Perspectives in antimicrobial agents

Paul M. Tulkens, MD, PhD
Isabelle Huys, PharmD, PhD

1 Pharmacologie cellulaire et moléculaire,
 Louvain Drug Research Institute,
 Université catholique de Louvain, Brussels, Belgium;

2 Onderzoekscentrum voor Farmaceutische Zorg en Farmaco-economie
 Departement Farmaceutische en Farmacologische Wetenschappen
 Katholieke Universiteit Leuven, Leuven, Belgium

Slides are available on http://www.facom.ucl.ac.be → Lectures
What its all about?

• Is there a crisis in antibiotic research and development?
• What has been introduced recently?
• What is in the pipeline?
• What are the hurdles?
• Towards a really new approach?
The antibiotic crisis *

1. Resistance

* A pictorial view using 4 paintings of Van Gogh (who stayed briefly in Belgium when moving from Holland to France) and with selected Belgian and International data…
Are antibiotics following a path to madness?

discovery in soil bacteria and fungi

1928 - …
Are antibiotics following a path to madness?

and then we all saw the blooming tree of semi-synthetic and totally synthetic antibiotics

1950 – 1980 …
Are antibiotics following a path to madness?

and the US General Surgeon told us that the fight was over 1970 …
Are antibiotics following a path to madness?
Extent of resistance of *P. aeruginosa* (International data – EUCAST breakpoints)

The hidden risk of therapy (at the corner of your street ...)

In vivo development of antimicrobial resistance in *Pseudomonas aeruginosa* strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy

Mickaël Rioua,1, Sylvienne Carbonnellea,2, Laëtitia Avraina,3, Narcisa Mesarosa,3, Jean-Paul Pirnayc, Florence Bilocqc, Daniel De Vosc,d, Anne Simone, Denis Piérardf, Frédérique Jacobsg, Anne Dedisteh, Paul M. Tulkensa,*, Françoise Van Bambeka, Youri Glupczynskii

a Unité de Pharmacologie Cellulaire et Moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
b Coris BioConcept, Gembloux, Belgium
c Laboratory for Molecular & Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
d Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
e Laboratoire de Microbiologie, Cliniques Universitaires St-Luc, Brussels, Belgium
f Laboratorium voor Microbiologie, Universitair Ziekenhuis Brussel, Brussels, Belgium
g Clinique des Maladies Infectieuses, Hôpital Erasme, Brussels, Belgium
h Laboratoire de Microbiologie, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
i Laboratoire de Microbiologie, Cliniques Universitaires UCL de Mont-Godinne, Yvoir, Belgium
Question #1: are you effective?

<table>
<thead>
<tr>
<th>Assessment of adequateness of initial therapy</th>
<th>No. of patients</th>
<th>No. of adequate antibiotics/total</th>
<th>% (no.) of patients with adequate therapy (EUCAST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy</td>
<td>26</td>
<td>1/1</td>
<td>57.7 (15)</td>
</tr>
<tr>
<td>2 antibiotics</td>
<td>14</td>
<td>2/2</td>
<td>71.4 (10)</td>
</tr>
<tr>
<td>3 antibiotics</td>
<td>13</td>
<td>3/3</td>
<td>38.5 (5)</td>
</tr>
<tr>
<td>4 antibiotics</td>
<td>1</td>
<td>3/4</td>
<td>100(1)</td>
</tr>
</tbody>
</table>

Message #1: many patients receive ineffective antibiotics
Question #2: do you remain effective while treating?

- D0: initial isolate
- DL: last isolate obtained
- Individual values with geometric mean (95% CI)
- S (lowest line) and R (highest line) EUCAST breakpoints

* p < 0.05 by paired t-test (two-tailed) and Wilcoxon non-parametric test

a p < 0.05 by Wilcoxon non-parametric test only

Note: stratification by time between D0 and DL gave no clue (too low numbers)

Message #2: for all antibiotics, we see global increases of MIC during treatment
Is there a crisis in antibiotic research?

Resistance IS a problem …

• The choices of effective therapies is narrowing dangerously for several important pathogens

• The Clinical pharmacist will have a key role in
 – Rationalizing the choice among the remaining ones
 – Optimizing those "remaining antibiotics"
 – Decreasing the inappropriate use of antibiotics whenever possible and improving hygiene with close follow-up of the epidemiology

Focusing on consumption only may blind you …
Is there a crisis in antibiotic research?

The drying pipeline?
Is there a crisis in antibiotic research?
2. the drying pipeline (1)

- Everyone speaks about the reduction in the number of new antibiotics... What is your reality?

