population eligible to receive treatment with new antibiotics
 - May have short clinical lifetime if resistance develops rapidly
 - Current pricing and reimbursement policies
 - Do not prioritise drugs according to their ability to reduce morbidity or mortality

Key factors contributing to underinvestment in antibiotic R&D

- Availability of inexpensive, generic antibiotics

- Antibiotics are not considered profitable compared with drugs for chronic conditions

Allow me to take a simple example (drug acquisition costs)...

Pneumonia (> 60 years)

- Levofloxacin high dose: < 200 € / 10 days *
- Survival of many years

Breast cancer (> 50 years)

- Trastusumab: > 20,000 € / year
- Survival of a few years

* can be as low as 20 € with a generic amoxicilin (as recommended by local guidelines)

Key factors contributing to underinvestment in antibiotic R&D

• Availability of inexpensive, generic antibiotics
• Antibiotics are not considered profitable compared with drugs for chronic conditions
 • Relatively short treatment duration
 • Antibiotics effective against severe infection need to be used carefully
 • Impression of treatment of last resort only
 • Small patient population eligible to receive treatment with new antibiotics
 • May have short clinical lifetime if resistance develops rapidly
• Current pricing and reimbursement policies
 • Do not prioritise drugs according to their ability to reduce morbidity or mortality

• Regulatory constraints and uncertainty regarding appropriate clinical trial design?

Decisions when considering the development of an antibiotic

Potential for successful registration

Potential drug value

Project accepted

Marginal

Marginal

Project rejected

Antibiotic restrictions reduce income

Increased regulatory hurdles increase costs

Necessity to fulfil an increasing number of regulatory requirements

Figure 7. New systemic antibacterial agents with new target or new mechanism of action and *in vitro* activity against selected bacteria based on actual data (*) or assumed activity based on known class properties or mechanisms of action (*), by phase of development (n=15, as of 14 March 2008). Total represents the number of agents active against each of the selected bacteria in a best-case scenario.

<table>
<thead>
<tr>
<th>Name of agent</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
<th>Phase of development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRSA</td>
<td>VISA/VRSA</td>
<td>PRSP</td>
</tr>
<tr>
<td>WAP 8294A2</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>PZ-601</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ME 1036</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NXL 101</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Friulimicin B</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Oritavancin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Telavancin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ceftobiprole medocaril</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ceftaroline fosamil</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tomopenem</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>hLF1-11</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Talactoferrin-alfa</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Opebacan</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NXL 104/ceftazidime</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
The pipeline indentified by EMA in **2008**

Figure 7. New systemic antibacterial agents with new target or new mechanism of action and *in vitro* activity against selected bacteria based on actual data (●) or assumed activity based on known class properties or mechanisms of action (○), by phase of development (n=15, as of 14 March 2008). Total represents the number of agents active against each of the selected bacteria in a best-case scenario.

<table>
<thead>
<tr>
<th>Name of agent</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
<th>Phase of development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRSA</td>
<td>VISA/VRSA</td>
<td>PRSP</td>
</tr>
<tr>
<td>WAP 8294A2</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZ-601*</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ME 1036*</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NXL 101</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Friulimicin B</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Oritavancin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Telavancin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ceftobiprole medocaril†</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ceftarolose fosamid ‡</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tomopenem ‡</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>hLF1-11</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Talactoferrin alfa</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Opebacan</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NXL 104/ceftazidime§</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Only 2 have been registered in 2013…

7 March 2013

Ceftarolose speaker summit: Future design of antibiotic trials
"The FDA has even gone out of its way to ignore critical evidence about dangerous drugs in order to appease its Big Pharma clients and keep those high-profit drugs selling while people are dying."

(statement made by David Icke at http://foodfreedomgroup.com/2013/02/01/death-by-doctors-the-shocking-figures/)
Recent antibiotic submissions for which the FDA have required further trials to be conducted include:

- **Dalbavancin**, cSSTI (inc. MRSA)
- **Oritavancin**, cSSTI
- **Faropenem**, ABS, CAP, AECB, SSTI
- **Ceftobiprole**, cSSTI
- **Iclaprim**, cSSTI
- **Cethromycin**, CAP

For some of these drugs, new FDA requirements had been set after these trials commenced and the study design agreed\(^2,6\)

ABS, acute bacterial sinusitis; AECB, acute exacerbation of chronic bronchitis; CAP, community-acquired pneumonia; cSSTI, complicated skin and soft tissue infection; FDA, Food and Drug Administration; SSTI, skin and soft tissue infection

A 3d problem: regulatory hurdles and the clinical trial design saga

As for all other medicinal products, the size of the safety database that would be required before initial approval of an antibacterial agent or before approval of additional indications and alternative dose regimens must always take into account the demonstrated and anticipated benefits and risks.

