Efflux pumps inhibitors: the long journey from procaryotes to eucaryotes

Béatrice Marquez
Unité de Pharmacologie cellulaire et moléculaire
Université catholique de Louvain
Brussels, Belgium

Transport across membranes
Summer School, Jacobs University (Bremen), July 2007
Efflux pumps and their clinical relevance

Efflux pump inhibitor’s properties

EPI DISCOVERY

- By rational design
- By screening
 - bacterial EPI
 - eucaryotic EPI
Efflux pumps

⇒ UBIQUITOUS

Eucaryotes: ABC-pump mediated resistance

Bacteria: mainly RND (Gram -) and MFS (Gram +) pumps

Efflux pumps spectra

Mesaros et al., La lettre de l’Infectiologue 2005, 4: 117
Efflux pumps clinical relevance

Physiological function = protective role

P-gp membrane localisation
Efflux pumps clinical relevance

Physiological function = protective role

But efflux pumps are able to expel a wide range of molecules, including a lot of drugs

Bacteria: Antibiotics, detergents, dyes, bile salts….

Eucaryotes: Anti-cancer drugs (P-gp, MRP, BCRP…)
Antifongic drugs (CDR1, *Candida albica*)
Antiparasital drugs (Pgh1, *Plasmodium falciparum*)
Antibiotics…
Efflux pumps clinical relevance

Bacteria:
- → of the MCI of antibiotics (within the same class, or broad range of ATB)
- Cause intrinsic resistance (*Pseudomonas*,…)
- Several pumps can be expressed at the same time

Eucaryotes:
- Related to therapeutic failures (40% of tumors develop resistance to anti-cancer drugs)
- Related to negative prognosis or poor outcome for chemotherapy
- Modulate drugs pharmacokinetic: ↔ bioavailability, → excretion
Efflux pumps clinical relevance

For both bacteria and eucaryotes:

- Efflux pumps can confer MDR resistance
- They can add themselves to other resistance mechanisms

Efflux pumps can be seen as a « new » target:
Efflux pump inhibitors (EPI), by blocking the pumps, will restore drugs activity
Efflux pump inhibitors

An Efflux Pump Inhibitor will:

- restore the activity of the drug in resistant cells (intrinsic or acquired resistance)
- be devoid of effect in wild type cells
- decrease the frequency of apparition of resistant mutants
Efflux pump inhibitors

An Efflux Pump Inhibitor will:

- restore the activity of the drug in resistant cells (intrinsic or acquired resistance)
- be devoid of effect in wild type cells
- decrease the frequency of apparition of resistant mutants

An EPI would act by:

- binding to the pump with an increased affinity (competitive inhibition)
- impairing access to the binding site for the drug (non competitive inhibition)
- dissipating the energy source used by the pump (not clinically relevant)
MDR pumps binding sites

AcrB periplasmic drug binding pocket

MDR pumps binding sites

Modeling of the binding of two P-gp substrates

Longitudinal view across the membrane

rhodamine

verapamil

Vandevuer et al., *Proteins* 2006, 63: 466
EPIs criteria

To be used *in vivo*, an EPI should:

- be stable and *not toxic*
- be *selective* of a family of pumps:
 - eukaryotic pumps: selective of one sub-family (P-gp, MRP, BCRP)
 - bacterial pumps: a wide inhibitor (Gram +/Gram -) would be advantageous, devoided of activity against human pumps
- not cause side effects by perturbing efflux pumps physiological role
- be co-administrable with the drug

Otherwise, EPIs can be used *in vitro* as tools to detect the presence of efflux pumps (diagnostic) and to study them (affinity, binding sites…).
Rational design

Case of specific pumps: Tetracycline pumps

Chemical modification of the substrate:

⇒ 6-fold increase of the affinity of 13-CPTC for Tet(B)

⇒ Competitive inhibitor → Useful in addition to tetracyclines

Rational design

Case of specific pumps: Tetracycline pumps

![Chemical structures of Doxycycline and 13-cyclopentylthio-tetracycline](image)

- Different classes of Tet efflux pumps
- Other resistance mechanisms (ribosomal protection)
- Development of new tetracyclines not recognised by these pumps
 - **by-pass the efflux pump**
Rational design