New antibiotics introduced in the Belgian market since 2000 in ATC code J01

- J01A tetracyclines.................1 (tigecycline [Pfizer])
- J01B phenicols0
- J01C β-lactams (penicillins)......0
- J01D other β-lactams1 (doripenem [Janssen-Cilag])
- J01E sulfamides/trimethoprim:... 0
- J01F macrolides/linc./streptogr.:1 (telithromycin [Sanofi])
- J01G aminoglycosides............0
- J01M quinolones....................1 (moxifloxacin [Bayer])
- J01R associations:...............0
- J01X others:........................1 (linezolid [Pfizer])

Which of these molecules do YOU wish in your hospital?
Is there a crisis in antibiotic research?
2. the drying pipeline (2)

New antibiotics in ATC code J01 and with EMA approval but **not available** in Belgium:

- **J01A** tetracyclines: 0
- **J01B** phenicols: 0
- **J01C** β-lactams (penicillins): 0 *(sulbactam [Pfizer])*
- **J01D** other β-lactams: 1 *(ertapenem [MSD])*
- **J01E** sulfamides/trimethoprim: 0
- **J01F** macrolides/linc./streptog.: 1 *(quinupristin/dalfopristin)*
- **J01G** aminoglycosides: 0
- **J01M** quinolones: 0
- **J01R** associations: 0
- **J01X** others: 2 *(daptomycin [Novartis]) (telavancin [Astellas])*

in at least one EU country since 2000 and with at least some advantages/differences with comparators
Colistin synergy: a surprising observation with sulbactam …

International Journal of Antimicrobial Agents

Volume 39, Issue 2, February 2012, Pages 180–181

Letter to the Editor

Synergistic activity of sulbactam combined with colistin against colistin-resistant Acinetobacter baumannii

Marie Kempf, Lamia Djouhri-Bouktab, Jean-Michel Brunel, Didier Raoult, Jean-Marc Rolain

Aix-Marseille Université, URMITE CNRS-IRD, UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée Aix-Marseille-II, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France

Received 29 September 2011. Available online 17 November 2011.
Colistin synergy with sulbactam

Colistin and sulbactam minimal inhibitory concentrations (MICs) of the colistin-resistant *Acinetobacter baumannii* strain as determined by Etest: colistin, 32 mg/L; sulbactam, 2 mg/L. (B) Synergy as shown by Etest; the colistin MIC is decreased from 32 mg/L to 4 mg/L and the sulbactam MIC is decreased from 2 mg/L to 0.5 mg/L, as indicated by arrows (asterisks denote original MICs).
Is there a crisis in antibiotic research?

2. the drying pipeline (3)

New antibiotics in ATC code J01 and in the pipeline/waiting for EMA approval *

- J01A tetracyclines.................. 1 → amadacycline (PTK 0796)
- J01B phenicols 0
- J01C β-lactams (penicillins)...... 0
- J01D other β-lactams 3 → ceftobiprole, ceftaroline
- J01E sulfamides/trimethoprim:.... 0 → iclaprim
- J01F macrolides/linc./streptogr.: 1 → solithromycin, cethromycin
- J01G aminoglycosides............. 0 → plazomycin (ACHN-490)
- J01M quinolones.................... 0 → several...
- J01R associations:.................. 0 → avibactam (+ cephalosporins)
- J01X others:......................... 2 → oritavancin, dalbavancin

* not an exhaustive list
Is there a crisis in antibiotic research?

2. the drying pipeline (4)

New molecules in preclinical/early clinical development *

- New oxazolidinones (tedizolid, radezolid …) active against LZDR strains
- New aminoglycosides active against AMGR strains (including arm) (**)
- New fluroquinololones active against MRSA (including CIPR strains)
- New gyrase inhibitors active against CIPR Gram(-) bacteria (**)
- New pleuromutilins (active against Gram + bacterial)
- New anti-MRSA carbapenems
- New lipopeptides (not affected by lung surfactant)
- New polymyxins derivatives (potentially less toxic)
- New ligase inhibitors (new target)
- ...

* not an exhaustive list
** DOD/NIH program
Is the pipeline really dry?

• Not really, but…
 – Discovery **IS** difficult…
 – Preclinical development **IS** challenging…
 – but the real bottleneck is clinical development and registration…

This is a main part of the problem (in our current situation)
Why is economy important?

- Can you work without support? …
 - You need investors
 - Those will ask some return at some point…
 - And none ignores what is a ROI

This is what every economist will tell you (and you know it!)

[Diagram showing the lifecycle of an investment, including phases such as product launch, uptake, period of return, and impact of competition, generics, OTC.]
So, what are the hurdles?

