Bridging the gap of innovation – what we all could do?
Improving usage by guidelines: a critical view

Paul M. Tulkens
Cellular and Molecular Pharmacology
Louvain Drug Research Institute
Université catholique de Louvain, Brussels, Belgium

http://www.facm.ucl.ac.be

21st European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) & 27th International Congress of Chemotherapy (ICC)
Milan, Italy, 7-10 May 2011
Disclosures

Financial support from

• the Belgian *Fonds de la Recherche Scientifique* for basic research on pharmacology antibiotics and related topics

• *Université catholique de Louvain* for personal support

• Commercial Relationships:
 – AstraZeneca, GSK, Sanofi-Aventis, Bayer HealthCare, Cempra Pharmaceuticals, The Medicines Company, Northern Antibiotics

• Other relationships in relation to this talk
 – Belgian Antibiotic Policy Coordination Committee, Belgian Transparency and Reimbursement Committees
What this lecture will be about?

- Guidelines why?
- Are guidelines unanimous on defined topics?
- What is the quality of guidelines?
- What could be their limitations in daily clinical practice?
- Guidelines and drug innovation

the case of the CAP guidelines

a few words about vancomycin
Guidelines: origin, basis and use

• Clinical guideline aim at **guiding decisions and criteria** regarding diagnosis, management, and treatment

• Guidelines have been used since the beginning of Medicine

• Modern medical guidelines are supposed to be based on **critical examination of current evidence**, with emphasis on **evidence-based** rather than eminence-based medicine.

• More and more, healthcare professionals must not only know but apply guidelines or justify why they do not follow them for an individual patient or a group of patients.
Guidelines: content and goals

• Modern clinical should identify the most valuable evidence and integrate this knowledge to build optimized decisions trees that should be applicable to the majority of patients while being sufficiently flexible to accommodate a sufficient level of individual variation.

• But guidelines are also often seen as a mean to standardize medical care with 2 potential consequences/goals, namely

 – to raise quality of care while reducing the risks to patients

 – to achieve the best balance between cost and medical efficacy (broadly speaking)
Guidelines: who and where?

- Guidelines at national or international levels by experts and associations that should represent not only the health care professionals but also the patients (individual level) and the society (societal level) and published in a variety of forms...

- Guidelines International Network (G-I-N) possesses the largest web based data base of medical guidelines worldwide
Guidelines: are they used?

- However, we know that even simple clinical practice guidelines are not as followed as they could be, which raise questions about their utility...

Example 1

BMC Family Practice

Research article

The attitude of Belgian social insurance physicians towards evidence-based practice and clinical practice guidelines

Annemie Heselmans*, Peter Donceel†, Bert Aertgeerts†, Stijn Van de Velde† and Dirk Ramaekers†

BMC Family Practice 2009, 10:64

Conclusion: Although the majority of physicians were positive towards EBM and welcomed more guidelines, the use of evidence and clinical practice guidelines in insurance medicine is low at present. It is in the first place important to eradicate the perceived inertia which limits the use of EBM and to further investigate the EBM principles in the context of insurance medicine. Available high-quality evidence-based resources (at the moment mainly originating from other medical fields) need to be structured in a way that is useful for insurance physicians and global access to this information needs to be ensured.
Guidelines: are they used?

Example 2

doi:10.1093/jac/dkn143
Advance Access publication 8 April 2008

Opposing expectations and suboptimal use of a local antibiotic hospital guideline: a qualitative study

Pieter-Jan Cortoons1, Karel De Witte2, Willy E. Peetemans3, Steven Simoens4 and Gert Laekeman1

1Research Centre for Pharmaceutical Care and Pharmaco-economics, Katholieke Universiteit Leuven, O&N 2, Herestraat 49, PB 521, B-3000 Leuven, Belgium; 2Centre for Organisation and Personnel Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, PB 3725, B-3000 Leuven, Belgium; 3University Hospitals of Leuven, Department of General Internal Medicine and Infectious Diseases, Herestraat 49, PB 7003, B-3000 Leuven, Belgium

Conclusions: Locally developed hospital guidelines experience the same barriers as other guidelines. Within one hospital, prescribers have to be seen as a number of different target groups instead of a homogeneous population. For an optimal effect, interventions will have to consider these differences. Also, in order to improve local guideline use and antibiotic consumption, supervisors have to be aware of how their role as opinion leaders can influence residents. Lastly, active guideline distribution and promotion remains critical to ensure efficient guideline use. Future research should focus on how to adapt interventions to these different target groups.
Guidelines: are they used?

