Hepatic Safety of Common Antibiotics

Paul M. Tulkens, MD, PhD *

Cellular and Molecular Pharmacology & Centre for Clinical Pharmacy, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

Human Biochemistry and Biochemical pathology Université de Mons, Mons, Belgium

* in collaboration with R.J. Andrade, University of Malaga & CIBERehd, Barcelona, Spain;
Disclosures

Financial support from

- the Belgian Fonds de la Recherche Scientifique for basic research on pharmacology and toxicology of antibiotics and related topics
- Université catholique de Louvain and Université de Mons for personal support (until 2010)
- Support for research (non clinical) and Speaker’s bureau:
 - AstraZeneca, GSK, Sanofi-Aventis, Bayer HealthCare, Cempra Pharmaceuticals, The Medicines Company, Northern Antibiotics, Cerexa, Trius, Rib-X
- Other relationships in relation to this talk
 - Member of Belgian Antibiotic Policy Coordination Committee
 - Past-member of Belgian Transparency and Drug Reimbursement Committees
 - Testimony (for Industry) and participation (as independent expert) to meetings of the European Medicines Agency (EMA) about antibiotic safety and evaluation of current and novel antibiotics
Drug-induced hepatotoxicity: in a nutshell

• important cause of acute liver failure
• underreported and underestimated in many countries
• common classes of drugs include
 – antibiotics,
 – antiretrovirals,
 – lipid lowering agents,
 – oral hypoglycemics,
 – psychotropics,
 – Acetaminophen (paracetamol)
 – complementary and alternative medications.
• signature or pattern of liver injury (including liver test abnormalities)
• often important latency of symptom onset,
• immune hypersensitivity may or may not be present
• variable course after drug withdrawal.

Drug-induced hepatotoxicity: why are antibiotics most frequently involved?

1. mainly due to their wide prescription (in terms of number of patients exposed)

2. probably also related to the large doses used compared to many other drugs
 - 77% of cases for drugs > 50 mg/day (Swedish registry)

3. but the absolute average risk is low
 - (< 5 per 100,000 in general population) with exceptions (see later)

Drug-induced liver injury: what can you see?

- Acute hepatitis
- Acute cholestasis
- Chronic hepatitis
- Fatty liver/ NASH
- Granulomatous disease
- Fibrosis/ cirrhosis
- Vanishing bile duct
- Veno-occlusive disease, peliosis
- Benign & malignant neoplasia

Fontana RJ Causality Assessment in Drug Induced Liver Injury, FDA, PhRMA, AASLD Symposium January 28, 2005
http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/ucm080349.ppt
Drug-induced hepatotoxicity: clinical features and significance (in a nutshell)

- usually asymptomatic,
- If detected, often transient with only mild hepatic impairment.
- in rare cases, however, may cause
 - significant morbidity
 - need for liver transplantation
 - death from acute liver

- actions of regulatory bodies targeting specific antibiotics
- Increased public awareness

Björnsson & Olsson Suspected drug-induced liver fatalities reported to the WHO database. Dig Liver Dis 2006; 38: 33–8
Drug-induced hepatotoxicity:
finding the real incidence from the tip of the iceberg

Fontana RJ Causality Assessment in Drug Induced Liver Injury, FDA, PhRMA, AASLD Symposium January 28, 2005
http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/ucm080349.ppt
Drug-induced hepatotoxicity: mechanisms...

• most antibiotic-induced hepatotoxicities are idiosyncratic
 ➢ occur in a very small proportion of patients,
 ➢ cannot be predicted either from the drug’s pharmacology or from pre-clinical toxicology tests
 ➢ are host dependent.

• mechanisms may be varied and multiple
 ➢ immunological reaction (liver inflammation associated with liver viral or bacterial infection of liver or inflammatory disease)
 ➢ response to hepatotoxic metabolites
 ➢ synergy with inflammatory cytokines signalling

Drug-induced hepatotoxicity: symptoms...

- similar to those of other liver diseases,
 - jaundice,
 - malaise,
 - abdominal pain,
 - unexplained nausea and anorexia.