• Discovery!
 – More efforts must be made with both public and private funding

• Clinical development
 – We must strive to efforts that are really meaningful
 (but this may command a smaller market … see hereunder)

• Registration
 – Provisional registration must be warranted for really innovative
 compounds (at phase II level) if helping to solve unmet medical
 needs
 – Safety issues must remain of paramount importance but should
 not deter honest efforts (no drug is harmless !)
So, what are the hurdles?

- Discovery!
 - More efforts must be made with both public and private funding

Today, several new antibiotic programs are financed by the US DOD ...

But NIH (and EU…) programs are catching up…
So, what are the hurdles?

- Clinical development
 - We must strive to efforts that are really meaningful
 (but this may command a smaller market … see hereunder)

Let us stop this!
(but its not the Industry's fault only!)
So, what are the hurdles?

- **Registration**
 - Provisional registration must be warranted for really innovative compounds (at phase II level) if helping to solve unmet medical needs (and be accepted for that!)
 - Safety issues must remain of paramount importance but should not deter honest efforts (no drug is harmless!)

![Diagram showing clinical trials phases with numbers of participants: n=100, n=300, n=6000, and labels for efficacy and safety.](image-url)
So, what are the hurdles?

- **Registration**
 - Provisional registration must be warranted for really innovative compounds (at phase II level) if helping to solve unmet medical needs (and be accepted for that!)
 - Safety issues must remain of paramount importance but should not deter honest efforts (no drug is harmless!)

Diagram:

- **Phase I:**
 - Preclinical
 - \(n = 100 \)

- **Phase II:**
 - \(n = 300 \)

- **Phase III:**
 - \(n = 6000 \)

- Efficacy
- Safety

Register here!
One new drug (tedizolid)...

Phase 2, Randomized, Double-Blind, Dose-Ranging Study Evaluating the Safety, Tolerability, Population Pharmacokinetics, and Efficacy of Oral Torezolid Phosphate in Patients with Complicated Skin and Skin Structure Infections

P. Prokocimer,1* P. Bien,1 J. Surber,2 P. Mehra,3 C. DeAnda,1 J. B. Bulitta,4 and G. R. Corey5

Trius Therapeutics, Inc., 6310 Nancy Ridge Road, Suite 105, San Diego, California 921211; SERRG, Inc., 5210 Armour Road Suite 400, Columbus, Georgia 319042; eStudy Site, 752 Medical Center Court, Suite 105, Chula Vista, California 919113; Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 122084; and Duke Clinical Research Institute, 2400 Pratt Street, Durham, North Carolina 277055

Received 19 January 2010/Returned for modification 9 June 2010/Accepted 2 November 2010

Torezolid (TR-700) is the active moiety of the prodrug torezolid phosphate ([TP] TR-701), a second-generation oxazolidinone with 4- to 16-fold greater potency than linezolid against Gram-positive species including methicillin-resistant Staphylococcus aureus (MRSA). A double-blind phase 2 study evaluated three levels (200, 300, or 400 mg) of oral, once-daily TP over 5 to 7 days for complicated skin and skin structure infections (cSSSI). Patients 18 to 75 years old with cSSSI caused by suspected or confirmed Gram-positive pathogens were randomized 1:1:1. Of 188 treated patients, 76.6% had abscesses, 17.6% had extensive cellulitis, and 5.9% had wound infections. S. aureus, the most common pathogen, was isolated in 90.3% of patients (139/154) with a baseline pathogen; 80.6% were MRSA. Cure rates in clinically evaluable patients were 98.2% at 200 mg, 94.4% at 300 mg, and 94.4% at 400 mg. Cure rates were consistent across diagnoses, regardless of lesion size or the presence of systemic signs of infection. Clinical cure rates in patients with S. aureus isolated at baseline were 96.6% overall and 96.8% for MRSA. TP was safe and well tolerated at all dose levels. No patients discontinued treatment due to an adverse event. Three-stage hierarchical population pharmacokinetic modeling yielded a geometric mean clearance of 8.28 liters/h (between-patient variability, 32.3%), a volume of the central compartment of 71.4 liters (24.0%), and a volume of the peripheral compartment of 27.9 liters (35.7%). Results of this study show a high degree of efficacy at all three dose levels without significant differences in the safety profile and support the continued evaluation of TP for the treatment of cSSSI in phase 3 trials.

The weakness in this study is the lack of patients with LZDR strains

So, what do you propose to do, now?
Other hurdles?

• Pricing
 – Antibiotics are cheap…
 – And now, the Belgian pharmacist must deliver the cheapest one (generic)…
 – Why would Industry make an effort?