Example 2

doi:10.1093/jac/dkn143
Advance Access publication 8 April 2008

Opposing expectations and suboptimal use of a local antibiotic hospital guideline: a qualitative study

Pieter-Jan Cortoos1, Karel De Witte2, Willy E. Peertmans3, Steven Simoens4 and Gert Laekeman1

1Research Centre for Pharmaceutical Care and Pharmaco-economics, Katholieke Universiteit Leuven, O&N 2, Herestraat 49, PB 521, B-3000 Leuven, Belgium; 2Centre for Organisation and Personnel Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, PB 3725, B-3000 Leuven, Belgium; 3University Hospitals of Leuven, Department of General Internal Medicine and Infectious Diseases, Herestraat 49, PB 7003, B-3000 Leuven, Belgium

Conclusions: Locally developed hospital guidelines experience the same barriers as other guidelines. Within one hospital, prescribers have to be seen as a number of different target groups instead of a homogeneous population. For an optimal effect, interventions will have to consider these differences. Also, in order to improve local guideline use and antibiotic consumption, supervisors have to be aware of how their role as opinion leaders can influence residents. Lastly, active guideline distribution and promotion remains critical to ensure efficient guideline use. Future research should focus on how to adapt interventions to these different target groups.
Guidelines: are they homogenous?

• They need not if
 – the diseases are different between geographical areas or groups of patients
 – for infectious diseases, if the epidemiology is different between areas
 – if drug availability is not uniform…
 – if medical and pharmaceutical resources are different

• However, variations are often much larger that what may be anticipated from the above considerations…
Guidelines: an example with CAP

Great Britain
Russia
Saudi Arabia
South Africa
Scotland
Europe
Canada
United States
Latin America
Brazil

1st 2nd choice

- β-lactam
- macrolide
- tetracycline
- quinolone
- streptogramin
- lincosamide
- β-lactam + macrolide
- β-lactam + tetracycline
- β-lactam + quinolone
- quinolone + macrolide
- quinolone + lincosamide
Guidelines: an example with CAP

- β-lactam
- macrolide
- streptogramin
- β-lactam + tetracycline
- lincosamide
- quinolone + macrolide
- β-lactam + quinolone
- quinolone + lincosamide

Great Britain

Scotland

Russia

United States

Canada

Brazil

Latin America

Europe

South Africa

1st choice
2nd choice
Populations at risk of bacteriological failure *

*analysis of resistance of 1st line antibiotics (penicillins) for CAP as reported by the surveillance systems or publications (S. pneumoniae)

- **EARSS**: European Antimicrobial Surveillance system
- **TRUST**: Tracking Resistance in the United States Today
- **GLOBAL**: Global Landscape On the Bactericidal Activity of Levofloxacin
- **ECCMID**: abstracts of the 18-20th European Congress of Clinical Microbiology and Infectious Diseases

Carbonnelle *et al.*, in preparation
Populations at risk of bacteriological failure *

*analysis of resistance of often recommended 1st line antibiotics for CAP (macrolides, doxycycline) as reported by surveillance systems or publications (S. pneumoniae)

- **EARSS**: European Antimicrobial Surveillance system
- **PROTEKT**: Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin
- **TRUST**: Tracking Resistance in the United States Today
- **GLOBAL**: Global Landscape On the Bactericidal Activity of Levofloxacin
- **ECCMID**: abstracts of the 18th European Congress of Clinical Microbiology and Infectious Diseases

Carbonnelle et al., in preparation
Populations at risk of bacteriological failure *