- mimics other liver diseases
 ➔ diagnosis of elimination (suspicion / exclusion [viral hepatitis, biliary diseases])

- Clues
 - “drug allergy” (rash, fever or eosinophilia),
 - duration of exposure (1–5 weeks)
 - rapid response following re-administration of the antibiotic

Drug-induced hepatotoxicity: how to ensure early and correct detection ...

Anamnese

- obtain a detailed drug history (drug’s hepatotoxic potential)
- look at timing of drug administration vs. emergence of symptoms
 - if previous use of the same antibiotic
 - if concomitant drug use (including herbal medications)

Laboratory findings

- alanine aminotransferase (ALT) > 2 x ULN
- bilirubin ≥2 x ULN: worse prognosis
 - if ALT > 3 x ULN) and bilirubin > 2 x ULN ~ 10 % mortality (Hy’s Law)

Early and correct detection of drug-induced hepatoxicity: caveats ...

Confounding factors

• age
• pre-existing liver disease
• concurrent medications
• excessive alcohol consumption
• acetaminophen (paracetamol) affect biochemical tests
• infection (sepsis) may create liver toxicity (cholestasis)…
• the interval between drug administration and onset of hepatic dysfunction is variable (a few days to several weeks)
Early and correct detection of drug-induced hepatotoxicity: caveats …

Complicating the diagnosis and the reporting…

• increase in transaminases may be transient despite continued treatment unless additional patient’s factors
• for most commercialized antibiotics, cases remain rare and have to be balanced with other causes/situations of liver injury including idiopathic liver failure (1 / 1,000,000)
• most diagnoses are the result of retrospective analysis
 ➢ subjective nature of the approach
 ➢ potential observer biases.
• the “gold standard” (rechallenge) is difficult to apply (and does not recreate the same environment)

Difficulties with causality assessment…

The so-called “Roussel-Uclaf Causality Assessment Method” has long been the accepted standard instrument …

- Temporal relationship (0 to 2)
- Course (-2 to 3)
- Risk factors (0 to 2)
- Concomitant drug (0 to -3)
- Non-drug causes (-3 to 2)
- Prior reports/ information (0 to 2)
- Re-challenge (-2 to 3)

- Score (-8 to 14)
- Highly probable >8 Possible 3-5 Excluded ≤0
- Probable 6-8 Unlikely 1-2

Difficulties with causality assessment…

But has been challenged …

Reliability of the Roussel Uclaf Causality Assessment Method for Assessing Causality in Drug-Induced Liver Injury*

James Rochon,¹ Petr Protiva,² Leonard B. Seeff,³ Robert J. Fontana,⁴ Suthat Liangpunsakul,⁵ Paul B. Watkins,⁶ Timothy Davern,⁷ and John G. McHutchison,¹ for the Drug-Induced Liver Injury Network (DILIN)

Difficulties with causality assessment...

Fig. 1. Histogram of the within-reviewer differences from the first occasion to the second occasion. (A) All reviewers. (B) Site PIs only.

Fig. 2. Bland-Altman plot of test-retest differences versus their mean. The purpose is to determine if the test-retest differences were consistent throughout the range of the RUCAM score. This would be reflected by a constant level of scatter about the reference line. Deviations form this pattern suggests that consistency varies from one place to another in the scale and casts doubt on its overall reliability.
Drug-induced hepatotoxicity: elderly are at higher risk

- multi-morbidity
- poly-pharmacy
- drugs more often involved: amoxycillin/clavulanic acid, isoniazide, nitrofurantoin, diclofenac and methotrexate (4 x more than in younger adults)
- causal diagnostic made difficult because simulation of almost all known liver disorders…
- data from clinical trials of little use as most exclude patients >75-80 years of age.

Specific drugs: β-lactams and macrolides ...