Allow me to take a simple example…

- Pneumonia (> 60 years)
 - Levofloxacin high dose: < 200 € / 10 days
 - Survival of many years

- Breast cancer (> 50 years)
 - Trastusumab: > 20,000 € / year
 - Survival of a few years
Even better and it happened almost yesterday ...

Bij ontstentenis van een gemotiveerd definitief voorstel van de Commissie Tegemoetkoming Geneesmiddelen, binnen een termijn van 150 dagen wat betreft de specialiteit YEROY 5 mg/ml, heeft de Minister, met toepassing van artikel 81 van het koninklijk besluit van 21 december 2001, een gemotiveerde beslissing genomen en genotificeerd op 22 maart 2012.

Cost of treatment of one patient/year: 77 000 €
Is this not saving lives?

Iplimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study.

Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. wolchokj@mskcc.org

Funding Bristol-Myers Squibb.
Do you remember having seen this?

Penicillin saves lives

And Bristol-Myers will treat a patient (2 g/day; 10 days) for 1 000 x cheaper than melanoma.
Is the cheapest the best?

The increase in air travel associated with the development of cheap airlines is an important contributor to the rise in CO₂ levels and other pollutants in the high atmosphere...

http://www.cheapflights.co.uk/travel-tips/carbon-emissions/
Increase in statins consumption over years in Belgium

But do all those patients really need a statin?

Source: INAMI / RIZIV
Other approaches…

• **Old antibiotics**

 Old and discarded, or even rejected, antibiotics should be re-investigated, repurposed and used as needed. Pharmaceutical companies should provide their stocks for this purpose (retaining rights to other applications).

Temocillin revived

David M. Livermore and Paul M. Tulkens

1Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK; 2Unité de Pharmacologie Cellulaire et Moléculaire & Centre de Pharmacie Clinique, Université Catholique de Louvain, Bruxelles, Belgium

Resistance in Gram-negative pathogens is an increasing concern, with carbapenems often appearing as the only acceptable treatment option in serious infections. Reviving older compounds that have fallen into disuse may help to alleviate this burden. Temocillin (6-α-methoxy-ticarcillin) is resistant to most if not all classical and extended-spectrum β-lactamas and to AmpC enzymes. It is also chemically stable, allowing administration by continuous infusion. Pharmacokinetic/pharmacodynamic analysis, aided by Monte-Carlo simulations, suggests a breakpoint of 8 mg/L for the registered maximum dosage of 4 g daily. Temocillin’s weaknesses, explaining its limited previous use, are a lack of activity against Gram-positive organisms, anaerobes and *Pseudomonas*. In settings where these are unlikely or are covered by other agents, **temocillin may be useful, potentially ‘sparing’ carbapenems and having little apparent potential to select for *Clostridium difficile***.
The problems with "old antibiotics":
The case of colistin

- Is the dosage clearly defined?
 → repeated dosage of 150 mg colistimethate (2 x 10^6 U or 66 mg colistin base) every 8h is probably the best option … but more may be needed…

- Do we need a loading dose?
 → additional 2 to 4 x 10^6 U at first dose; total 4 to 6 x 10^6 U and perhaps up to 8-9 but are we sure about that ???

- Do we have good breakpoints? → No!

- Can we use in monotherapy? → No!

- Do we need to test for susceptibility on a repeated fashion … → Yes!

- Do we need to monitor the renal function and adjust the dosage:
 → Yes, but nobody really knows what to do exactly …

- Remember that this is a last resource drug…
 → but the Greeks use a lot of it…

Whop! now they also got resistant bugs…
The best study on colistin that the Industry did NOT made!

Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients

School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York; Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia; Division of Infectious Diseases and Tropical Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; The University of Queensland Center for Clinical Research, Royal Brisbane and Women’s Hospital, Brisbane, Australia; Washington Hospital Center, MedStar Clinical Research Center, Washington, DC; and Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

Received 13 December 2010/Returned for modification 13 March 2011/Accepted 28 April 2011

Why would have they made it?
Other approaches…

• *Alternatives to antibiotics.*

Novel non-antibiotic approaches for the prevention of and protection against infectious diseases should be encouraged, and such approaches must be high-priority research and development projects.

– antibacterial vaccines and immunotherapy,
– phage therapy,
– immunostimulants,
– adjuvants,
– antivirulence therapies,
– probiotics and their combinations

Immunotherapy…

Pharmacokinetics and safety of panobacumab: specific adjunctive immunotherapy in critical patients with nosocomial Pseudomonas aeruginosa O11 pneumonia

*Corresponding author. Professor Pierre-François Laterre, Intensive Care Unit, St Luc University Hospital, UCL, 10 Avenue Hippocrate, 1200 Brussels, Belgium. Tel: +32-2-764-2735; Fax: +32-2-764-2757; E-mail: laterre@rean.ucl.ac.be
†These authors contributed equally to this work.