Regulatory requirements contribute to the risk of antibiotic development

- Strict regulatory constraints are definitely necessary to protect patients

- Typically, the phase III studies used for registration are expected to have enough patients to detect at least the uncommon effects

 Frequency categories: *
 - very common: ≥ 1/10
 - common: ≥ 1/100 to < 1/10
 - Uncommon: ≥ 1/1000 to < 1/100
 - Rare: ≥ 1/10000 to < 1/1000

- The data base must, therefore, contain at least 1,000-2,000 patients treated with the drug and a similar number of comparators **

- This results in a major difficulty in recruitment if concentrating on “interesting cases” and favours non-inferiority design studies

* As per current EMA SmPCs
** 1306 for ZINFORO™ at registration
Why non-inferiority trials and why they are disappointing ...

START: The trial must be "controlled"

By definition, you will only include patient with organisms susceptible to both antibiotics

Your drug

The comparator

The population needed for safety

Patients with documented resistant organisms

You cannot knowingly include resistant organisms

END: both drugs will be effective!
Non-inferiority trials at EMA in 2012 ...

When a placebo cannot be used and if
- confidence of superior efficacy to placebo
- study design minimising false conclusion of non-inferiority.

Indications (and delta):
- Skin and soft tissue infections (-10%)
- Community-acquired pneumonia (-10%; more in PORT scores of IV-V)
- Hospital-acquired pneumonia and ventilator-associated pneumonia (less than $\leq -12.5\%$)
- Intra-abdominal infections (-12.5%)
- Urinary tract infections (-10 %)

The phase III studies of ceftaroline

<table>
<thead>
<tr>
<th>Study</th>
<th>No. randomised</th>
<th>Treatment</th>
<th>Primary objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>P903-06</td>
<td>Patients with cSSTI</td>
<td>Vancomycin 1 g q12h plus 1g aztreonam q12h</td>
<td>Non-inferiority in clinical cure rate of ceftaroline vs. comparator at TOC visit in CE and MITT populations</td>
</tr>
<tr>
<td></td>
<td>Ceftaroline: 353</td>
<td>Ceftaroline 600 mg q12h 5 to 14 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vancomycin / aztreonam: 349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P903-07</td>
<td>Patients with cSSTI</td>
<td>Vancomycin 1 g q12h plus 1g aztreonam q12h</td>
<td>Non-inferiority in clinical cure rate of ceftaroline vs. comparator at TOC visit in CE and MITT populations</td>
</tr>
<tr>
<td></td>
<td>Ceftaroline: 348</td>
<td>Ceftaroline 600 mg q12h 5 to 14 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vancomycin / aztreonam: 346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P903-08</td>
<td>Patients with CAP</td>
<td>Ceftriaxone 1 g q24h</td>
<td>Non-inferiority in clinical cure rate of ceftaroline vs. ceftriaxone at TOC visit in CE and MITTTE populations</td>
</tr>
<tr>
<td></td>
<td>Ceftaroline: 305</td>
<td>Ceftaroline 600 mg q12h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone: 309</td>
<td>Each + oral clarithromycin 500 mg q12h on Day 1 only 5-7 days</td>
<td></td>
</tr>
<tr>
<td>P903-09</td>
<td>Patients with CAP</td>
<td>Ceftriaxone 1 g q24h</td>
<td>Non-inferiority in clinical cure rate of ceftaroline vs. ceftriaxone at TOC visit in CE and MITTTE populations</td>
</tr>
<tr>
<td></td>
<td>Ceftaroline: 317</td>
<td>Ceftaroline 600 mg q12h 5-7 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone: 310</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-inferiority trials?

- Most clinical trials of antibiotics are designed to demonstrate non-inferiority vs standard of care
 - Intend to demonstrate that a new drug is not worse than an active comparator by more than a specified amount (delta value)

- Non-inferiority trials have many associated difficulties
 - New drug only seen as ‘non-inferior’ to the comparator\(^1\)
 - Comparator drug should be known to be superior to placebo\(^2\)–\(^4\)
 - For most severe bacterial infections no placebo-controlled trials have been conducted
 - Susceptibility to operational biases (non-adherence, missing data etc)\(^5\)
 - Limit innovation – need to maintain the conditions of previous studies\(^5\)
 - Difficulties in specifying delta value needed for non-inferiority margin\(^1\)–\(^3\)

Should we not make superiority trials?