Case of specific pumps: Tetracycline pumps

毽 By-passing efflux pumps

Tetracycline

Minocycline
Substitution that impairs efflux

Tigecycline

Screening for EPI

- Chemical libraries
- Natural extracts
- Synthetic products
Screening for EPI

Chemical libraries

natural extracts synthetic products

Screen:
- Against bacterial strains over-expressing efflux pumps (S. aureus NorA, P. aeruginosa MexAB-OprM…) or against cancer cells
- First screen: ↗ potency of the drug?
- Second screen: ↗ intracellular accumulation of the drug?
- And then confirmation of an interaction between the efflux pump and the EPI (interference in photoaffinity labelling, co-crystallisation…)
Bacterial EPI

Reserpine (indole alkaloid)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pump</th>
<th>Family</th>
<th>Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. subtilis</td>
<td>Bmr</td>
<td>MFS</td>
<td>FQ</td>
</tr>
<tr>
<td>S. aureus</td>
<td>NorA</td>
<td>MFS</td>
<td>FQ</td>
</tr>
<tr>
<td>MRSA</td>
<td>Tet(K)</td>
<td>MFS</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>PmrA</td>
<td>MFS</td>
<td>NOR</td>
</tr>
<tr>
<td></td>
<td>PatA and PatB</td>
<td>ABC</td>
<td>FQ</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>Lde</td>
<td>MFS</td>
<td>FQ</td>
</tr>
</tbody>
</table>

⇒ Inhibition of Gram + efflux pumps, mainly involved in FQ efflux

⇒ As resistance to reserpine has been reported, this suggests a direct binding to the pump (at least to Bmr*)

Neurotoxic at the concentrations required to inhibit pumps in vivo
⇒ reserpine can not be used in humans

*Klyachko et al., J. Bacteriol. 1997, 179: 2189
Bacterial EPI

Screening of natural compounds

Porphyrin

Flavonolignan

- NorA pump inhibitors (MFS family), isolated from Berberis plants
- Restore berberine activity, a weak antibiotic produced by the plant
- Plants may have evolve so that they produce weak antibiotic associated with EPI

Bacterial EPI

Screening of natural compounds

- Most identified EPI are provided by plant extracts
- Most are active against Gram + pumps (MFS family), and not against Gram - pumps
- Some are also active against eukaryotic pumps

⇒ All these molecules have a large size and are lipophilic (alkaloids, flavonolignans, flavones/isoflavones, catechin gallates, diterpenes….)

⇒ Starting point for further lead optimization
⇒ Need to prove the EPI/pump interaction
⇒ Check for in vivo toxicity…
Results from a screen against NorA

Among ~ 4 000 molecules ⇒ 180 were able to restore CIP activity

Distribution of active molecules according to their MIC against S. aureus NorA in presence of CIP at ¼ of its MIC

Extract from J. elliptica

benzothiophene

benzofurane

(3)

indoles
Results from a screen against NorA

EtBr efflux from *S. aureus* NorA
Results from a screen against NorA

EtBr efflux from a *B. subtilis* over-expressing NorA

EtBr efflux from *S. aureus* NorA

Fournier dit Chabert et al., *Bioorg. Med. Chem.* 2007, **15**: 4482
ABC families within eucaryotes