Objectives: Nosocomial Pseudomonas aeruginosa pneumonia remains a major concern in critically ill patients. We explored the potential impact of microorganism-targeted adjunctive immunotherapy in such patients.

Patients and methods: This multicentre, open pilot Phase 2a clinical trial (NCT00851435) prospectively evaluated the safety, pharmacokinetics and potential efficacy of three doses of 1.2 mg/kg panobacumab, a fully human monoclonal anti-lipopolysaccharide IgM, given every 72 h in 18 patients developing nosocomial P. aeruginosa (serotype O11) pneumonia.

Results: Seventeen out of 18 patients were included in the pharmacokinetic analysis. In 13 patients receiving three doses, the maximal concentration after the third infusion was 33.9 ± 8.0 µg/mL, total area under the serum concentration - time curve was 5397 ± 1993 µg h/mL and elimination half-life was 102.3 ± 47.8 h. Panobacumab was well tolerated, induced no immunogenicity and was detected in respiratory samples. In contrast to Acute Physiology and Chronic Health Evaluation II (APACHE II) prediction, all 13 patients receiving three doses survived, with a mean clinical resolution in 9.0 ± 2.7 days. Two patients suffered a recurrence at days 17 and 20.

Conclusions: These data suggest that panobacumab is safe, with a pharmacokinetic profile similar to that in healthy volunteers. It was associated with high clinical cure and survival rates in patients developing nosocomial P. aeruginosa O11 pneumonia. We concluded that these promising results warrant further trials.
Towards a real scientific and economic (re)volution…

XBM network

- Central science
- Central economy

Internet

- Network Science
- Network economy
Enough of the *Université catholique de Louvain* …

Let's us listen to the *Katholieke Universiteit Leuven*…

Université catholique de Louvain
http://www.uclouvain.be

Katholieke Universiteit Leuven
http://www.kuleuven.be
Bacteriophage therapy as an alternative?

- Bacteriophages

‘Viruses’ of bacteria (including “Superbugs”) Co-evolving with bacteria Natural enemies / controllers of bacteria
E. coli phage T4 (Myoviridae)

100 nm (= 0.1 µm = 1/10,000^e mm)
Infection by *E. coli* T4-bacteriophage
MRSA infection by ISP bacteriophage
Infection by Myoviridae

- Landing
- Pinning
- Tail contraction and penetration
- DNA injection

©1994 Encyclopaedia Britannica, Inc.
How phages kill bacteria

1. Attachment
2. Injection
3. Lytic pathway
 - viral DNA replicates
 - coat proteins synthesized; virus particles assembled
 - lysis
4. Lysogenic pathway
 - viral DNA is integrated into host DNA
 - prophage
 - cell division
 - normal cell growth
5. Induction
Phage therapy?

Potential alternative to the world wide antibiotic resistance problematic?

- Bacteriophage therapy consists in the application of bacteriophages ("bacteria eaters", natural enemies of bacteria) for killing bacteria
- Still no eukaryotic infections with phages have been reported
- No phage sequences were detected in the human genome
- Natural controllers and co-evolution
We are living in a sea of phages

- Up to 10^9 phages per ml of surface waters

- Yet, still no infections with phages have been reported, nor were any phage sequences detected in the human genome
<table>
<thead>
<tr>
<th>PHAGE</th>
<th>ANTIBIOTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Very specific (e.g. part of the strains of one species)</td>
<td>• Non specific (including commensal flora)</td>
</tr>
<tr>
<td>• Development of new phage preparations: relatively easy and inexpensive</td>
<td>• Development of new antibiotics: time-consuming and expensive</td>
</tr>
<tr>
<td>• Disease causing agents has to be known (for now)</td>
<td>• Broad spectrum, agents can be unknown</td>
</tr>
<tr>
<td>• No known side effects</td>
<td>• Multiple side effects</td>
</tr>
</tbody>
</table>
East vs. West

Stalin WW II

West
- Frederic Twort
 UK 1915
- Felix d’Hérelle
 France/Canada 1917
- “User-friendly” ANTIBIOTICS
 1940s - Today
- Antibiotic resistance
 BWC/QAMH

East
- George Eliava
 Georgia, USSR
- Eliava Institute, Tbilisi,
 Georgia 1923 - Today
- Dr. Maya Merabishvili

“User-friendly” ANTIBIOTICS
1940s - Today
The past …

- Eli Lilly and Company
- Swan Myers (Abbot Laboratories)
- Squibb and sons (B. M. S.)
- Laboratoire Parke-Davis (Pfizer)
- Instituts Pasteur de Paris et de Lyon
- Laboratoire du Bactériophage (5 prep.) (Robert & Carrière)
- German company Antipiol
- Saphal en Suisse
- Ex-URSS (Géorgie –Russie)
The past ...