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>incidence</th>
<th>main characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| oxypenicillins | 1.8 / 100,000 | • primarily cholestatic hepatitis
 | (flucloxacillin) | • rapid and late onset |
| amoxyclav | 1–17 / 100,000 | • hepatocellular, cholestatic or mixed hepatocellular-cholestatic
 | | • up 4 weeks after treatment |
| ceftriaxone | adults: 25% | • cholelithiasis (ceftriaxone–calcium precipitate [“biliary sludge”])
 | children: 40% | | |
| Macrolides | | |
| erythromycin | < 4 / 100,000 | • cholestatic pattern |
| clarithromycin | | • portal and bullous inflammation, eosinophilia |
| telithromycin | | • mild hepatocellular necrosis |
| | | • hepatocellular and canalicual bile |
| | | • cholestasis |
| | | • rapid onset |

References: see Andrade & Tulkens. J Antimicrob Chemother. 2011; 66:1431-46. – Table 1
Amoxicillin-clavulanate: incidence …

- clavulanate increases 5-9-fold the risk of hepatotoxicity of amoxicillin.
 40,43,55,59,60
- odd ratios vs non cases of 31.9 with recent use and 94.8 with current use 43
- responsible for 13%–23% of drug-induced hepatotoxicity cases 7,56,57
- 9.91 cases of jaundice per 100000 prescriptions 44
- leading cause of hospitalization for adverse hepatic events 7

- symptom onset is usually delayed, making early diagnosis difficult 58

- benign course, with symptoms resolving over several weeks.
- but protracted course, liver failures and deaths have been observed.

Amoxicillin-clavulanate: pathology and risk factors …

- delayed cholestatic or mixed hepatocellular-cholestatic injury
 40,59,61

- younger patients are more likely to develop hepatocellular injury than cholestatic or mixed injury 56

- Risk factors: 40,56
 - prolonged/repeated courses
 - > 65 y
 - if both : 1 case/1,000 prescription

- significant association between DRB1*1501-DRB5*0101-DQB1*0602 haplotype and cholestatic hepatitis62

Erythromycin / Clarithromycin …

Incidence

• documented for all ester derivatives \(^4,5,70\)
• elevation of serum aminotransferases 15\% of cases / hepatitis in \(~2\%\) of patients if \(> 2\) weeks \(^71,72\)
• UK: cholestatic hepatitis in 3.6 cases / 100000 users.\(^73\)
• rare need of hospitalization (US: 2.28 / 1 million patients)\(^75\)

Pathology

• combination of intrinsic hepatotoxic effects and hypersensitivity reactions
• cholestatic pattern but cases with hepatocellular injury.\(^72\)
• potential aggravation of hepatotoxicity of other drugs trough impairment of their metabolism
• resolves most often within 2–5 weeks of treatment discontinuation

Telithromycin...

Telithromycin-Associated Hepatotoxicity: Clinical Spectrum and Causality Assessment of 42 Cases

Allen D. Brinker,1 Ronald T. Wassel,1 Jenna Lyndly,1 Jose Serrano,2 Mark Avigan,1 William M. Lee,3 and Leonard B. Seeff2

- unusual form of rare hepatotoxicity characterized by
 - short latency,
 - systemic symptoms and signs,
 - in some cases, significant ascites
- Difficulties with the “classical” causality assessment instruments due to the unusual form

Telithromycin...

Fig. 1. Distribution of days between initiation of telithromycin and onset of symptomatic illness for 39 cases of telithromycin-associated liver injury.

Table 2. Correlation of Disease Severity with Probability/Causality

<table>
<thead>
<tr>
<th>Causality DILIN Severity*</th>
<th>Possible</th>
<th>Probable</th>
<th>Very likely</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>18</td>
<td>8</td>
<td>42</td>
</tr>
</tbody>
</table>

*Numbers indicate degree of severity ranging from 1 (least severe) to 5 (most severe) as defined by the Drug-Induced Liver Injury Network (see text for details).

Telithromycin…

Fig. 2. Level of agreement among five reviewers assessing the likelihood of causal association between hepatotoxicity and telithromycin exposure in 42 spontaneously reported cases.

agreement on likelihood not easy to reach …

Specific drugs: fluoroquinolones...