*analysis of resistance of fluoroquinolones (levofloxacin) as reported by surveillance systems or publications (S. pneumoniae)

- **GLOBAL**: Global Landscape On the Bactericidal Activity of Levofloxacin
- **LEADER**: Linezolid Surveillance Program
- **SENTRY**: Antimicrobial Surveillance Program
- **MYSTIC**: Meropenem Yearly Susceptibility Test Information Collection
- **TEST**: Tigecycline Evaluation Surveillance Trial
- **ECCMID**: abstracts of the 18-20th European Congress of Clinical Microbiology and Infectious Diseases

Carbonnelle *et al.*, in preparation
Are CAP guidelines based on the risk of emergence of resistance: the case of fluoroquinolones...

Selection of quinolone resistance in *Streptococcus pneumoniae* exposed *in vitro* to subinhibitory drug concentrations

Laetitia Avrain¹, Mark Garvey², Narcisa Mesaros¹, Youri Glupczynski³, Marie-Paule Mingeot-Leclercq¹, Laura J. V. Piddock², Paul M. Tulkens¹, Raymond Vanhoof⁴ and Françoise Van Bambeke¹

¹Université Catholique de Louvain, Unité de Pharmacologie Cellulaire et Moléculaire, Brussels, Belgium; ²University of Birmingham, Division of Immunity and Infection, Birmingham, UK; ³Université Catholique de Louvain, Cliniques Universitaires de Mont-Godinne, Laboratoire de Microbiologie, Yvoir, Belgium; ⁴Pasteur Institut, Antibiotica Résistente en Nosocomiale Infections, Brussels, Belgium

Fluoroquinolones induce the expression of *patA* and *patB*, which encode ABC efflux pumps in *Streptococcus pneumoniae*

Farid El Garch¹, Ann Lismond¹, Laura J. V. Piddock², Patrice Courvalin³, Paul M. Tulkens¹ and Françoise Van Bambeke¹

¹Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; ²School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; ³Institut Pasteur, Unité des Agents antibactériens, Paris, France
Moxifloxacin MIC's against *S. pneumoniae* in Belgium from 1999 to 2008

S. pneumoniae susceptibility to moxifloxacin in Belgium

Surveys from the Belgian Scientific Institute for Public Health for *S. pneumoniae* from community isolates (n=156 in 1999 and 448 in 2008) http://www.iph.fgov.be

Populations at risk of side effects

<table>
<thead>
<tr>
<th>Class</th>
<th>Drugs</th>
<th>Populations at higher risk of side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td>amoxicillin</td>
<td>• Allergic patients</td>
</tr>
<tr>
<td></td>
<td>amoxicillin/</td>
<td>• Allergic patients</td>
</tr>
<tr>
<td></td>
<td>clavulanic acid</td>
<td>• Erythematous skin rash: patients with mononucleosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hepatic toxicity: patients with hepatic dysfunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nephrotoxicity: elderly patients</td>
</tr>
<tr>
<td>macrolides</td>
<td>clarithromycin</td>
<td>• Cardiac effects: patients taking other drugs with effects on QTc or class 1A or III antiarrythmics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patients with severe renal impairment with or without coexisting hepatic impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patients taking drugs metabolized by CYP450</td>
</tr>
<tr>
<td></td>
<td>azithromycin</td>
<td>• Hepatotoxicity: patients with liver failure</td>
</tr>
<tr>
<td></td>
<td>telithromycin</td>
<td>• Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Myopathies : co-administration of statins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patients with severe renal impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Children (no studies so far)</td>
</tr>
</tbody>
</table>