First Published (Western) (European) “Clinical Trial” using Bacteriophages was Belgian...

Bruynoghe, R. & Maisin J. , 1921

Essais de thérapeutique au moyen du bactériophage du staphylocoque

Institut de bactériologie de l’ Université de Louvain

J Compt Rend Soc Biol 85: 1120-1121

➢ Bacteriophages against Staphylococcus injected into 6 patients with anthrax or abscesses, as close as possible to the infected area

➢ Reduction of the expansion of the lesions and often total disappearance after 24 to 48 hours
The past: Phage therapy efficacy

"Vaccination" study in Tbilisi, Georgia (1965)

- Children, aging 6 months to 7 years old
- 17,044 Children ingested bacteriophages against *Shigella dysenteriae*
- 13,725 Children, living at the opposite side of the streets, served as a control group
- Dysentery incidence in control group is 2.6 fold higher than phage treated group

Today: Phage applications in the Eliave Phage Therapy Centre, Tbilizi, Georgia
Clinical use of phages

- Debarbieux et al., Journal of Infectious Diseases (2010)

=> FIRST CLINICAL TRIALS
Today: Phage application on a shot wound
Today: Phage applications in Poland, Czech Republic
“Fishing” for phages
Investment in phage therapy?

• Difficulties in protection through intellectual property rights
Invention

Novel

Industrially applicable

Sufficiently disclosed
Is a Phage an invention?

= technical creation
= technical solution for a technical problem
patents granted for inventions in all areas of technology
Is a Phage an invention?

- Natural phages vs manipulated phages
Investment in phage therapy?

- Importance of regulatory frame with exclusivities for the investor
European regulatory conundrum of phage therapy

Gilbert Verbeke, Daniel De Vor, Mario Vaneechoutte, Maya Merabishvili, Martin Zizi & Jean-Paul Pirnay

1/6/2012 ESCP International Workshop "Patients, Infections and the Clinical Pharmacist"

The treatment of infectious diseases with antibiotics is becoming increasingly challenging. Very few new antimicrobials are in the pharmaceutical industry pipeline. One of the potential alternatives for antibiotics is phage therapy. Major obstacles for the clinical application of bacteriophages are a false perception of viruses as ‘enemies of life’ and the lack of a specific frame for phage therapy in the current Medicinal Product Regulation. Short-term borderline solutions under the responsibility of a Medical Ethical Committee and/or under the umbrella of the Declaration of Helsinki are emerging. As a long-term solution, however, we suggest the creation of a specific section for phage therapy under the Advanced Therapy Medicinal Product Regulation.

• No specific frame for phage therapy in the current Medicinal Product Regulation
• Actually EMA classification as “Biological” under discussion
• One option: “Medical Ethical Committee”
• Declaration of Helsinki
35.

In the treatment of a patient, where proven interventions do not exist or have been ineffective, the physician, after seeking expert advice, with informed consent from the patient or a legally authorized representative, may use an unproven intervention if in the physician's judgment it offers hope of saving life, re-establishing health or alleviating suffering. Where possible, this intervention should be made the object of research, designed to evaluate its safety and efficacy. In all cases, new information should be recorded and, where appropriate, made publicly available.
BFC 1
Quality controlled (small scale) phage production

• Lack off well-defined, quality-controlled phage preparations
• Often inadequate matching of bacteria and phages (empirically)
• Endotoxins in crude phage preparations
• “GMP-like” production

Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

Maya Merabishvili1,2,3, Jean-Paul Pirnay4, Gilbert Verbeken3, Nina Chanishvili4, Marina Tedlashvili1, Nino Lashkhi4, Thea Glonti4, Victor Krylov2, Jan Mast4, Luc Van Parys4, Rob Lavigne4, Guido Voolkraert5, Wesley Mattheus4, Gunther Verweyen4, Peter De Corte4, Thomas Rosse4, Serge Jenness5, Martin Zizi5,7, Daniel De Vos1, Mario Vanechouette5