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>incidence</th>
<th>main characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluoroquinolones</td>
<td>ciprofloxacin isolated cases</td>
<td>• hepatocellular and cholestatic hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fatalities reported</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>< 1 case / 5 millions prescriptions</td>
<td>• hepatocellular and cholestatic hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fatalities reported</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>isolated cases</td>
<td>• hepatocellular and cholestatic hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fatalities reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• rapid and late onsets reported</td>
</tr>
<tr>
<td>trovafloxacin</td>
<td>145 cases / 2.5 millions users</td>
<td>• hepatic necrosis leading to liver failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• variable onset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• possibly related to difluorophenyl and/or cyclopropylamine moieties</td>
</tr>
</tbody>
</table>

References: see Andrade & Tulkens. J Antimicrob Chemother. 2011; 66:1431-46. – Table 1
Ciprofloxacine / Levofloxacine …

Ciprofloxacin

- literature remains scanty…
- incidence is considered as very low \(^4,5\) but unexpectedly severe and fatal cases have been documented\(^100,101\)
- hepatocellular injury and cholestatic hepatitis \(^102,103\)

Levofloxacine

- incidence is also low with abnormal liver function in \(<1\%\) in clinical trials \(^106\)
- post-marketing surveillance shows cases in \(<1\) for 5 million prescriptions \(^107\)
- hepatic failure have been reported\(^108–113\) and the US prescribing information mentions severe, and sometimes fatal, hepatotoxicity

Alan et al. Unexpected severe hepatotoxicity of ciprofloxacine: two case reports. Drug Chem Toxicol. 2011; 34:189-91
Moxifloxacin …

- clinical trials and post-marketing surveillance shows minimal incidence of hepatic injury
- liver tests may be abnormal in ~1%–5% of patients115,116
- spontaneous reports including on 9 deaths (association possible)119,120

Incidence of adverse events in clinical studies of patients with hepatic impairment and treated with moxifloxacin or a comparator

Relative risk estimate (moxifloxacin / comparator)

Moxifloxacin / Levofloxacin: a debate...

Fluoroquinolone therapy and idiosyncratic acute liver injury: a population-based study

J. Michael Paterson MSc, Muhammad M. Mamdani PharmD MPH, Michael Manno MSc, David N. Juurlink MD PhD; for the Canadian Drug Safety and Effectiveness Research Network

- case–control study in a cohort of outpatients ≥ 66 y having received antibiotic(s) frequently used to treat respiratory tract infections
- cases: admission within 30 days after receiving the antibiotic with a diagnosis of toxic liver disease (with hepatitis, hepatic necrosis or unspecified or acute/subacute or unspecified hepatic failure (n=746)
- Potential confounding factors: alcohol dependence, diabetes mellitus, recent use of other hepatotoxic drugs (phenytoin, isoniazid, amoxicillin/clavulanate and valproicacid)
- Exclusion of patients multiple drugs during the 30-day window, diagnosis or procedure related to liver disease in the preceding 5 years
- final selection: n=144 [1409 matched controls]
Moxifloxacin / Levofloxacin: a debate ...

This crude incidence rate is 6 x larger than previously published values...
- differences in definitions of outcomes,
- incomplete reporting of adverse events in previous studies
- the older age of study’s participants

UK: cholestatic hepatitis in 3.6 cases / 100000 users for erythromycin (see slide 20)

<table>
<thead>
<tr>
<th>Antibiotic agent</th>
<th>No. of exposures</th>
<th>Admission to hospital for acute liver injury within 30 d of dispensing</th>
<th>Rate per 100,000 exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarithromycin (reference)</td>
<td>910,817</td>
<td>36</td>
<td>3.95</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>248,458</td>
<td>16</td>
<td>6.44</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1,051,959</td>
<td>67</td>
<td>6.37</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>324,660</td>
<td>28</td>
<td>8.62</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>325,920</td>
<td>26</td>
<td>7.98</td>
</tr>
</tbody>
</table>
Moxifloxacin / Levofloxacin: a debate …