* as defined by the corresponding labelling
Populations at risk of side effects

<table>
<thead>
<tr>
<th>Class</th>
<th>Drugs</th>
<th>Populations at higher risk of side effects</th>
</tr>
</thead>
</table>
| **fluoroquinolones** | levofloxacin | • Tendon disorders: elderly, patients taking corticoids, or with kidney, heart or lung transplants
• Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia
• CNS effects: patients at risk of epilepsy
• Dysglycemia: diabetic patients
• Pregnancy, lactation, infants |
| | moxifloxacin | • Tendon disorders: elderly, patients taking corticoids, or with kidney, heart or lung transplants
• Cardiac effects: elderly patients taking other drugs with effects on QTc or class 1A or III antiarrythmics, or with known QT prolongation or hypokaliemia
• CNS effects: patients at risk of epilepsy
• Pregnancy, lactation, infants |
| **tetracyclines** | doxycycline | • Pregnancy, lactation, infants |

* as defined by the corresponding labelling
A survey of hepatotoxicity risk for antibiotics used in primary care (including CAP)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Isolated cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>≤0.00007</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>≤0.0002</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>≤0.002</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>≤0.004</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤0.02</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Co-trimoxazole</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin/ clavulanate</td>
<td></td>
</tr>
<tr>
<td>Telithromycin</td>
<td>?</td>
</tr>
</tbody>
</table>

Withdrawal or severe restriction does not allow calculating true incidences

Hepatotoxicity risk of antibiotics: percentage of prescriptions for antibiotics with main indications for use in the community setting.

(From Andrade & Tulkens, JAC 2011 – In press)
Why so much (apparent or real ?) problems ?

Several instruments have been devised to assess the quality of guidelines…

The AGREE Collaboration has developed a series of criteria through an EU-funded research project.
The AGREE Instrument (1)

Table 1 The AGREE instrument

Scope and purpose
1. The overall objective(s) of the guideline is (are) specifically described.
2. The clinical question(s) covered by the guideline is (are) specifically described
3. The patients to whom the guideline is meant to apply are specifically described

Stakeholder involvement
4. The guideline development group includes individuals from all the relevant professional groups
5. The patients' views and preferences have been sought
6. The target users of the guideline are clearly defined
7. The guideline has been piloted among target users

Rigour of development
8. Systematic methods were used to search for evidence
9. The criteria for selecting the evidence are clearly described
10. The methods for formulating the recommendations are clearly described
11. The health benefits, side effects and risks have been considered in formulating the recommendations
12. There is an explicit link between the recommendations and the supporting evidence
13. The guideline has been externally reviewed by experts prior to its publication
14. A procedure for updating the guideline is provided
The AGREE Instrument (2)

Clarity and presentation
15. The recommendations are specific and unambiguous
16. The different options for management of the condition are clearly presented
17. Key recommendations are easily identifiable
18. The guideline is supported with tools for application

Applicability
19. The potential organisational barriers in applying the recommendations have been discussed
20. The potential cost implications of applying the recommendations have been considered
21. The guidelines present key review criteria for monitoring and/or audit purposes

Editorial independence
22. The guideline is editorially independent from the funding body
23. Conflicts of interest of guideline development members have been recorded
Using the The AGREE Instrument for CAP guidelines

<table>
<thead>
<tr>
<th>Researcher initials</th>
<th>Guideline acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 The AGREE instrument

Scope and purpose
1. The overall objective(s) of the guideline is (are) specifically described.
2. The clinical question(s) covered by the guideline is (are) specifically described.
3. The patients to whom the guideline is meant to apply are specifically described.

Stakeholder involvement
4. The guideline development group includes individuals from all the relevant professional groups.
5. The patients' views and preferences have been sought.
6. The target users of the guideline are clearly defined.
7. The guideline has been piloted among target users.

Rigour of development
8. Systematic methods were used to search for evidence.
9. The criteria for selecting the evidence are clearly described.
10. The methods for formulating the recommendations are clearly described.
11. The health benefits, side effects and risks have been considered in formulating the recommendations.
12. There is an explicit link between the recommendations and the supporting evidence.
13. The guideline has been externally reviewed by experts prior to its publication.
14. A procedure for updating the guideline is provided.

Clarity and presentation
15. The recommendations are specific and unambiguous.
16. The different options for management of the condition are clearly presented.
17. Key recommendations are easily identifiable.
18. The guideline is supported with tools for application.