Table 1: List of human ABC genes, chromosomal location, and function

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Alias</th>
<th>Location</th>
<th>Function</th>
<th>Symbol</th>
<th>Alias</th>
<th>Location</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA1</td>
<td>ABC1</td>
<td>9q31.1</td>
<td>Cholesterol efflux onto HDL</td>
<td>ABCC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA2</td>
<td>ABC2</td>
<td>9q34</td>
<td>Drug resistance</td>
<td>ABCC2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA3</td>
<td>ABC3</td>
<td>16p13.3</td>
<td>Phosphatidyl choline efflux</td>
<td>ABCC3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA4</td>
<td>ABCR</td>
<td>1p22.1-p21</td>
<td>N-retinylidene-PE efflux</td>
<td>ABCC4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA5</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCC5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA6</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCC6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA7</td>
<td></td>
<td>19p13.3</td>
<td></td>
<td>ABCC7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA8</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCC8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA9</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCC9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA10</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCC10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA12</td>
<td></td>
<td>17q24</td>
<td></td>
<td>ABCG1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA13</td>
<td></td>
<td>7p11-q11</td>
<td></td>
<td>ABCB1</td>
<td>PGY1, MDR</td>
<td>7p21</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>ABCB2</td>
<td>TAP1</td>
<td>6p21</td>
<td>Peptide transport</td>
<td>ABCD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB3</td>
<td>TAP2</td>
<td>6p21</td>
<td>Peptide transport</td>
<td>ABCB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB4</td>
<td>PGY3</td>
<td>7q21.1</td>
<td>PC transport</td>
<td>ABCD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB5</td>
<td></td>
<td>7p14</td>
<td></td>
<td>ABCD3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB6</td>
<td>MTABC3</td>
<td>2q36</td>
<td>Iron transport</td>
<td>ABCD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB7</td>
<td>ABC7</td>
<td>Xq12-q13</td>
<td>Fe/S cluster transport</td>
<td>ABCE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB8</td>
<td>MABC1</td>
<td>7q36</td>
<td></td>
<td>ABCF1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB9</td>
<td></td>
<td>12q24</td>
<td></td>
<td>ABCF2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB10</td>
<td>MTABC2</td>
<td>1q42</td>
<td></td>
<td>ABCF3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB11</td>
<td>SPGP</td>
<td>2q24</td>
<td>Bile salt transport</td>
<td>ABCG1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABC8, White</td>
<td>21q22.3</td>
<td>Cholesterol transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABCP, MXR, BCRP</td>
<td>4q22</td>
<td>Toxin efflux, drug resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White2</td>
<td>11q23</td>
<td>Cholesterol transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White3</td>
<td>2p21</td>
<td>Sterol transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-gp inhibitors

<table>
<thead>
<tr>
<th>Class</th>
<th>Pharmaceutical code name</th>
<th>USAN name</th>
<th>Chemical class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation</td>
<td>Verapamil</td>
<td>–</td>
<td>Diphenylalkylamine Ca-channel blocker</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine A</td>
<td>–</td>
<td>Cyclic oligopeptide immunosuppressant</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen</td>
<td>–</td>
<td>Nonsteroidal anti-estrogen</td>
</tr>
</tbody>
</table>

1st generation: not developed for MDR pumps inhibition, low affinity for pumps, side effects at the concentrations required to inhibit P-gp in vivo

McDevitt et al., Pharmacol. Ther. 2007, 113: 429
P-gp inhibitors

<table>
<thead>
<tr>
<th>Class</th>
<th>Pharmaceutical code name</th>
<th>USAN name</th>
<th>Chemical class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation</td>
<td>Verapamil</td>
<td>–</td>
<td>Diphenylalkylamine Ca-channel blocker</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine A</td>
<td>–</td>
<td>Cyclic oligopeptide immunosuppressant</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen</td>
<td>–</td>
<td>Nonsteroidal anti-estrogen</td>
</tr>
<tr>
<td>2nd Generation</td>
<td>PSC833</td>
<td>Valspodar</td>
<td>Non-immunosuppressive derivative of cyclosporine A</td>
</tr>
<tr>
<td></td>
<td>VX-710</td>
<td>Biricodar</td>
<td>Derivative of FK-506 - macrocyclic antibiotic</td>
</tr>
<tr>
<td></td>
<td>S9788</td>
<td>–</td>
<td>Triazine</td>
</tr>
<tr>
<td></td>
<td>SR33557</td>
<td>–</td>
<td>Indolizin sulfone</td>
</tr>
</tbody>
</table>

2nd generation: more potent, toxicity reduced, but anti-cancer drugs pharmacokinetic impaired (metabolisme & elimination, via interactions with cytochrome P450)