Table 2: Association between admission to hospital for acute liver injury and recent use of antibiotic agents

<table>
<thead>
<tr>
<th>Antibiotic agent</th>
<th>Crude OR (95% CI)</th>
<th>Adjusted OR* (95% CI)</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarithromycin (reference)</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>1.65 (0.84–3.24)</td>
<td>1.43 (0.72–2.83)</td>
<td>0.3</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1.83 (1.12–2.98)</td>
<td>1.56 (0.95–2.58)</td>
<td>0.08</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>2.06 (1.14–3.73)</td>
<td>1.85 (1.01–3.39)</td>
<td>0.046</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>2.44 (1.37–4.36)</td>
<td>2.20 (1.21–3.98)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval, OR = odds ratio

*Model includes neighbourhood income quintile, number of prescription drugs received in the preceding year, number of outpatient visits to a physician in the preceding year, diabetes mellitus, receipt of sulfamethoxazole and trimethoprim in the 90 days before admission, and receipt of isoniazid, phenytoin, amoxicillin/clavulanate or valproate in the 90 days before admission.

†Wald χ².

Questions:
- representativeness of the population
- outcome (admission) and causality (beyond use of antibiotic within 30 days)
Other specific drugs ...

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>incidence</th>
<th>main characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfonamides</td>
<td>sulfasalazine 1 per 1000</td>
<td>• cholestatic or mixed hepatocellular-cholestatic injury</td>
</tr>
<tr>
<td></td>
<td>prescriptions</td>
<td>• within first 4 weeks</td>
</tr>
<tr>
<td>trimethoprim/</td>
<td>trimethoprim/sulfamethoxazole</td>
<td>• cholestatic or mixed hepatocellular-cholestatic injury</td>
</tr>
<tr>
<td>sulfamethoxazole</td>
<td>< 2 per 10000 prescriptions</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>tetracycline 1 per 18 million</td>
<td>• microvesicular steatosis (acute fatty liver);</td>
</tr>
<tr>
<td></td>
<td>daily doses</td>
<td>• cholestatic with ductopenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• long latency period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>most cases related to high doses</td>
</tr>
<tr>
<td>oxazolidinones</td>
<td>linezolid isolated cases</td>
<td>• severe liver failure with lactic acidosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• microvesicular steatosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• related to mitochondrial dysfunction (?)</td>
</tr>
</tbody>
</table>

References: see Andrade & Tulkens. J Antimicrob Chemother. 2011; 66:1431-46. – Table 1
Linezolid

DOI 10.1007/s13181-010-0047-0

TOXICOLOGY OBSERVATION

Severe Drug-induced Liver Injury Associated with Prolonged Use of Linezolid

Liesbet De Bus · Pieter Depuydt · Louis Libbrecht · Linos Vandekerckhove · Joke Nollet · Dominique Benoit · Dirk Vogelaers · Hans Van Vlierberghe

Fig. 1 The parenchyma shows diffuse microvesicular steatosis (arrows). (Original magnification ×400)

Fig. 2 Portal tract with a mildly increased mononuclear infiltrate and a bile duct with damaged, degenerated epithelium containing a lymphocyte (arrow). (Original magnification ×400)

Microvesicular steatosis with associated bile duct damage coupled with fullminant course of liver dysfunction;

Treatment of 50 days
Conclusions and food for thought

• Drung-induced liver injury has been associated with the use of nearly all antibiotics and may mimic various forms of acute and chronic hepatobiliary disease

• Diagnosis is always one of increasing probability, as conclusive proof is often lacking

• With the exception of antibiotics that have been withdrawn (telithromycin, trovafloxacin) and of clavulanic acid, incidences are very low (~1 to 10/100,000) and must be balanced with the benefit expected from the treatment

• Both physicians and patients need to be aware of, and monitor for, potential symptoms and take prompt action if signs of hepatotoxicity emerge, as this is, for now, the only effective action