Applicability
19. The potential organisational barriers in applying the recommendations have been discussed.
20. The potential cost implications of applying the recommendations have been considered.
21. The guidelines present key review criteria for monitoring and/or audit purposes.

Editorial independence
22. The guideline is editorially independent from the funding body.
23. Conflicts of interest of guideline development members have been recorded.

Fill ONE appropriate column
+ = full agreement
+/- = fair agreement

<table>
<thead>
<tr>
<th>criteria</th>
<th>YES</th>
<th>NO</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of 30 CAP guidelines with the AGREE Instrument

Mean scores presented as "boxes and whiskers" (lowest to highest with 25%-75% and median. Scores of domains with different letters are significantly different from each other (Kruskal-Wallis test with Dunn's Multiple Comparison Test).
Limitations in daily practice: an example with GP's

- lack of involvement of stakeholders and lack of applicability: analysis of the compliance to a guideline by GP's using the "Lot Quality Assurance Sampling approach" (in-depth interview)

<table>
<thead>
<tr>
<th>Indication</th>
<th>Introductory comment</th>
<th>1st line treatment</th>
<th>2nd line (and condition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acute RTI (adult *)</td>
<td>- Acute bronchitis: an antibiotic is not indicated</td>
<td>- without co-morbidity: amoxicillin</td>
<td>- if non-IgE-mediated allergy to penicillin: cefuroxime axetil</td>
</tr>
<tr>
<td></td>
<td>- Community acquired pneumonia: antibiotic (oral) if lethal risk is low</td>
<td>- with co-morbidity: amoxicillin-clavulanic acid</td>
<td>- if type I allergy to penicillin: moxifloxacin</td>
</tr>
<tr>
<td></td>
<td>(otherwise, hospitalization is required)</td>
<td>(if no improvement after 48 h, add a macrolide)</td>
<td></td>
</tr>
<tr>
<td>COPD exacerbation</td>
<td>An antibiotic is, generally speaking, not indicated except for patients with fever (> 38°C), VEMs < 30% of normal values, alteration of the general status and/or no improvement of a non-antibiotic treatment within 4 days in non severe or 3 days in severe exacerbations</td>
<td>- amoxicillin</td>
<td>- if non-IgE-mediated allergy to penicillin: cefuroxime axetil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with co-morbidity: amoxicillin-clavulanic acid</td>
<td>- if type I allergy to penicillin: moxifloxacin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(if no improvement after 48 h, replace amoxicillin by amoxicillin-clavulanic acid)</td>
<td></td>
</tr>
</tbody>
</table>
Limitations in daily practice: an example with GP's

- **main medical reasons for not following the guidelines shown on the previous slide (LQAS; n=30)**

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Specific reason(s) mentioned (by order of decreasing number of occurences) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>- perceived severity of the disease</td>
<td>- duration/worsening of the symptoms (21)</td>
</tr>
<tr>
<td>or disease considered as requiring antibiotic treatment</td>
<td>- worsening of the general status (19)</td>
</tr>
<tr>
<td></td>
<td>- local signs of severity (15) (throat, ear, sinus, ganglions, amygdale; severe discharge)</td>
</tr>
<tr>
<td></td>
<td>- overall suggestive clinical examination (10)</td>
</tr>
<tr>
<td></td>
<td>- pain (9)</td>
</tr>
<tr>
<td></td>
<td>- fever (7)</td>
</tr>
<tr>
<td></td>
<td>- coloured / abnormal sputum (6)</td>
</tr>
<tr>
<td></td>
<td>- presentation similar to a recent infection successfully treated with an antibiotic (5)</td>
</tr>
<tr>
<td></td>
<td>- uncertainty upon auscultation (4)</td>
</tr>
<tr>
<td></td>
<td>- previous treatment ineffective (3)^1</td>
</tr>
<tr>
<td></td>
<td>- dyspnoea (2)</td>
</tr>
<tr>
<td></td>
<td>- familial epidemic (2)</td>
</tr>
<tr>
<td></td>
<td>- certainty of a bacterial infection (1)</td>
</tr>
<tr>
<td>- fragility of the patient or whit risk</td>
<td>- objectively frail patient (13)</td>
</tr>
<tr>
<td></td>
<td>(aged, child, overall status or concurrent immunosuppressive medication)</td>
</tr>
<tr>
<td></td>
<td>- general medical history (personal or familial) (11)</td>
</tr>
<tr>
<td></td>
<td>- established co-morbidity (6)</td>
</tr>
<tr>
<td></td>
<td>- COPD patient (5)</td>
</tr>
<tr>
<td></td>
<td>- risk of bacterial surinfection (3)</td>
</tr>
<tr>
<td></td>
<td>- smoker (2)</td>
</tr>
<tr>
<td></td>
<td>- patient not previously known by the prescriber (1)</td>
</tr>
<tr>
<td>- uncertainty of the etiological diagnostic</td>
<td>- while waiting for the microbiological results (2)</td>
</tr>
<tr>
<td></td>
<td>- suspicion of organism causing atypical pneumonia (1)</td>
</tr>
<tr>
<td></td>
<td>- diagnostic uncertain and possibly worse than thought (1)</td>
</tr>
</tbody>
</table>
Limitations in daily practice: an example with vancomycin