McDevitt et al., Pharmacol. Ther. 2007, 113: 429
P-gp inhibitors

<table>
<thead>
<tr>
<th>Class</th>
<th>Pharmaceutical code name</th>
<th>USAN name</th>
<th>Chemical class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation</td>
<td>Verapamil</td>
<td>–</td>
<td>Diphenylalkylamine Ca-channel blocker</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine A</td>
<td>–</td>
<td>Cyclic oligopeptide immunosuppressant</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen</td>
<td>–</td>
<td>Nonsteroidal anti-estrogen</td>
</tr>
<tr>
<td>2nd Generation</td>
<td>PSC833</td>
<td>Valspodar</td>
<td>Non-immunosuppresive derivative of cyclosporine A</td>
</tr>
<tr>
<td></td>
<td>VX-710</td>
<td>Biricodar</td>
<td>Derivative of FK-506 - macrocyclic antibiotic</td>
</tr>
<tr>
<td></td>
<td>S9788</td>
<td>–</td>
<td>Triazine</td>
</tr>
<tr>
<td></td>
<td>SR33557</td>
<td>–</td>
<td>Indolizin sulfone</td>
</tr>
<tr>
<td>3rd Generation</td>
<td>GF120918</td>
<td>Elaeridar</td>
<td>Acridonecarboximide</td>
</tr>
<tr>
<td></td>
<td>LY335979</td>
<td>Zosuquidar</td>
<td>Cyclopropyl dibenzosuberane</td>
</tr>
<tr>
<td></td>
<td>XR9576</td>
<td>Tarquidar</td>
<td>Anthranilamide</td>
</tr>
<tr>
<td></td>
<td>OC144-093</td>
<td>Ontogen</td>
<td>Diarylimidazole</td>
</tr>
</tbody>
</table>

3rd generation: more specific and powerful, under clinical trials

In vivo assays to assess P-gp inhibition:

- Drug efflux assay with CD65+ cells
- Use of 99Tc-marker substrates of P-gp

McDevitt *et al.*, *Pharmacol. Ther.* 2007, **113**: 429
P-gp inhibitors

elacridar

Tariquidar
Non competitive I

3rd generation

zosuquidar
MRP inhibitors

Most P-gp inhibitors are inactive against MRP1 (P-gp substrates are hydrophobic, MRP1 substrates are hydrophilic, conjugated to glutathione)

Known inhibitors:
- Agosterol (competitive inhibitor, binds to the C-terminal half of MRP1)
- Natural flavonoids
- Raloxifene analogs...

Agosterol A

Raloxifene
MRP modulators

MRP1 transports drugs either conjugated to glutathione or co-transport them with free glutathione

Glutathione-S-transferase (GST), which catalyses formation of GSH-conjugates, is a target to modulate MRP1 activity

Development of compounds able to mimic GSH (competitive inhibitors) or GSH-conjugates → PEPTIDOMIMETICS

Selective for MRP1 versus P-gp but may interfere with the physiological role of GSH

BCRP inhibitors

Elacridar (GF-120918) is a reference inhibitor for BCRP (also known to inhibit P-gp)

Reserpine

Fumitremorgin (mycotoxin from *Aspergillus fumigatus*) inhibits drug transport and ATPse activity, but neurotoxic → derivatives

Acridone derivatives

...
EPI discovery:
Successful...
But no clinical EPI yet available!...
Perspectives in EPI development

Different « targets » can be considered:

- The drug binding site
- The NBD of ABC transporters, required for the function of the pump (but highly conserved!)
- Residues involved in communication between several parts of the efflux system (TMD and NBD for ABC pumps, monomers of tripartite pumps…)

But it will remain difficult to get a specific EPI that does not alter the physiological functions of the efflux pump….
Perspectives in EPI development

Others possibilities to tackle efflux resistance:

- Interference with gene expression → Downregulation of MDR transporters (with antisense oligonucleotides, via antagonists of nuclear regulators…)

- Interference with efflux pump assembly (tripartite efflux pumps in Gram-bacteria)

- Bypass MDR efflux by developing drugs which are poor substrates of efflux pumps

 (glycylcyclines vs tetracyclines, ketolides versus macrolides, new fluoroquinolones versus older ones, new anthracyclines…)
Perspectives

For the patient:
- Detect accurately efflux pump(s) over-expression
- Take it into account to propose and adapt an efficient treatment

Development of new molecules:
- Consider efflux pumps in the early stages of conception of new drugs
- Pursue efforts to develop safe and selective EPI

This might be accelerated with the structure elucidation of more efflux pumps