1 Centre for Genomics and Personalised Medicine, Queen Astrid Military Hospital, Brussels, Belgium; 2 Laboratory for Molecule and Cellular Technology (LAMCT), Burn Centre, Queen Astrid Military Hospital, Brussels, Belgium; 3 Laboratory of Bacteriophage Genetics, State Institute for Genetics and Selection of Industrial Microorganisms (SIZIM), Moscow, Russia; 4 Unit Electron Microscopy, Veterinary and Agricultural Research Centre (VARC), Lille, Brussels, Belgium; 5 Section Health of the Division Wall-Belgium, Belgian Defence Staff, Queen Astrid Military Hospital, Brussels, Belgium; 6 Laboratory of Gene Technology (LGT), Katholieke Universiteit Leuven, Leuven, Belgium; 7 Department of Physiology (FZIP), Vrije Universiteit Brussel, Antwerp, Belgium, Belgium, Laboratory for Bacteriology Research (LBR), Ghent University Hospital, Ghent, Belgium.
Ethical approval study > 28/06/’07
BACTERIOPHAGE COCKTAIL STUDY (2007/007) PROCEDURES
(ADDENDUM TO CRF)

H0

1. a) Divide the wound into two halves.
 ST: "Standard Treatment".
 BT: "Bacteriophage Treatment".
 b) Take a swab sample of the two halves.
 c) Label the swabs (Patient name + ST0 or BT0).
 d) Send them to the Bacteriology Lab.

2. Apply a local anaesthetic (Xylocaine 2%).

3. a) Take two 2 mm punch biopsy samples.
 b) Weigh the two biopsies.
 c) Place them into two sterile labelled recipients with 0.5 ml PBS buffer (LabMCT).

4. Suture the two punch biopsy wounds with a different colored wire.
Patient treatment
Patient treatment
(First) (Western) (Belgian)
Burn Wound Trial, 2007-2010
“Declaration of Helsinki”
“Declaration of Helsinki”
“Declaration of Helsinki”
ANNEX 1 Directive 2001/83/EC (Medicinal Products for Human Use)

Part I: Standardized marketing authorisation dossier

Part II: Specific marketing authorisation dossier
 • Well-established medicinal use
 • Essentially similar medicinal products
 • Additional data required in specific situations
 • Similar biological medicinal products
 • Fixed combination medicinal products
 • Documentation for applications in exceptional circumstances
 • Mixed marketing authorisation applications

Part III: Particular medicinal products
 • Biological medicinal products
 o Plasma-derived medicinal products
 o Vaccines
 • Radio-pharmaceuticals and precursors
 o Radio-pharmaceuticals
 o Radio-pharmaceutical precursors for radio-labelling purposes
 • Homeopathic medicinal products
 • Herbal medicinal products
 • Orphan medicinal products

Part IV: Advanced Therapy Medicinal Products
 • Gene therapy medicinal products
 • Somatic cell therapy medicinal products
 • Tissue engineered products
 • Combined advanced therapy medicinal products
Question for written answer to the Commission
Rule 117
Ivo Belet (PPE) and Catherine Trautmann (S&D)

Subject: Bacteriophage therapy

• Bacteriophages are the natural enemies of bacteria. Bacteriophages are always present where bacteria are.
• Bacteriophages exclusively reproduce within bacterial cells, destroying them. Bacteriophages never infect human cells. For each specific bacterium, a specific bacteriophage exists.
• Scientific publications demonstrate the safety of bacteriophages for human therapeutic use.
• Bacteriophage therapy is applied today in e.g. some former Soviet Republics (e.g. Russia, Georgia).
• Bacteriophage therapy is used to complement or as an alternative to antibiotic therapy. This alternative is important when antibiotics fail.
• Bacteriophage therapy is important as an extra tool in the battle against bacteria resistant to the currently available antibiotics. This problem is, in Europe as elsewhere, seriously increasing.
• Today’s European medicinal product regulatory framework (Commission Directive 2003/63/EC — Consolidated) does not define specific requirements related to bacteriophage therapy.
• Can the Commission explain how bacteriophage therapy would be regulated today, within Europe?
• If bacteriophage therapy were regulated as a classical, not bacteriophage-specific, ‘chemical’, ‘particular’ or ‘advanced’ medicinal product, which legal framework would apply for patients who need bacteriophage therapy today?
• How could the current European medicinal product regulatory framework be optimised with the aim of the European introduction of bacteriophage therapy?
• Would the Commission consider creating an extra documentation box ‘Bacteriophage Therapy’ in the section regulating ‘Particular Medicinal Products’ (Part III of Commission Directive 2003/63/EC)?
The EU's legislation on medicinal products does not define specific requirements related to bacteriophage therapy or medicines composed of bacteriophages.