• Several strengths
 • Intended to detect a difference between two drugs
 • If successful will demonstrate that study drug is better than those on the market
 • Allow innovative trial designs
 • May require fewer patients than non-inferiority trials (and hence lower costs)

• Disadvantages
 • Problematic for more serious infections, e.g. community-acquired pneumonia
 • Active-controlled superiority trials are impractical
 • Placebo-controlled superiority trials are unethical

Superiority trials at EMA in 2012 ...

In situations where antibiotics have not consistently demonstrated superiority versus placebo (infections associated with high spontaneous resolution rates or limited populations)

- if ethically acceptable and with clinical judgment
- if expected to lead to superiority against placebo (95% 2-sided CI)
- with preferably a 3-arms design (drug – placebo - active comparator) or sequential design (test vs. placebo replaced by comparator > 3 days).

Indications:

- acute otitis media (with sustained effect at 14-21 days)
- acute bacterial sinusitis (difficulties in causality assessment)
- Inhalational antibacterial regimens in non cystic fibrosis patients (clinical criteria)
- superficial skin infections (stratify according to underlying diagnosis)
Weaknesses of the EMA approach to superiority

- Strict exclusion criteria may limit generalisability of study results
- Important and frequent indications will never be covered
 - CAP of sufficient severity
 - HAP/VAP
 - Severe skin and skin structure infections
 - bacteremia
- Oral antibiotic compounds for CAP cannot be tested
Response of EMA to weaknesses in superiority

Circumstances in which only limited clinical data can be generated

- organisms with specific types and/or patterns of multi-resistance currently uncommon or rare
- few patients that can be enrolled in commonly sought indications.

Acceptable approaches

- strong prediction of efficacy in the intended use(s) from PK/PD analyses
- limit to one randomized and active controlled study in a specific type of infection where resistant organisms are frequent
- evidence of efficacy through non-controlled studies in situations where resistance is very problematic *(retrospective comparison)*
- use of flexible (adaptive) study design

Response of EMA to weaknesses in superiority

Circumstances in which only limited clinical data can be generated

- organisms with specific types and/or patterns of multi-resistance currently uncommon or rare
- few patients that can be enrolled in commonly sought indications.

Acceptable approaches

- strong prediction of efficacy in the intended use(s) from PK/PD analyses
- limit to one randomized and active controlled study in a specific type of infection where resistant organisms are frequent
- evidence of efficacy through non-controlled studies in situations where resistance is very problematic (retrospective comparison)
- use of flexible (adaptive) study design

What about safety if you have few patients?

- Registration: old scheme
 - Progression through phase I – II – III ...
 - Until reaching the number of patients required for safety...

You may never reach this ... but people are dying...

Preclinical Phase I Phase II Phase III

n ~ 50 n ~ 300 N ~ 6000
Registering for efficacy while not compromising safety...

- Registration: proposed new scheme
 - Provisional registration at phase II level (solving the unmet medical need)
 - Continue evaluation through commercialization until reaching a number of patients equivalent to a phase III to get full registration

![Diagram showing phases of clinical trials with patient numbers](image)
What EMA has in store...

- A test agent expected or shown to be clinically active against multi-resistant Gram-negative pathogens could be indicated for studied infections without qualification by pathogen.

- Details of the actual organisms treated would be reflected in the "Pharmacodynamic" section of the SmPC along with mention of the evidence supporting activity (specific multi-resistant organisms).

- A pathogen-specific indication is a possibility.

- The label could included a restriction to use when other commonly used agents are not suitable for the individual patient.

Are we approaching the most appropriate endpoint?

- **Clinical response endpoint at test of cure**¹
 - Limitations of historical data
 - Lack of clear evidence for a treatment effect based on resolution of signs and symptoms attributable to the disease being studied

- **Historical data support an all-cause mortality endpoint for CAP**¹
 - Non-inferiority trial with this primary endpoint would require a very large patient population
 - Evaluation of less important endpoints may bias estimates of effect if all-cause mortality not taken into account²

- **Patients and physicians expect a cure for infection**¹
 - Early time points cannot answer this question (therefore may not be acceptable primary endpoints)
 - However, early time points are often indicative of efficacy and are important in the clinic

Endpoints aimed to meet regulatory criteria may not be the most relevant to clinical practice

An additional caveat ...

Part of the problem is this

Today, several new antibiotic programs are financed by the US DOD ...

But EU monnies are also used

http://www.imi.europa.eu
Summary

- Bacterial resistance to currently available antibiotics is becoming increasingly frequent
- There is an unmet need for new antibiotics that are effective against resistant pathogens
 - Despite the need, few antibiotics are being developed
- R&D for antibiotics with novel mechanisms of action should be actively promoted
- Balance between regulatory requirements and study feasibility is essential
- Innovative trial designs should be encouraged
Questions?

There are no stupid questions or stupid answers.