Continuous infusion of vancomycin with target set at 27 mg/L

V for vancomycin! *

* copied from A. McGowan

should cover to 1.5 mg/L (AUC_{24h} = 27 \times 24 = 648)

Ampe et al. in preparation

21st ECCMID & 27th ICC, - 10 May 2010
Limitations in daily practice: an example with vancomycin

what do you do with the 6 failures (out of 20 patients)

* using microdilution would put the boundary at an AUC/MIC of 650, with failures for MIC > 1.5 mg/L
Guidelines and innovation

• if guidelines allow for a fully satisfactory treatment, we need no innovation…
• but what if innovation fills up an unmet need?
• the problem will be the market anticipated by the discoverer for the innovation … but…
• in Infectious Diseases, the "unmet need" is infections caused by resistant organisms, which, hopefully, is a small market…
• as a consequence, either
 – novel antibiotics MUST be expensive, or
 – their "too large" promotion (beyond resistant organisms) will clash with guidelines…
Guidelines and innovation

![Graph showing the time (hr) vs. log (CFU/ml) for different antibiotics including Vancomycin, Linezolid, Telavancin, and Growth Control. MIC values are also indicated: 2 for Linezolid, 1 for Vancomycin, and 0.5 for Telavancin.]

Pace et al. (2003). AAC 47:3602
Guidelines and Innovation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TLV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Response in CE Patients</td>
<td>88.3 % (745)</td>
<td>87.1 % (744)</td>
</tr>
<tr>
<td>Overall Therapeutic Response in ME Patients</td>
<td>88.6 % (527)</td>
<td>86.2 % (536)</td>
</tr>
<tr>
<td>Clinical Response in MRSA</td>
<td>90.6 % (278)</td>
<td>86.4 % (301)</td>
</tr>
<tr>
<td>Microbiological Eradication in MRSA</td>
<td>89.9 % (278)</td>
<td>85.4 % (301)</td>
</tr>
<tr>
<td>Overall Therapeutic Response in MRSA</td>
<td>89.9 % (278)</td>
<td>84.7 % (301)</td>
</tr>
</tbody>
</table>

(TLV - VAN, %) with 95% Confidence Interval

How would you put this in guidelines?
Guidelines and Innovation

• Can novel antibiotics be limited in use and be part of the guidelines for situations when the other fail?
• Yes if
 – they are discovered and developed for cheap …
 – their discovery/development uses other resources than those usually devoted by Industry for these tasks (e.g. tuberculosis…)
 – they do what anticancer drugs have been doing…

"Best treatment" acquisition costs
• for CAP: 200 euros
• one year survival from cancer: 2,000 to > 20,000 euros
Conclusions

• Guidelines are interesting and most probably useful
• Their writing is a difficult exercise
• Their implementation is a long journey not without surprise
• They must remain open to accommodate for special situations and innovation
• Without that, they may create problems.