Bacteriophages could be regulated as any other medicinal product if the product fulfils the definition of a medicinal product, namely:
- any substance or combination of substances presented as having properties for treating or preventing disease in human beings
- any substance or combination of substances which may be used in or administered to human beings either with a view to restoring, correcting or modifying physiological functions by exerting a pharmacological, immunological or metabolic action, or to making a medical diagnosis.

The classification of any given product as a medicinal product is performed by the Member States taking into account all the characteristics of the product. When a product is classified as a medicinal product, such product may be placed on the EU market only after a marketing authorisation for such product has been delivered. In order to obtain a marketing authorisation, an application which meets the requirements laid down in Directive 2001/83/EC, as amended, has to be submitted. If the active substance is a biological substance that is produced by or extracted from a biological source, then specific requirements are required in the marketing authorisation dossier and are defined in Directive 2001/83/EC Annex I, Part III.

In addition, if the product is based on genes (gene therapy), cells (cell therapy) or tissues (tissue engineering), the medicinal product is eligible as an advanced therapy medicinal product. In such cases, specific rules as established in Regulation (EC) No 1394/2007 apply. All data shall allow the competent authority to draw a conclusion on the quality, efficacy and safety of the product and the positive benefit/risk balance for the patients. The product is then authorised to be placed on the market.

The Commission considers that the existing regulatory framework as explained above is adequate for bacteriophage therapy without the need for an extra set of documentation for bacteriophage therapy.
European Medicines Agency (EMA) Innovation Task Force (ITF)

The Innovation Task Force (ITF) is a multidisciplinary group that includes scientific, regulatory and legal competences, set up to ensure Agency-wide coordination in the areas of interest and to provide a forum for early dialogue with applicants.

Briefing meetings

- The scope of the briefing meetings covers regulatory, technical and scientific issues arising from innovative medicines development, new technologies and borderline products.

- The ITF, within 60 days of receipt of a valid request from an applicant, arranges free-of-charge briefing meetings to facilitate the informal exchange of information and the provision of guidance early in the development process.

- The scientific discussions are led by experts from the Agency network, working parties and committees, where the best available scientific expertise is represented.

- Briefing meetings are meant to complement and reinforce existing formal regulatory procedures (e.g. ATMP classification, ATMP certification, designation of orphan medicinal products, CHMP scientific advice, etc).
Briefing Documents ITF

European regulatory conundrum of phage therapy

Future Microbiology, October 2007

Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

PloS ONE, March 2009

Pharm Res, November 2010
The evolutionary bacterial-phage dynamics can only be put to full advantage in therapy when using a timely and flexible approach.
ITF Opinions

• For sure a natural bacteriophage is a biological
• Requirements have to be discussed case-by-case, individually
• Quality slide of presentation is part of a full IMPD dossier
• Full documentation package is needed for final evaluation
• Phages are not the only evolving products
 • There are precedents, e.g. stem cell preparations
 • Cell cultures for autologous grafting are also precedents
 • There is also the precedent of the flu vaccine
ANNEX 1 Directive 2001/83/EC (Medicinal Products for Human Use)

Part I: Standardized marketing authorisation dossier

Part II: Specific marketing authorisation dossier
- Well-established medicinal use
- Essentially similar medicinal products
- Additional data required in specific situations
- Similar biological medicinal products
- Fixed combination medicinal products
- Documentation for applications in exceptional circumstances
- Mixed marketing authorisation applications

Part III: Particular medicinal products
- Biological medicinal products
 - Plasma-derived medicinal products
 - Vaccines
- Radio-pharmaceuticals and precursors
 - Radio-pharmaceuticals
 - Radio-pharmaceutical precursors for radio-labelling purposes
- Homeopathic medicinal products
- Herbal medicinal products
- Orphan medicinal products

Part IV: Advanced Therapy Medicinal Products
- Gene therapy medicinal products
- Somatic cell therapy medicinal products
- Tissue engineered products
- Combined advanced therapy medicinal products
Conclusions

• Things are moving at the European and Member State level
• EMA knows what natural phages, used as therapeutics, are
• Regulators apply regulation, they do not change regulation
• There is an important role for MD’s using (or wanting to use) natural phages and patient groups at the level of sensitizing politicians so that European Regulatory framework can be adapted ‘bottom-up’
• Why not creating a totally new framework for phage therapy? Next to the “medicinal product” regulatory framework, next to the “medical device” regulatory framework, next to the “human cell and tissue” regulatory framework, ... ?
July 16, 2009

Thanks to:
gilbert.verbeken@mil.be
We will be happy to answer any question…

Slides are available on http://www.facm.ucl.ac.be ➔ Lectures